Person:
Grassini, P.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Grassini
First Name
P.
Name
Grassini, P.

Search Results

Now showing 1 - 3 of 3
  • Can Bangladesh produce enough cereals to meet future demand?
    (Elsevier, 2018) Timsina, J.; Wolf, J.; Guilpart, N.; Bussel, L.G.J. Van; Grassini, P.; Wart, J. van; Hossain, A.; Rashid, H.; Saiful Islam; Ittersum, M.K. van
    Bangladesh faces huge challenges in achieving food security due to its high population, diet changes, and limited room for expanding cropland and cropping intensity. The objective of this study is to assess the degree to which Bangladesh can be self-sufficient in terms of domestic maize, rice and wheat production by the years 2030 and 2050 by closing the existing gap (Yg) between yield potential (Yp) and actual farm yield (Ya), accounting for possible changes in cropland area. Yield potential and yield gaps were calculated for the three crops using well-validated crop models and site-specific weather, management and soil data, and upscaled to the whole country. We assessed potential grain production in the years 2030 and 2050 for six land use change scenarios (general decrease in arable land; declining ground water tables in the north; cropping of fallow areas in the south; effect of sea level rise; increased cropping intensity; and larger share of cash crops) and three levels of Yg closure (1: no yield increase; 2: Yg closure at a level equivalent to 50% (50% Yg closure); 3: Yg closure to a level of 85% of Yp (irrigated crops) and 80% of water-limited yield potential or Yw (rainfed crops) (full Yg closure)). In addition, changes in demand with low and high population growth rates, and substitution of rice by maize in future diets were also examined. Total aggregated demand of the three cereals (in milled rice equivalents) in 2030 and 2050, based on the UN median population variant, is projected to be 21 and 24% higher than in 2010. Current Yg represent 50% (irrigated rice), 48–63% (rainfed rice), 49% (irrigated wheat), 40% (rainfed wheat), 46% (irrigated maize), and 44% (rainfed maize) of their Yp or Yw. With 50% Yg closure and for various land use changes, self-sufficiency ratio will be N1 for rice in 2030 and about one in 2050 but well below one for maize and wheat in both 2030 and 2050. With full Yg closure, self-sufficiency ratios will be well above one for rice and all three cereals jointly but below one for maize and wheat for all scenarios, except for the scenario with drastic decrease in boro rice area to allow for area expansion for cash crops. Full Yg closure of all cereals is needed to compensate for area decreases and demand increases, and then even some maize and large amounts of wheat imports will be required to satisfy demand in future. The results of this analysis have important implications for Bangladesh and other countries with high population growth rate, shrinking arable land due to rapid urbanization, and highly vulnerable to climate change.
    Publication
  • A spatial framework for ex-ante impact assessment of agricultural technologies
    (Elsevier, 2019) Andrade, J.F.; Rattalino Edreira, J.I.; Farrow, A.; Van Loon, M.P.; Craufurd, P.; Rurinda, J.; Shamie Zingore; Chamberlin, J.; Claessens, L.; Adewopo, J.; Ittersum, M.K. van; Cassman, K.G.; Grassini, P.
    Traditional agricultural research and extension relies on replicated field experiments, on-farm trials, and demonstration plots to evaluate and adapt agronomic technologies that aim to increase productivity, reduce risk, and protect the environment for a given biophysical and socio-economic context. To date, these efforts lack a generic and robust spatial framework for ex-ante assessment that: (i) provides strategic insight to guide decisions about the number and location of testing sites, (ii) define the target domain for scaling-out a given technology or technology package, and (iii) estimate potential impact from widespread adoption of the technology(ies) being evaluated. In this study, we developed a data-rich spatial framework to guide agricultural research and development (AR&D) prioritization and to perform ex-ante impact assessment. The framework uses “technology extrapolation domains”, which delineate regions with similar climate and soil type combined with other biophysical and socio-economic factors that influence technology adoption. We provide proof of concept for the framework using a maize agronomy project in three sub-Saharan Africa countries (Ethiopia, Nigeria, and Tanzania) as a case study. We used maize area and rural population coverage as indicators to estimate potential project impact in each country. The project conducted 496 nutrient omission trials located at both on-farm and research station sites across these three countries. Reallocation of test sites towards domains with a larger proportion of national maize area could increase coverage of maize area by 79–134% and of rural population by 14–33% in Nigeria and Ethiopia. This study represents a first step in developing a generic, transparent, and scientifically robust framework to estimate ex-ante impact of AR&D programs that aim to increase food production and reduce poverty and hunger.
    Publication
  • Can sub-Saharan Africa feed itself?
    (National Academy of Sciences, 2016) Ittersum, M.K. van; Bussel, L.G.J. Van; Wolf, J.; Grassini, P.; Wart, J. van; Guilpart, N.; Claessens, L.; De Groote, H.; Wiebe, K.; Mason-D'croz, D.; Haishun Yang; Boogaard, H.; Van Oort, P.; Van Loon, M.P.; Saito, K.; Adimo, O.; Adjei-Nsiah, S.; Agali, A.; Bala, A.; Chikowo, R.; Kaizzi, K.; Kouressy, M.; Makoi, J.H.; Ouattara, K.; Tesfaye, K.; Cassman, K.G.
    Although global food demand is expected to increase 60% by 2050 compared with 2005/2007, the rise will be much greater in sub-Saharan Africa (SSA). Indeed, SSA is the region at greatest food security risk because by 2050 its population will increase 2.5-fold and demand for cereals approximately triple, whereas current levels of cereal consumption already depend on substantial imports. At issue is whether SSA can meet this vast increase in cereal demand without greater reliance on cereal imports or major expansion of agricultural area and associated biodiversity loss and greenhouse gas emissions. Recent studies indicate that the global increase in food demand by 2050 can be met through closing the gap between current farm yield and yield potential on existing cropland. Here, however, we estimate it will not be feasible to meet future SSA cereal demand on existing production area by yield gap closure alone. Our agronomically robust yield gap analysis for 10 countries in SSA using location-specific data and a spatial upscaling approach reveals that, in addition to yield gap closure, other more complex and uncertain components of intensification are also needed, i.e., increasing cropping intensity (the number of crops grown per 12 mo on the same field) and sustainable expansion of irrigated production area. If intensification is not successful and massive cropland land expansion is to be avoided, SSA will depend much more on imports of cereals than it does today.
    Publication