Show simple item record

Maize Lethal Necrosis disease: review of molecular and genetic resistance mechanisms, socio-economic impacts, and mitigation strategies in sub-Saharan Africa

Creator: Biswal, A.K.
Creator: Alakonya, A.
Creator: Mottaleb, K.A.
Creator: Hearne, S.
Creator: Sonder, K.
Creator: Molnar, T.L.
Creator: Jones, A.M.
Creator: Pixley, K.V.
Creator: Prasanna, B.M.
Year: 2022
URI: https://hdl.handle.net/10883/22293
Language: English
Publisher: BioMed Central
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose
Type: Article
Country focus: Africa South of Sahara
Place of Publication: London (United Kingdom)
Issue: 1
Volume: 22
DOI: 10.1186/s12870-022-03932-y
Keywords: Maize Lethal Necrosis
Description: Background: Maize lethal necrosis (MLN) disease is a significant constraint for maize producers in sub-Saharan Africa (SSA). The disease decimates the maize crop, in some cases, causing total crop failure with far-reaching impacts on regional food security. Results: In this review, we analyze the impacts of MLN in Africa, finding that resource-poor farmers and consumers are the most vulnerable populations. We examine the molecular mechanism of MLN virus transmission, role of vectors and host plant resistance identifying a range of potential opportunities for genetic and phytosanitary interventions to control MLN. We discuss the likely exacerbating effects of climate change on the MLN menace and describe a sobering example of negative genetic association between tolerance to heat/drought and susceptibility to viral infection. We also review role of microRNAs in host plant response to MLN causing viruses as well as heat/drought stress that can be carefully engineered to develop resistant varieties using novel molecular techniques. Conclusions: With the dual drivers of increased crop loss due to MLN and increased demand of maize for food, the development and deployment of simple and safe technologies, like resistant cultivars developed through accelerated breeding or emerging gene editing technologies, will have substantial positive impact on livelihoods in the region. We have summarized the available genetic resources and identified a few large-effect QTLs that can be further exploited to accelerate conversion of existing farmer-preferred varieties into resistant cultivars.
Agrovoc: DROUGHT STRESS
Agrovoc: GENE EDITING
Agrovoc: MAIZE
Agrovoc: NECROSIS
Agrovoc: POTYVIRUS
Agrovoc: QUANTITATIVE TRAIT LOCI
Agrovoc: MAIZE CHLOROTIC MOTTLE VIRUS
Agrovoc: SUGARCANE MOSAIC VIRUS
ISSN: 1471-2229
Journal: BMC Plant Biology
Article number: 542
CGIAR Impact Area: Nutrition, health & food security
CGIAR Initiative: Accelerated Breeding
CGIAR Action Area: Genetic Innovation
Donor or Funder: CGIAR Research Program on Maize
Donor or Funder: Bill & Melinda Gates Foundation (BMGF)
CGSpace Handle: https://hdl.handle.net/10568/126546


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Genetic Resources
    Genetic Resources including germplasm collections, wild relatives, genotyping, genomics, and IP
  • Maize
    Maize breeding, phytopathology, entomology, physiology, quality, and biotech
  • Socioeconomics
    Including topics such as farming systems, markets, impact & targeting, innovations, and GIS

Show simple item record