Person: Chaudhary, N.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Chaudhary
First Name
N.
Name
Chaudhary, N.
2 results
Search Results
Now showing 1 - 2 of 2
- Simulation of resource-conserving technologies on productivity, income and greenhouse gas GHG emission in rice-wheat system(Academic Journals, 2012) Saharawat, Y.S.; Ladha, J.; Pathak, H.; Gathala, M.K.; Chaudhary, N.; Jat, M.L.The Rice-wheat (RW) cropping system is one of the major agricultural production systems in four Indo-Gangetic Plains (IGP) countries: India, Pakistan, Bangladesh and Nepal of South Asia covering about 32% of the total rice area and 42% of the total wheat area. The excessive utilization of natural resource bases and changing climate are leading to the negative yield trend and plateauing of Rice-wheat (RW) system productivity. The conservation agriculture based efficient and environmental friendly alternative tillage and crop establishment practices have been adopted by the farmers on large scale. A few tools have been evolved to simulate the different tillage and crop establishment. In the present study, InfoRCT (Information on Use of Resource Conserving Technologies), a excel based model integrating biophysical, agronomic, and socioeconomic data to establish input-output relationships related to water, fertilizer, labor, and biocide uses; greenhouse gas (GHG) emissions; biocide residue in soil; and Nitrogen (N) fluxes in the rice-wheat system has been validated for farmer participatory practices. The assessment showed that double no-till system increased the farmer?s income, whereas raised-bed systems decreased it compared with the conventional system. The InfoRCT simulated the yield, wateruse, net income and biocide residue fairly well. The model has potential to provide assessments of various cultural practices under different scenarios of soil, climate, and crop management on a regional scale
Publication - Direct seeded rice technology in Western indo-gangetic plains of India: CSISA experiences(CSISA, 2012) Kamboj, B.R.; Kumar, A.; Bishnoi, D.K.; Singla, K.; Kumar, V.; Jat, M.L.; Chaudhary, N.; Jat, H.S.; Gosain, D.K.; Khippal, A.; Garg, R.; Lathwal, O.P.; Goyal, S.P.; Goyal, N.K.; Yadav, A.K.; Malik, D.S.; Mishra, A.; Bhatia, R.This bulletin summarizes the experiences of direct seeded rice (DSR) during CSISA, phase-I (2009-2011) as well as outcomes of a multi stakeholder travelling seminar on dry direct seeded rice (DSR) organized by Cereal Systems Initiative for South Asia (CSISA) Haryana Hub on 20th September 2011. About 70 stakeholders of CSISA Haryana hub including scientists from Central Soil Salinity Research Institute (CSSRI) and Krishi Vigyan Kendra’s (KVKs), officers from State Department of Agriculture, agriculture extension officers from private sector, members of Technical Working Group (TWG) of Haryana hub, local machine manufacturers, and participating farmers gathered together to share their experiences on DSR. The underlying objectives were to (i) visit on-farm and on-station trials on DSR in Karnal district of Haryana for participatory assessment and learning of performance and potentially of DSR, (ii) create awareness about DSR technology, (iii) facilitate interaction among different stakeholders who are engaged in developing, refining and out-scaling of DSR technology and share experiences, (iv) summarize and update technological package of DSR for Haryana, (v) identify constraints associated with DSR, and (vi) identify the future research needs. The travelling seminar was strategically structured into two parts; (i) visit farmer participatory DSR fields as well as on-station strategic research trials on DSR and (ii) a round table discussion by all stakeholders. During field visit, a total of three sites were covered, including one on-station site (CSISA Research Platform at CSSRI, Karnal) and two farmer’s participatory conservation agriculture (CA) modules established with innovative farmer cooperatives at village clusters of Taraori and Modipur of Karnal district. At CSISA Research Platform, performance of zero-till (ZT) DSR under double ZT systems was elucidated to the participants. In addition, trials on weed management and varietal screening for DSR conditions were briefed. At farmer participatory CA modules at Modipur & Taraori, participants were exposed to large scale demonstrations on DSR and adaptive research trials on different component technologies of DSR (varietal evaluation, weed management, water management and nutrient management) conducted through farmer cooperatives in collaboration with CSISA hub and partners. Based on large number of demonstrations on DSR using superfine varieties and hybrids of rice conducted in 8 hub districts across 3 years (2009-2011), it was verified that grain yield of DSR in comparison to puddled transplanted rice was either similar or higher with US$ 128-137/ha higher net profitability. Demonstration on DSR under double ZT system at village Taraori was also highly appreciated as the population of earthworms and vermicast was visible on the plot. All the participants were impressed with the performance of DSR and potential benefits it can endow on farmers like savings in labour, water (20-25%), and cost of cultivation. During round table discussion on DSR at CSSRI Karnal, Dr. D. K. Sharma (Director, CSSRI & TWG Chair, CSISA Haryana) highlighted the importance of DSR while elaborating the issues of declining water table due to over exploitation of groundwater, labour scarcity, escalating cost of cultivation and deteriorating soil health under current management practices of rice-wheat cropping system. CSISA Hub coordinator, Haryana) while sharing the joint experience of CSISA and partners on DSR in Haryana, presented the summary of the technological package of DSR for Northwestern IGP including Haryana for discussion and finalization of the recommendations of DSR package for large scale delivery. This was based on the outcomes of farmers’ participatory adaptation and demonstrations of DSR and its component technologies in Haryana in CSISA phase-I during past 3 years (2009-2011). Approaching the consensus, everyone confirmed that precise land levelling with laser land leveller, effective weed management, precise sowing depth and time of sowing are critical for the success of DSR. The DSR technology may also play vital role in recharge of groundwater and reduction in water runoff during heavy rainfall. Partners from public (KVK’s, ICAR, CCSHAU) and private sector (DevGen seeds, Bayer, HKB) shared their experiences on DSR and advocated its large scale promotion. Participating farmers also shared their experiences and found weed control being the most challenging task in DSR and thus achieving optimal weed control a route to its success. They experienced that pre and post-emergence herbicide application is important to manage weeds effectively in DSR. The issue of poor crop establishment due to sudden rainfall soon after sowing was also put up by some of the farmers. All participants very much convinced about DSR, pledged to make it a revolution in Haryana, and hence emphasized the access to literature on technology package for DSR. Finally, the participants suggested that to attain potential benefits of the DSR technology, further refinements of some of the component technologies for example varietal development for DSR, water management, nutrient management etc needs immediate efforts of the researchers.
Publication