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a b s t r a c t 

Three F2-derived biparental doubled haploid (DH) maize 

populations were generated for genetic mapping of resis- 

tance to common rust. Each of the three populations has 

the same susceptible parent, but a different resistance donor 

parent. Population 1 and 3 consist of 320 lines each, pop- 

ulation 2 consists of 260 lines. The DH lines were evalu- 

ated for their susceptibility to common rust in two years 

and with two replications in each year. For phenotyping, a 

visual score (VS) for susceptibility was assigned. Addition- 

ally, unmanned aerial vehicle (UAV) derived multispectral 

and thermal infrared data was recorded and combined in dif- 

ferent vegetation indices (“remote sensing”, RS). The DH lines 

were genotyped with the DarTseq method, to obtain data 

on single nucleotide polymorphisms (SNPs). After quality 
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control, 9051 markers remained. Missing values were “im- 

puted” by the empirical mean of the marker scores of 

the respective locus. We used the data for comparison of 

genome-wide association studies and genomic prediction 

when based on different phenotyping methods, that is 

either VS or RS data. The data may be interesting for reuse 

for instance for benchmarking genomic prediction models, 

for phytopathological studies addressing common rust, or for 

specifications of vegetation indices. 

© 2024 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S
pecifications Table 

Subject Agronomy and Crop Science 

Genetics: General 

Specific subject area Remote sensing for high-throughput field phenotyping for resistance breeding in 

maize, here with the example of common rust (CR). 

Results of genome-wide association studies and genomic prediction were 

compared when phenotyping was based on human visual scores (VS) to when 

phenotypes were given by vegetation indices obtained through multispectral and 

infrared data from images from unmanned aerial vehicles (remote sensing, RS). 

Type of data Tables 

Raw, filtered, adjusted, imputed 

Data collection 1. Visual scores (VS): CR susceptibility was scored per plot by trained staff on a 1 

to 9 scale (1 = very resistant, 9 = very susceptible) 

2. Remote sensing (RS) data: Unmanned aerial vehicle eBee Plus (SenseFly Ltd., 

Cheseaux-Lausanne, Switzerland); Multispectral Parrot Sequoia camera (Parrot 

Drone SAS, Paris, France) for wavelengths, 550 nm (40 nm full width at half 

maximum, FWHM), 660 nm (40 nm FWHM), 735 nm (10 nm FWHM), 790 nm 

(40 nm FWHM); Thermal infrared camera, ThermoMAP (Airinov, Paris, France): 

7.5–13.5 μm; Cameras were mounted in separate flights. Pix4D Mapper software 

(v3.3.24; Pix4D, Lausanne, Switzerland) Vegetation indices (VIs) were calculated 

per plot from the RS data using the wavelength closest to those of the original 

definition of the VI. 

3. Genotypic data Diversity Array Technology (DArT); Single nucleotide 

polymorphisms; missing values “imputed by the mean”

Data source location Remote sensing 

Multispectral and thermal images acquired from separate successive flights; Flight 

height approximately 55 m; Flights at midday under sunny conditions; 

Multispectral camera radiometrically calibrated based on the standard panel 

provided by the manufacturer; Radiometric adjustment of images based on the 

incident light sensor of the multispectral camera 

Institution: International Maize and Wheat Improvement Center (CIMMYT) 

Town: El Batan, Texcoco de Mora, State of Mexico 

Country: Mexico 

Data accessibility Repository name: CIMMYT Research Data & Software Repository Network [2] 

Data identification number: 10548898 

Direct URL to data: 

https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10548898 

Data Use Agreement can be found under “Terms”

The access to the genotypic data requires identifying information. 

Related research article A. Loladze, F. A. Rodrigues, C.D. Petroli, C. Munoz, S. Naranjo, F. San Vicente, B. 

Gerard, O. A. Montesinos-Lopez, J. Crossa, J. W. R. Martini, Use of remote sensing 

for linkage mapping and genomic prediction for common rust resistance in maize, 

Field Crops Research, https://doi.org/10.1016/j.fcr.2024.109281 [1] 

http://creativecommons.org/licenses/by/4.0/
https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10548898
https://doi.org/10.1016/j.fcr.2024.109281
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1. Value of the Data 

The data offers phenotypic data of maize DH lines for different traits related to susceptibility

to common rust. The traits comprise visual scores (VS) and remote sensing (RS) traits including

vegetation indices. Moreover, the data set provides genotypic data on single nucleotide polymor-

phisms (SNPs). This combination of phenotypic and genotypic data can for instance be further

used for 

• benchmarking genomic prediction models with different traits and different types of cross

validations for instance related to the population structure, 

• benchmarking of models for genome wide association studies (GWAS), for instance models

including cofactors or interactions of loci 

• for phytopathological studies addressing common rust, 

• as a reference data set for high-throughput phenotyping in resistance breeding 

• for specifications of vegetation indices 

In particular, it may be of value for scientists working in the area of 

• high-throughput agricultural phenotyping and breeding, 

• statistical geneticists 

• phytopathologists 

2. Background 

The objective when generating this data set was to explore the potential of remote sens-

ing (RS) phenotyping methods in the context of resistance breeding, in particular in compari-

son to low-throughput visual scoring (VS) and when used for follow-up genetic evaluations of

the plant material. We compared VS and RS traits with respect to the corresponding results of

downstream genome-wide association studies and genomic prediction [1] . The present article

describes the data in more detail to provide a solid basis and ideas for a secondary use. 

3. Data Description 

Three different biparental, F2-derived DH populations were generated. All of them had shared

the same parent susceptible to common rust. The parent resistant to common rust differed be-

tween populations. 

The DH lines were genotyped for single nucleotide polymorphisms (SNPs, for more de-

tails see Eexperimental Design, Materials and Methods ). Genotypic data is available in File Lo-

ladze_et_al_genotypes_GID.txt.gz (see Table 1 ). DHs should be fully homozygous by construction.

A heterozygous state of a marker indicates either an error in the genotyping, or in the process

of creating the DH line. 

Fig. 1 illustrates the distribution of heterozygous calls (the number of “0”s) relative to the

total number of calls (sum of the number of “−1”, “0” and “1”s) for each individual and across

the three populations. 15, 23 and 22 individuals show a relative heterozygosity above 5% for

populations 1, 2 and 3, respectively. 

Fig. 2 illustrates the distribution of heterozygous calls (the number of “0”s) compared to the

total number of calls (sum of the number of “−1”, “0” and “1”s) for each locus and across all

lines of the respective population. Out of the 9051 markers, 221, 883 and 316 showed a het-

erozygosity of higher than 5% for populations 1, 2 and 3, respectively. 

The phenotypic raw data is provided by the six files 

• Pop1_2019_raw.txt 

• Pop1_2020_raw.txt 

• Pop2_2019_raw.txt 
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Table 1 

File names, content and data formats of the data set. 

File name File content Data format Comment 

Loladze_et_al_genotypes_ 

GID.txt.gz 

Imputed genotypic SNP data Table with allele ID in the 

first column, location as 

chromosome and 

chromosome position in 

the second and third 

columns, followed by 

genotypic information of 

the different plants. Scale 

of the data is {−1,0,1}. 

Rational, non-integer 

numbers indicate that the 

data point was missing and 

needed to be “imputed” by 

replacing the missing value 

by the mean of all available 

data of the respective 

marker. 

Registration is 

required to access 

the data; file needs 

to be extracted 

Phenos_pop1_adjusted.txt Phenotypic data of 

population 1 for both years, 

2019 and 2020, adjusted 

means across the two 

replications per genotype and 

including the block effect. 

Genotype identifiers in the 

first row, adjusted values of 

different traits in columns 

Phenos_pop2_adjusted.txt Phenotypic data of 

population 2 for both years, 

2019 and 2020, adjusted 

means across the two 

replications per genotype and 

including the block effect. 

Genotype identifiers in the 

first row, adjusted values of 

different traits in columns 

Phenos_pop3_adjusted.txt Phenotypic data of 

population 3 for both years, 

2019 and 2020, adjusted 

means across the two 

replications per genotype and 

including the block effect. 

Genotype identifiers in the 

first row, adjusted values of 

different traits in columns 

Pop1_2019_raw.txt Raw (not adjusted) 

phenotypes for population 1 

obtained from the evaluation 

in 2019 

Replication, block, GID and 

raw trait values in columns 

for each plot in the field 

experiment 

Pop1_2020_raw.txt Raw (not adjusted) 

phenotypes for population 1 

obtained from the evaluation 

in 2020 

Replication, block, GID and 

raw trait values in columns 

for each plot in the field 

experiment 

Pop2_2019_raw.txt Raw (not adjusted) 

phenotypes for population 2 

obtained from the evaluation 

in 2019 

Replication, block, GID and 

raw trait values in columns 

for each plot in the field 

experiment 

Pop2_2020_raw.txt Raw (not adjusted) 

phenotypes for population 2 

obtained from the evaluation 

in 2020 

Replication, block, GID and 

raw trait values in columns 

for each plot in the field 

experiment 

Pop3_2019_raw.txt Raw (not adjusted) 

phenotypes for population 3 

obtained from the evaluation 

in 2019 

Replication, block, GID and 

raw trait values in columns 

for each plot in the field 

experiment 

Pop3_2020_raw.txt Raw (not adjusted) 

phenotypes for population 3 

obtained from the evaluation 

in 2020 

Replication, block, GID and 

raw trait values in columns 

for each plot in the field 

experiment 
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Fig. 1. Boxplots of the relative heterozygosity per individual line for the three populations. 

Fig. 2. Boxplots of the relative heterozygosity per marker for the three populations. 

 

 

• Pop2_2020_raw.txt 

• Pop3_2019_raw.txt 

• Pop3_2020_raw.txt 

for the respective combination of population and year (see Table 1 ). The raw data includes the

VS as well as RS traits. For illustrative purposes of the data properties, we highlight the distri-

butions of the VS raw data across population and year in Fig. 3 . 

The phenotypic adjusted data is provided by the files 

• Phenos_pop1_adjusted.txt 

• Phenos_pop2_adjusted.txt 

• Phenos_pop3_adjusted.txt 

Fig. 4 illustrates the distribution of adjusted VS across population and year. 

File names, file content, and the data format are described in Table 1 . 
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Fig. 3. Boxplots of VS raw data across the six combinations of population and year of evaluation. 

Fig. 4. Boxplots of adjusted VS across the six combinations of population and year of evaluation. 

4

 

 

 

. Experimental Design, Materials and Methods 

1. Creation of plant material: 

• Crossing of three resistance donors CHWTI23, CHWTI59, and DTMA-17 to susceptible par-

ent DTMA-85 

• Growing F1 generation at CIMMYT’s headquarter El Batan, 

• Production of doubled haploid lines from 10 0 0 F2 seeds 

• 320 DH lines for population 1 and population 3, 260 DH lines for population 2 for further

experiments 

2. Two-year field trial evaluation of the three DH populations: 

• 2 replicates (plots) of each genotype 

• Each field plot included 20 plants in 2.5 m long rows with 0.25 m planting distance 

• Inoculation by spraying a water-Tween 20 suspension of P. sorghi urediniospores on two

consecutive days 

• Field evaluation in 2019 and 2020 



A. Loladze, F. Rodrigues Jr and C.D. Petroli et al. / Data in Brief 54 (2024) 110300 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Visual scoring of susceptibility to common rust on a 1 to 9 scale by trained personnel (1 = very

resistant, 9 = very susceptible). First scoring was done after the appearance of first symptoms,

usually during silking. The second and third evaluation were done in approximately 2 weeks

steps after the first evaluation. Only the data of the third time point, that is approximately 4

weeks after the first evaluation was used and is provided in this data set [1] . 

4. Remote sensing 

• Multispectral and infrared sensors on unmanned aerial vehicle eBee Plus (SenseFly Ltd.,

Cheseaux-Lausanne, Switzerland) 

• Flight height approximately 55 m 

• Flights at midday under sunny conditions 

• Parrot Sequoia camera (Parrot Drone SAS, Paris, France) recorded the wavelengths:

550 nm (40 nm full width at half maximum, FWHM), 660 nm (40 nm FWHM), 735 nm

(10 nm FWHM), 790 nm (40 nm FWHM). 

• Multispectral camera radiometrically calibrated based on the standard panel provided by

the manufacturer 

• Radiometric adjustment of images based on the incident light sensor of the multispectral

camera 

• ThermoMAP (7.5–13.5 μm) thermal infrared camera (Airinov, Paris, France) from a sepa-

rate successive flight. 

• Pix4D Mapper software (v3.3.24; Pix4D, Lausanne, Switzerland) 

• Remote sensing flights were executed + /-1 day of the time of the corresponding visual

scoring 

5. Genotypic data 

• provided by Genetic Analyses Service for Agriculture (Spanish acronym SAGA), established

at the International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico

based on the Diversity Array Technology (DArT) 

• Single nucleotide polymorphisms were used and markers with more than 40% missing

values or minor allele frequency of 0.02 were discarded 

• For the remaining 9051 markers , missing values were “imputed ” by the replacing a miss-

ing value by the mean of the respective marker across all genotypes with a marker score.

Limitations 

Generalizability of results obtained from this data set to other traits in the context of high-

throughput phenotyping, RS, genomic prediction or genome-wide associations studies will be

limited. For the benchmarking of models and methods, the data set provides a specific example

of maize and the disease common rust. Results obtained in this context will be specific and the

generalizability will be limited. 

Data Availability 

Replication Data for: Use of Remote Sensing for Genome-Wide Association Studies and

Genomic Prediction (Original data) (Dataverse) [2] . 
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