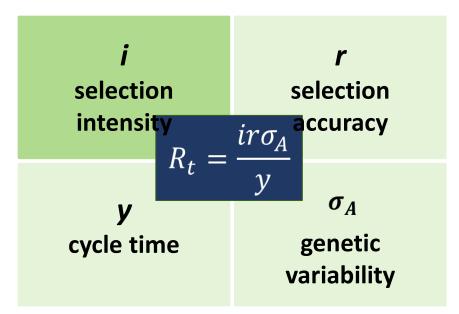
Implementation new tools and technologies in the AGG-Maize Project

Yoseph Beyene

Regional Maize Breeding Coordinator and AGG Maize Project Leader

Presentation to the Product Profile Based Breeding for Increased Genetic Gains 6-10 December 2022, Concord Hotel, Nairobi


CIMMYT Maize Breeding: Stage-Gate Process

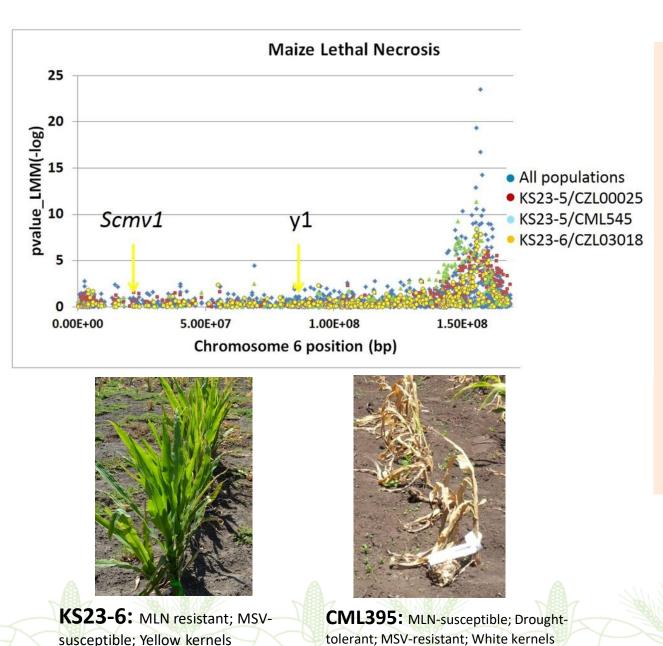
	Recycling be	st lines					
Pedigree Crosses within Heterotic group	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Product Announcement, Licensing; NPTs	Varietal Release & Ccommercial ization
Develop homozygous lines using DH / pedigree methods	Early generation testing (F3 or F4) in case of pedigree. Top 10% advanced	Second stage of testing at F5 or F6) in case of pedigree. Top 15% advanced	Third year of testing at more locations and top 15% advanced	Top preforming hybrids; extensive locations with partners; characterized for	Extensively evaluated on- farm; farmers' preferences	Seed Campines and NARS put into NPT; development of descriptors	Seed Companies
	e Development Tea		Product Develo	seed production	Seed Systems Team		
Greater involvement by NARS and private seed partners							

- Stage 1 First testcross evaluation; one tester; 2 reps, 3-5 sites
- Stage 2 Selected lines (10-15% S.I.) from Stage 1 trials; 3 testers; 2 reps, 8-10 sites
- Stage 3 Selected lines from Stage 2 trials (15% S.I.); Cross with 5 testers; 2 reps, 10-15 locations
- Stage 4 (Regional On-station Trials) Best products from Stage 3; 2 rows, 3 reps, 25-35 locations
- Stage 5 (Regional On-Farm Trials) 30-50 on-farm trials per Product Profile; Farmers' preferences
- Final Product Advancement Meeting to identify products/pre-commercial hybrids to be announced to the partners through CIMMYT Website

Breeding Schemes Optimization in AGG-Maize

- Recycling lines at an early stage of testing (reduced from 6 yrs. to 4 yrs.)
- Develop suitable selection indices for parental selections (DESIER software)
- Identify optimum number of testing locations and testers for recycling
- Sparse testing and sparse genetic testcrossing (implemented in selected PPs)
- Use of genomic selection (all stage 1 lines being genotyped with medium density markers)
- Estimate predicted genetic gain (done in selected PPs)
- Incorporation of ex-PVP lines into tropical lines improved yield potential
- Refining and strengthening heterotic groups
- Responding to emerging threats

Forward Breeding: Using Msv1 haplotype for selection of MSV resistance at early stage of testcross formation

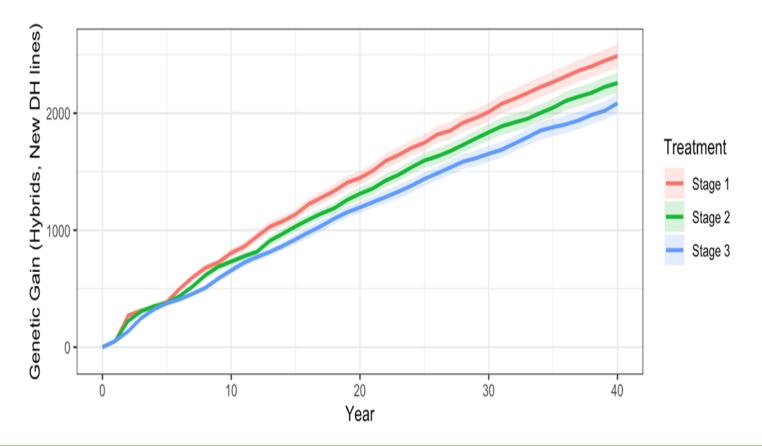

SNP	Trait	Chr	SNP	RR	SS
PZE0186065237	MSV	1	C/T	C:C	Т:Т
PZE0186365075	MSV	1	C/A	C:C	A:A
PZE-10109395	MSV	1	A/G	A:A	G:G

Sampling leaf tissue in the DH nursery


Population	PZE-	PZE01860	PZE01863	Comment on msv1 data	Decision
	101093951	65237	65075		
CML312/INTA-F2-192-2-1-1-1-B*7-2-B-10-B-B-B:@	A:A	C:C	C:C	Homozygous for favorable alleles at 3 loci	Select
CML312/INTA-F2-192-2-1-1-1-B*7-2-B-10-B-B-B:@	A:A	C:C	C:C	Homozygous for favorable alleles at 3 loci	Select
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	A:A	C:C	C:C	Homozygous for favorable alleles at 3 loci	Select
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	A:A	C:C	C:C	Homozygous for favorable alleles at 3 loci	Select
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	G:G	T:T	A:A	Homozygous for unfavorable alleles at 3 loci	Reject
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	G:G	T:T	A:A	Homozygous for unfavorable alleles at 3 loci	Reject
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	G:G	T:T	A:A	Homozygous for unfavorable alleles at 3 loci	Reject
CML312/LaPostaSeqC7-F18-3-2-1-1-B-B-B:@	G:G	T:T	A:A	Homozygous for unfavorable alleles at 3 loci	Reject

Fine-mapping of a major QTL for MLN resistance

- The major QTL on Chr. 6 is being finemapped by Corteva team, in collaboration with CIMMYT
- Target for gene
 editing for MLN
 resistance in
 collaboration with
 Corteva


MLN Resistance through MABC

Reducing type breeding cylce: Simulation for Recycling Lines at Early Stage of Testing

Simulations results comparing the current recycling at Stage 3 vs recycling after Stage 1 and 2 testing using data from EA-PP1. Recycling after Stage 1 or Stage 2 could deliver increase genetic gain by **17% and 9%** compared to recycling at Stage 3, respectively

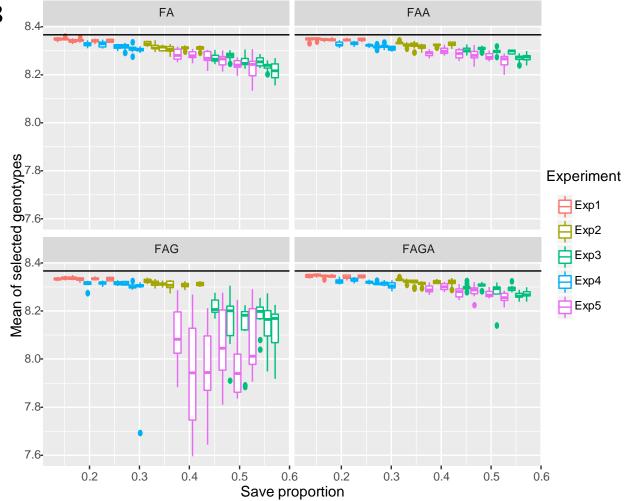
Sparse Phenotyping

Background

- Testing of N entries in L locations of a MET.
- Trials can be replicated or unreplicated.
- Trial location shall represent TPE
- Estimate genetic values by(adjusted) means across locations

Idea

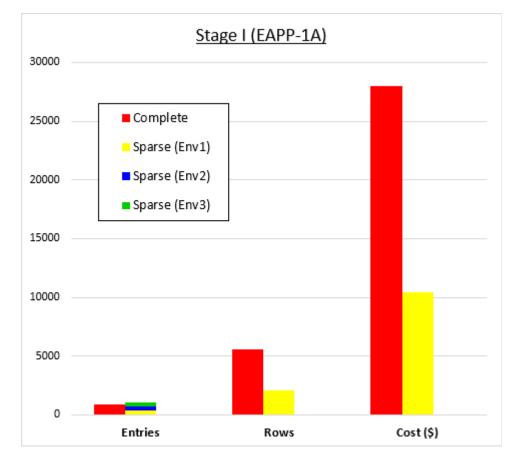
- Test each entry only in a subset of locations
- Predict missing information from relatives


Goals: At same costs

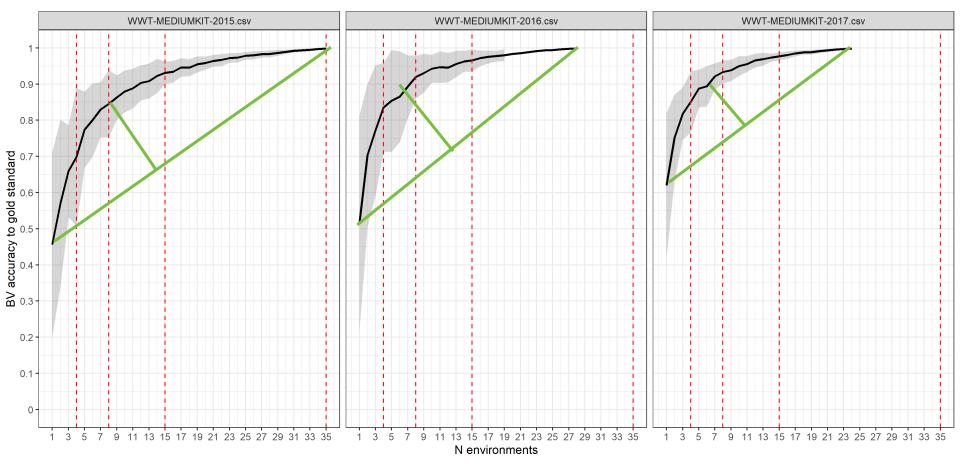
- Test more entries
- Test same entries in more locations
- A combination of both

Sparse phenotyping to sample TPE

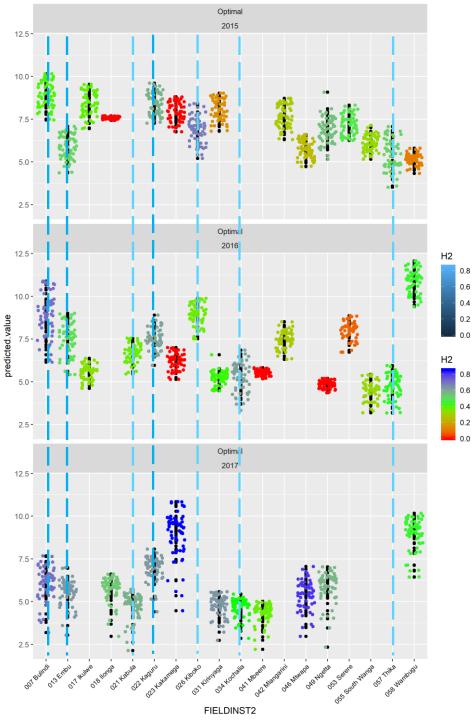
- Phenotypic data for 2018 Stage II trials (900 hybrids)
- Evaluated at 5 locations in Kenya
- Genotypic data for lines used in stage II trials
- Different experimental layout for spare testing
- 4 types of analysis:
- Factorial analysis (FA),
- FA + CoP
- FA+ Marker data
- FA+ Marker + CoP


The horizontal black line is the mean of the hybrids selected under complete phenotyping (8.36 t/ha)

Conclusion: By saving 30% the phenotypic cost, 90% of the best hybrids were common between complete phenotyping and sparse phenotyping


Sparse phenotyping being implemented in ESA

- Total number of stage 1 entries =928
- # Checks =4
- # entries evaluated in all sites=52
- # Entries to be valuated in sparse design (928-52=876)
- # entries evaluated at one of the three site (876/3=292)

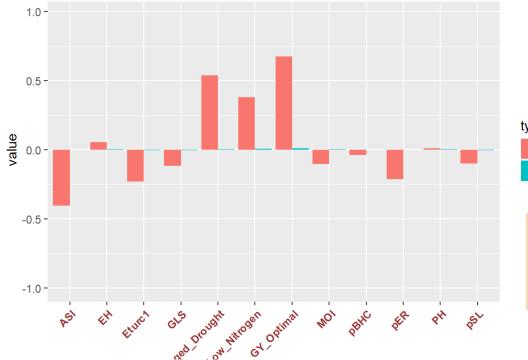

	Env1	Env2	Env3	Total
Full set (1)	52	52	52	
Set 2	292			
Set 3		292		
Set 4			292	
# checks	4	4	4	
tal # entreis /si	348	348	348	
Entries	348	348	348	932
Reps	2	2	2	2
Locations	1	1	1	3
Rows	696	696	696	2,088
Cost (\$)	3480	3480	3480	10,440

Identification of the optimal number of environment to accurately select across the TPE

Results from cross validation to know the accuracy between real (across the entire TPE) and estimated BV when selecting a given number of environments (we assume the max #of environments represent the real BV).

Optimizing recycling through retrospective analysis to identify locations with high heritability and high genetic variance

Results from single environment heritability across 3 years of data. We assume that environments with highest H2 and genetic variance represent the best locations for applying selection

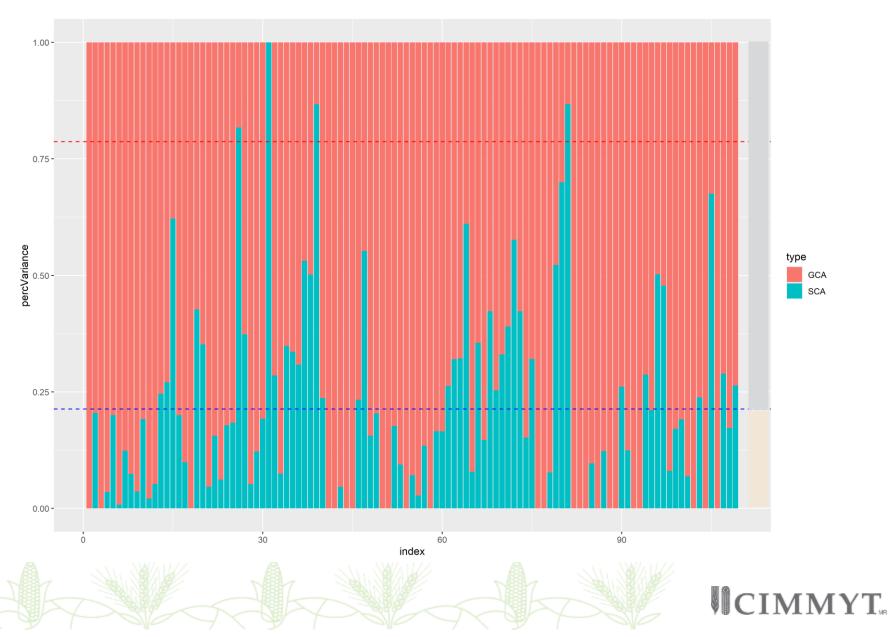

Develop suitable selection indices for parental selections (DESIRE software)

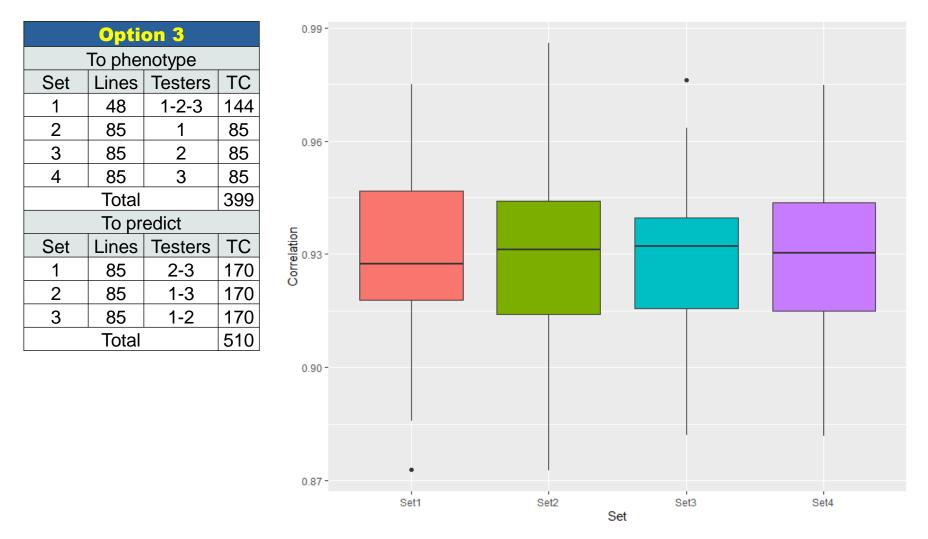
No. of Entries	600
No. of Test Hybrids	588
No. of Checks	12
No. of Lines	198
No. of Testers	3

Traits used for SI	H2
GY_Managed_Drought	0.83
GY_Managed_Low_Nitrogen	0.46
GY_Optimal	0.86
pER	0.90
pSL	0.87
рВНС	0.85
Eturc1	0.81
MOI	0.88
РН	0.95
EH	0.97
GLS	0.73
ASI	0.92

Example of	genetic
merit	

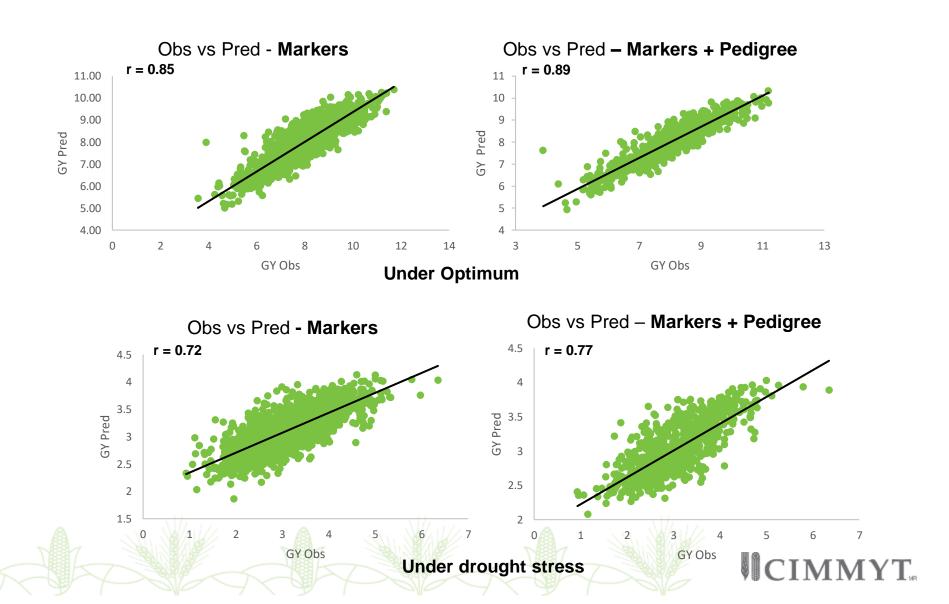
Line	Merit	Rank
CKDHL1715901	1.96	1
CKDHL1715896	1.77	2
CKDHL1715915	1.34	3
CKDHL1715480	-1.33	196
CKDHL1715260	-1.49	197
CKDHL1720872	-1.34	198




Expected changes in mean between the full population of lines versus a selected top 20% the lines using index.

Analyzing mode of inherence (GCA and SCA)

Sparse genetic testcrossing testcrossing



Spearman correlation between observed and predicted line-breeding value (n=50). Set 1 line crossed with all testers, set 2-4 lines crossed with one tester, predicted with the other two testers.

Sparse genetic testcrossing being applied on stage 1 in 2022 (EAPP1 and SAPP1) that allow us to estimate BLUP GCA to further reducing the breeding cycle

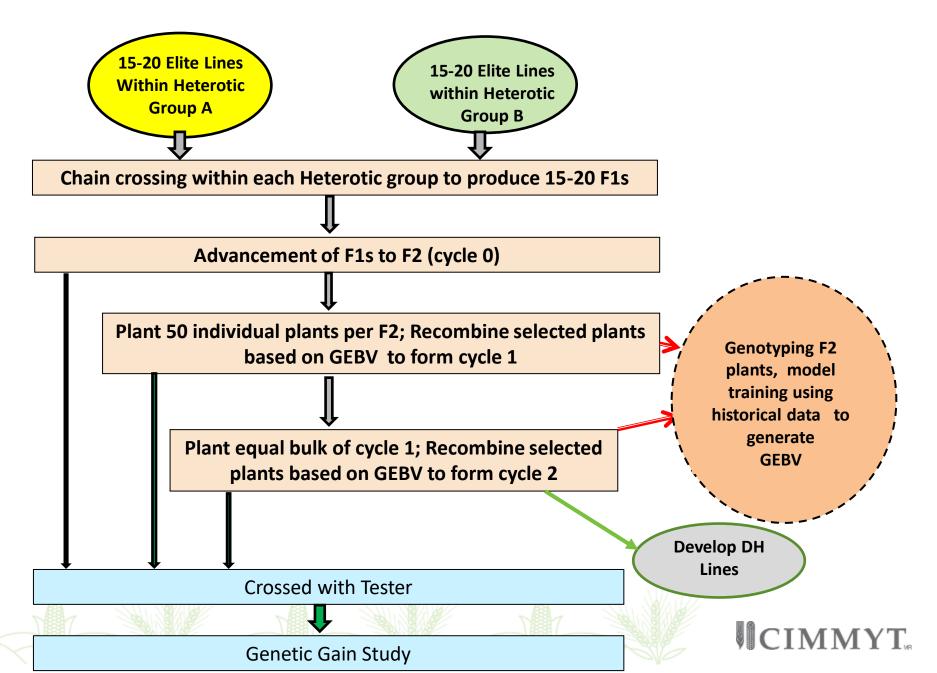
	660 DH lines from heterotic group A divided into three groups and crossed with one of the three testers						
Tester	Group 1 (165 DH lines)	Group 2 (165 DH)	Group 3 (165 DH)				
CKDHL0500/CML543	Yes	No	No				
CML566/CML607B	No	Yes	No				
CML444/CML546	No	No	Yes				
	540 DH lines from heterotic group B divided into three groups and crossed with one of the three testers						
	Group 1 (180)	Group 2 (180)	Group 3 (180)				
604A/CML539	Yes	No	No				
CKDHL120423/CKLTI0344	No	Yes	No				
CML568/CML572	No	No	Yes				

Genomic selection using test half-predict-half strategy –incorporating pedigree

Advancement of lines based on GEBV and PS:

Population	CML536/LPS-F64
# DH genotyped	166
# DH lines phenotyped	88
# lines selected based on Phenotype	21
# lines selected based on GEBV	19

Check	GY(t/ha)_Opt	GY(t/ha)_MD	MOI-Opt	PH_Opt
H517	6.5	1.8	16.4	267.4
Pioneer 30G19	6.2	2.9	17.9	254.5
WH505	7.6	3.1	17.9	257.3
Heritability	0.64	0.52	0.3	0.8
Genotype Variance	0.70	0.21	0.3	79.8
GenxLoc Variance	0.13		0.3	16.2
Residual Variance	2.06	0.39	4.0	81.5
Grand Mean	6.81	3.10	18.2	248.8
LSD	1.43	0.93	1.4	11.6
CV	21.07	20.27	10.9	3.6
n Replicates	2	2	2	2
n Locations	3	1	3	3


		Observed	Predicted		Observed	Predicted
		GY_BLUE_	GY_BLUE_		GY_BLUE_	GY_BLUE_
SN	name	optimal	optimal		drought	drought
1	CKDHL152921	9.1	7.6		3.1	3.1
2	CKDHL152857	8.8	7.6		4	4
3	CKDHL152610	8.4	7.7		4.7	3.8
4	CKDHL152563	8.4	7.7		4.2	3.6
5	CKDHL152554	8.3	7.7		3.6	3.3
6	CKDHL152653	8.3	7.8		3.3	3.3
7	CKDHL152616	8.2	7.3		4.3	4.1
8	CKDHL152617	8.2	7.2		3.8	3.4
9	CKDHL152821	8.2	7.3		3	3.1
10	CKDHL152733	8.1	7.5		4.2	3.4
11	CKDHL152658	8.1	7.2		3.4	3.2
12	CKDHL152638	8.1	7.5		3.6	3.1
13	CKDHL152976	8	7.5		3.3	3.4
14	CKDHL152591	8	7.6		3.7	3.6
15	CKDHL152906	7.6	7.2		3.6	3.2
16	CKDHL152751	7.5	7.3		3.6	3.8
17	CKDHL152769	7.4	7.2		4.7	3.8
18	CKDHL153005	7.4	7.1		4	3.7
19	CKDHL152929	7.3	7		3.9	3.8
20	CKDHL152866	7.1	7.2		4.3	3.7
21	CKDHL152962	7	7		4.3	3.5
1	CKDHL152820	NA	7.6		NA	3.5
2	CKDHL152994	NA	7.5		NA	3.7
3	CKDHL152529	NA	7.5		NA	3.5
4	CKDHL152590	NA	7.5		NA	3.3
5	CKDHL152811	NA	7.4		NA	3.8
6	CKDHL152682	NA	7.4		NA	3.4
7	CKDHL152579	NA	7.4		NA	3.5
8	CKDHL152927	NA	7.4		NA	3.5
9	CKDHL152759	NA	7.4		NA	3.9
10	CKDHL152890	NA	7.4		NA	3.3
11	CKDHL152689	NA	7.4		NA	3.1
12	CKDHL152632	NA	7.3		NA	3.3
13	CKDHL152773	NA	7.3		NA	3.9
14	CKDHL152862	NA	7		NA	3.9
15	CKDHL152813	NA	7		NA	3.8
16	CKDHL152879	NA	7.2		NA	3.8
17	CKDHL152777	NA	7	C	NA	3.7
18	CKDHL152849	NA	7.2		NA	3.7
19	CKDHL152778	NA	7.2		NA	3.6

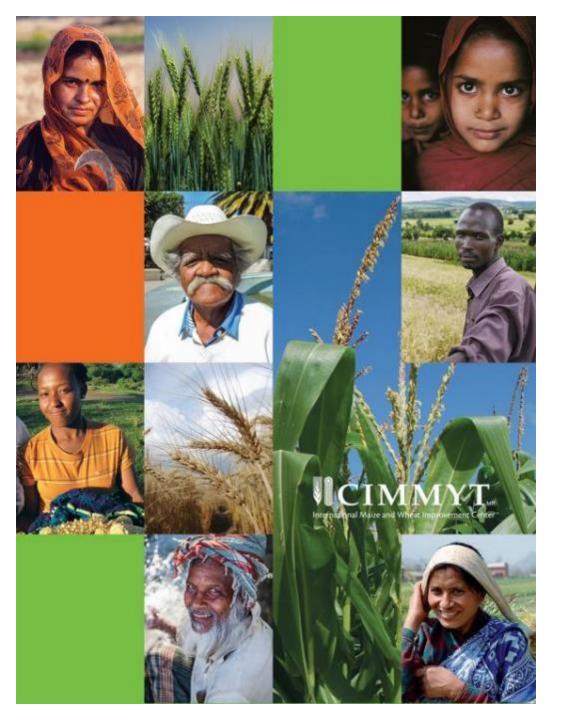
Lines developed through RCGS are being used as the parent of allocated hybrids to partners

Line	Parent in # allocated hybrids
CKLMARS1C3S50268	1
CKLMARS1C3S50080	2
CKLMARS1C3S50113	3
CKLMARS1C3S50140	2
CKLMARS1C3S50137	1

Rapid Cycle of GS Workflow

Mechanization of breeding hubs: Improving efficiency and accuracy

Planter


Seed treater

Drip Irrigation at Kiboko

Thank you for your interest!