Person: Asea, G.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Asea
First Name
G.
Name
Asea, G.
ORCID ID
0000-0003-1441-219916 results
Search Results
Now showing 1 - 10 of 16
- Redesigning crop varieties to win the race between climate change and food security(Cell Press, 2023) Pixley, K.V.; Cairns, J.E.; Lopez-Ridaura, S.; Ojiewo, C.O.; Maryam Abba Dawud; Drabo, I.; Taye Mindaye; Nebie, B.; Asea, G.; Das, B.; Daudi, H.; Desmae, H.S.; Batieno, B.J.; Boukar, O.; Mukankusi, C.; Nkalubo, S.; Hearne, S.; Dhugga, K.; Gandhi, H.; Snapp, S.S.; Zepeda Villarreal, E.A.
Publication - Genetic trends for yield and key agronomic traits in pre-commercial and commercial maize varieties between 2008 and 2020 in Uganda(Frontiers, 2023) Asea, G.; Kwemoi, D.B.; Sneller, C.; Kasozi, C.L.; Das, B.; Musundire, L.; Makumbi, D.; Beyene, Y.; Prasanna, B.M.
Publication - Performance of Bt maize event MON810 in controlling maize stem borers Chilo partellus and Busseola fusca in Uganda(Elsevier, 2022) Otim, M.; Alibu. S.; Asea, G.; Abalo, G.; Sserumaga, J.P.; Adumo, S.; Alupo, J.; Ochen, S.; Tadele Tefera; Bruce, A.Y.; Beyene, Y.; Meisel, B.; Tende, R.; Nang’ayo, F.; Baguma, Y.; Mugo, S.N.; Oikeh, S.O.
Publication - Genetic trends in CIMMYT’s tropical maize breeding pipelines(Nature Publishing Group, 2022) Prasanna, B.M.; Burgueño, J.; Beyene, Y.; Makumbi, D.; Asea, G.; Woyengo, V.; Tarekegne, A.T.; Magorokosho, C.; Dagne Wegary Gissa; Ndhlela, T.; Zaman-Allah, M.; Matova, P.M.; Mwansa, K.; Mashingaidze, K.; Fato, P.; Chere, A.T.; Vivek, B.; Zaidi, P.; Vinayan, M.T.; Nagesh, P.; Rakshit, S.; Kumar, R.; Jat, S.L.; Singh, S.B.; Kuchanur, P.; Lohithaswa, H.C.; Singh, N.K.; Koirala, K.B.; Ahmed, S.; San Vicente Garcia, F.M.; Dhliwayo, T.; Cairns, J.E.
Publication - Performance and yield stability of maize hybrids in stress-prone environments in eastern Africa(Elsevier, 2020) Rezende, W.S.; Beyene, Y.; Mugo, S.N.; Ndou, E.; Gowda, M.; Sserumaga, J.P.; Asea, G.; Ismail Ngolinda; Jumbo, M.B; Oikeh, S.O.; Olsen, M.; Borem, A.; Cruz, C.D.; Prasanna, B.M.
Publication - On-farm performance and farmers’ participatory assessment of new stress-tolerant maize hybrids in Eastern Africa(Elsevier, 2020) Regasa, M.W.; De Groote, H.; Munyua, B.G.; Makumbi, D.; Owino, F.; Crossa, J.; Beyene, Y.; Mugo, S.N.; Jumbo, M.B; Asea, G.; Mutinda, C.J.M.; Kwemoi, D.B.; Woyengo, V.; Olsen, M.; Prasanna, B.M.
Publication - Breeding WEMA maize for the African Continent(CIMMYT, 2018) Mugo, S.N.; Beyene, Y.; Ndou, E.; Oikeh, S.O.; Asea, G.; Mashingaidze, K.
Publication - Grain-yield stability among tropical maize hybrids derived from doubled-haploid inbred lines under random drought stress and optimum moisture conditions(CSIRO, 2018) Sserumaga, J.P.; Beyene, Y.; Pillay, K.; Alois Kullaya; Oikeh, S.O.; Mugo, S.N.; Machida, L.; Ismail Ngolinda; Asea, G.; Justin Ringo; Otim, M.; Abalo, G.; Barnabas KiulaDrought is a devastating environmental stress in agriculture and hence a common target of plant breeding. A review of breeding progress on drought tolerance shows that, to a certain extent, selection for high yield in stress-free conditions indirectly improves yield in water-limiting conditions. The objectives of this study were to (i) assess the genotype × environment (GE) interaction for grain yield (GY) and other agronomic traits for maize (Zea mays L.) across East African agro-ecologies; and (ii) evaluate agronomic performance and stability in Uganda and Tanzania under optimum and random drought conditions. Data were recorded for major agronomic traits. Genotype main effect plus GE (GGE) biplot analysis was used to assess the stability of varieties within various environments and across environments. Combined analysis of variance across optimum moisture and random drought environments indicated that locations, mean-squares for genotypes and GE were significant for most measured traits. The best hybrids, CKDHH1097 and CKDHH1090, gave GY advantages of 23% and 43%, respectively, over the commercial hybrid varieties under both optimum-moisture and random-drought conditions. Across environments, genotypic variance was less than the GE variance for GY. The hybrids derived from doubled-haploid inbred lines produced higher GY and possessed acceptable agronomic traits compared with the commercial hybrids. Hybrid CKDHH1098 ranked second-best under optimum-moisture and drought-stress environments and was the most stable with broad adaptation to both environments. Use of the best doubled-haploids lines in testcross hybrids make-up, well targeted to the production environments, could boost maize production among farmers in East Africa.
Publication - Correction to: genotype by environment interactions and agronomic performance of doubled haploids testcross maize (Zea mays L.) hybrids(Springer, 2018) Sserumaga, J.P.; Oikeh, S.O.; Mugo, S.N.; Asea, G.; Otim, M.; Beyene, Y.; Abalo, G.; Kikafunda, J.
Publication - Genetic analysis of tropical midaltitude-adapted maize populations under stress and nonstress conditions(Crop Science Society of America (CSSA), 2018) Makumbi, D.; Assanga, S.; Diallo, A.O.; Magorokosho, C.; Asea, G.; Regasa, M.W.; Banziger, M.Maize (Zea mays L.) yield in sub-Saharan Africa (SSA) is low because of both abiotic and biotic constraints, and limited availability or use of improved seed in some areas. This study was conducted (i) to estimate combining ability and heterosis among seven stress-tolerant populations, and (ii) to assess diversity among the populations and the relationship between diversity and heterosis. Twenty-one hybrids developed from diallel crosses of seven populations, parents, and two checks were evaluated in 10 optimal and 11 stressed environments (drought, low N, and random stress) in Kenya, Ethiopia, Uganda, and Zimbabwe for 2 yr. Analysis II of Gardner and Eberhart showed that variety and heterosis were significant for grain yield (GY) under optimal and managed stress, and across environments. Heterosis accounted for most of the variation for GY among populations under optimal conditions (67%) and drought stress (53%), which suggested the importance of dominance in inheritance of GY under these conditions. Genetic distance (GD) among populations ranged from 0.328 to 0.477 (mean = 0.404). The correlation between GD and heterosis was low (r = 0.14-0.40) in all environments. The simple sequence repeat (SSR) marker-based and GY-based clustering of parental populations showed similar patterns, with three populations distinct from the rest, suggesting significant differentiation of allelic variation in these three populations. The SSR-based diversity and phenotypic analysis results should be useful in defining breeding strategies and maintaining heterotic patterns among these populations.
Publication