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Grand challenges for the 215 century

1. Ensure food and nutrition security for all
2. Avoid land expansion and biodiversity loss

3. Climate change adaptation and mitigation

4. Diverging paradigms
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Sustainable Intensification (SI)

= Narrowing yield gaps on existing land while increasing resource-use
efficiency

= Sl is contentious and trade-offs between sustainability and intensification
need to be made explicit (Struik et al., 2014)

= Scale matters when talking about SI — opportunities at field, farm and
regional level differ per farming system

= Prioritization of research agenda on sustainable intensification for staple
crops (Cassman and Grassini, 2020)

= Big hope for ‘big data’ from farmers to deliver agronomic yield gains and
environmental standards at scale



Big data, the end of traditional agronomy?

= Big data = “high volume, velocity and variety of information to require

specific analytical and technological methods for its transformation into value”

= The opportunities:

= Large amounts and more complete data available from individual farms
= Spatial explicit weather and soil data widely available

= Equivalent to run hundreds of trials to evaluate M x E interactions

= Benchmarks for resource-use efficiency and environmental quality

» The challenges:

= Ensure data quality without simplifying farmers’ reality
» Scattered information, ownership and privacy issues

= Agronomists need to master many different algorithms and tools



My research focuses on...

¥ DecompussnggtSerplalaingyg ettt pmps sBmeimelevel
% Benchmarking resource use efficiencies at field level

% Crop model parametrization, improvement and application
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Concepts of production ecology
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van Ittersum & Rabbinge (1997)
Field Crops Research



Yield gaps in CIMMY'T research areas
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http://www.yieldgap.org/

Decomposing yield gaps

Silva et al. (2017)
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http://www.yieldgap.org/

Contrasting farming systems

Mixed farming in
Southern Ethiopia

Sample: 200 farms

Year: 2012

Farm size: < 2.5 ha
Crops: Maize in Hawassa
and wheat in Asella

Rice farming in Central
Luzon, Philippines

Sample: 100 farms
Year: 1966-2012
Farm size: 1.7 ha
Crops: Rice (wet season
and dry season)

Arable farming in
the Netherlands

Sample: 175 farms
Year: 2008 - 2012

Farm size: ~60 ha
Crops: Wheat, barley,
potato, sugar beet, onion




Causes of yield gaps

Southern Ethiopia

Large yield gap attributed to
technology yield gaps.

Silva et al. (AgSys, 2019)

100

Central Luzon, Philippines
Medium yield gap due to efficiency,
resource and technology yield gaps.

Silva et al. (2017a, EJA)

Yield gap closure (% Yp or Yw)

The Netherlands
Small yield gap attributed to
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Silva et al.
To be submitted



Sustainabllity vs. Intensification
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Other examples

Wheat (& maize) in Ethiopia
» Fine-tuning current practices can deliver the

production needed to reach wheat and
maize self-sufficiency;

» Reaching Yw requires seed rates, N rates
and weeding beyond amounts currently used
in highest yielding fields.

Assefa et al. (2020); Food Sec.

Silva et al. (under review); AgSD

s Framework expanded for economic & policy analysis (van Dijk et al., 2020)
% Wheat yield gaps in the Rwandan highlands (Baudron et al., 2019)

** Rice yield gaps in major rice-bowls of SE Asia (Stuart et al., in prep.)



From ‘small” to ‘big data’

> 10k field x year combinations
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Silva et al.
In preparation



From ‘small’ to ‘big data’

With which accuracy and precision can we predict crop yields in space and time?

Silva et al. Delaune (2018)
In preparation MSc thesis, PPS-WU



Preliminary results (R?)

Ethiopia Ethiopia  Philippines Philippines Netherlands Netherlands
Wheat Maize Rice WS Rice DS Barley Wheat

Linear mixed model
Full model 227 +-na. 273 +£na 11.94+na 277 £na 27.3 £ n.a. 41.0 £ n.a.
Cross-validation: Zone 205 +7.1 235+43 12.3+8.1 12.7+7.8 147 +£20.7 325+13.2
Cross-validation: Farm 21.0+£43 25.7+£27 17.84+3.8 13.8 44 185+ 11.7 37.7+£59
Cross-validation: Year 18.2 = n.a. 26.0 = n.a. n.a. n.a. 2277+ 1.3 6.6 £6.9
Random forest
Full model 332+na 340+xna 184+na 353+na 485 +na 37.8 &+ n.a.
Cross-validation: Zone 13.9+49 226=x5.1 38+-73 1074129 297 +47.7 5.7 +4.1
Cross-validation: Farm 226 =30 284 +27 148433 337443 6.5+5.6 40.6 £ 5.8
Cross-validation: Year 18,9 =n.a. 254 +n.a. n.a. n.a. 15.0+ 1.9 20=x31

Silva et al.
In preparation

» Conclusions supported by RMSE and ME




Take-nome messages

1. Sustainable intensification has different meanings in different farming
systems and provides different opportunities at local level.

2. Technology yield gaps explain the largest share of the yield gap for
smallholders in Africa. But, narrowing efficiency and resource yield gaps
can deliver the production needed for self-sufficiency at national scale.

3. Big data are useful to describe cropping systems at regional scale, and
derive benchmarks for farm performance, but not to predict and explain
yield variability in time and space.



Future research activities

1. Assemble databases and methods for doing ‘Agronomy-at-Scale’
« Databases with biophysical and socio-economic information
« Returns on investment, technology targeting, sampling frames

2. Decompose maize and wheat yield gaps in CIMMYT'’s research sites
« Capitalize on existing datasets to provide global picture
« Establish data collection tools and workflows

3. Benchmark maize and wheat RUEs for smallholder farming systems
« Data-driven analysis of experimental (breeding) data

« Crop model improvement and parametrization
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Other examples: RUES in NW Europe

» 7 major arable crops in the Netherlands (>4000 fields 2015 — 2017)
» Yield gaps are ca. 30% of Yp and Yp achieved in some of those fields
» Actual water productivity is rather low due to large water surplus

» High NUE and high N surplus as a result of high N outputs and high N inputs

Silva et al. (2020, FCR)
Silva et al. (under review)



From ‘small” to ‘big data’

B) SIMLESA & DIVA Household Surveys

A) Wheat Adoption and Impact Surveys
CIMMYT, 2011 & 2013

CIMMYT, 2009/10 & 2013/14
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