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A B S T R A C T

Fusarium ear rot (FER) is a destructive maize fungal disease worldwide. In this study, three

tropical maize populations consisting of 874 inbred lines were used to perform genome-

wide association study (GWAS) and genomic prediction (GP) analyses of FER resistance.

Broad phenotypic variation and high heritability for FER were observed, although it was

highly influenced by large genotype-by-environment interactions. In the 874 inbred lines,

GWAS with general linear model (GLM) identified 3034 single-nucleotide polymorphisms

(SNPs) significantly associated with FER resistance at the P-value threshold of 1 � 10�5,

the average phenotypic variation explained (PVE) by these associations was 3% with a

range from 2.33% to 6.92%, and 49 of these associations had PVE values greater than 5%.

The GWAS analysis with mixed linear model (MLM) identified 19 significantly associated

SNPs at the P-value threshold of 1 � 10�4, the average PVE of these associations was

1.60% with a range from 1.39% to 2.04%. Within each of the three populations, the number

of significantly associated SNPs identified by GLM and MLM ranged from 25 to 41, and from

5 to 22, respectively. Overlapping SNP associations across populations were rare. A few

stable genomic regions conferring FER resistance were identified, which located in bins

3.04/05, 7.02/04, 9.00/01, 9.04, 9.06/07, and 10.03/04. The genomic regions in bins 9.00/01

and 9.04 are new. GP produced moderate accuracies with genome-wide markers, and rela-

tively high accuracies with SNP associations detected from GWAS. Moderate prediction

accuracies were observed when the training and validation sets were closely related. These

results implied that FER resistance in maize is controlled by minor QTL with small effects,
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and highly influenced by the genetic background of the populations studied. Genomic

selection (GS) by incorporating SNP associations detected from GWAS is a promising tool

for improving FER resistance in maize.
� 2020 Crop Science Society of China and Institute of Crop Science, CAAS. Production and
hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Fusarium ear rot (FER), mainly caused by Fusarium verticil-

lioides (Sacc.) Nirenberg, is a destructive maize fungal disease

worldwide, as the disease can significantly reduce grain yields

and results in poor grain quality [1,2]. Moreover, Fusarium ver-

ticillioides produce several types of mycotoxins, and consump-

tion of the maize grains contaminated by mycotoxins is fatal

to humans and animals [3,4]. The most economical and effec-

tive strategy for controlling FER is the development and

deployment of maize varieties with genetic resistance [5].

This requires the identification of source germplasm with

stable FER resistance and good agronomic performance.

Understanding the genetic basis and detection of favorable

alleles associated with FER resistance will enable the imple-

mentation of an effective breeding strategy for improvement

of FER resistance in the appropriate breeding backgrounds.

Broad genetic variation for FER resistance exists in maize.

A few maize inbred lines showing stable resistance to FER

have been identified in several previous studies, although

fully immune materials have not been reported in maize

[6,7]. A total of 1687 diverse maize inbred lines were evaluated

for FER resistance across years by Zila et al. [6], which showed

that most novel resistance sources to FER are mainly from

tropical maize. Furthermore, response to FER in 940 tropical

maize inbred lines was evaluated by Chen et al. [7] in three

environments, and 63 lines with FER resistance were identi-

fied. These inbred lines could serve as valuable donors for

improving FER resistance through breeding. Moreover, genetic

studies involved with these novel resistance sources could

provide a better understanding of the genetic architecture of

FER resistance in tropical maize germplasm.

Linkage mapping in different bi-parental populations in

maize undertaken by different teams earlier has revealed sev-

eral genomic regions conferring FER resistance [8–10]. The

quantitative trait loci (QTL) identified in these studies were

distributed on all the ten maize chromosomes. Also, the

QTL detected in different studies were inconsistent and var-

ied in different environments and populations studied. The

major QTL detected in these studies need to be furtherly val-

idated before implementing marker-assisted-selection (MAS)

in breeding programs. Genome-wide association study

(GWAS) is a powerful alternative strategy to detect QTL in a

collection of genetically diverse germplasm. The strategy of

GWAS has higher mapping resolution than linkage mapping

in maize, because maize has abundant genetic diversity and

faster linkage disequilibrium decay [11]. However, GWAS

may also detect a high number of false-positive associations,

and it is also less efficient at detecting alleles with small

effects from many loci, as well as the rare alleles. Bigger pop-

ulation sizes and higher density markers are required to
increase the statistical mapping power of GWAS. Several

GWAS analyses have been performed for genetic mapping

of FER resistance in maize [12–14]. The results of these studies

showed that resistance to FER in maize is controlled by sev-

eral minor QTL with small effects, and it is highly influenced

by the genetic background of the populations studied, the

phenotyping environments, and the genotype-by-

environment interaction. These results limit the effectiveness

of MAS in pyramiding small-effect favorable alleles for

improving FER resistance.

As an alternative to MAS especially for improving complex

traits, genomic selection (GS), also known as genomic predic-

tion (GP), offers significant promise in crops like maize. In GS/

GP, the genome-wide markers are used to predict the

genomic-estimated breeding values (GEBVs) of individuals by

capturing the effects of both major and minor genes [15–17].

Therefore, GS captures a greater proportion of the genetic vari-

ation of the selected trait as compared to MAS, where only the

selectedmarkers that are significantly associatedwith the tar-

get trait are used. Several studies have been conducted to

investigate the effectiveness of implementing GS for improv-

ing resistance to somemajormaize diseases, e.g., maize lethal

necrosis (MLN) [18,19], tar spot complex [20], and gibberella ear

rot [21]. Medium to high prediction accuracies were reported

in these studies, which suggested that GS is a potential geno-

mic tool for improving complex traits under polygenic control.

Larger training population size across locations and years are

required to obtain high prediction accuracy. Incorporating

known trait-marker associations into the prediction model

may also improve prediction accuracy [22–24].

In the present study, GWAS and GP analyses were per-

formed on 874 maize inbred lines, where all the inbred lines

were screened in four to six environments in Mexico to eval-

uate their response to FER, and genotyped with genotyping-

by-sequencing. The main objectives of the present study are

to: (1) identify the genomic regions, single-nucleotide poly-

morphisms (SNPs), and putative candidate genes conferring

FER resistance in tropical maize germplasm through GWAS;

(2) explore the potential of GS for improving FER resistance

in tropical maize, and (3) estimate the accuracies of GP by

incorporating the significantly associated SNPs into the pre-

diction model.

2. Materials and methods

2.1. Plant materials

Three maize inbred line panels were used to perform the

GWAS and GP analyses in the present study. The first popula-

tion, designated as CIMMYT maize inbred lines (CMLs), con-

sists of 254 tropical and subtropical maize inbred lines

http://creativecommons.org/licenses/by-nc-nd/4.0/
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developed by the International Maize and Wheat Improve-

ment Center (CIMMYT). The CMLs represent elite lines that

were selected based on their per se performance, good gen-

eral combining ability, and a significant number of key traits

(e.g., abiotic and biotic stress tolerance, nitrogen use effi-

ciency, etc.). From 1984 to 2019, CIMMYT developed and

released a total of 603 CMLs, which represents a significant

portion of the genetic diversity of CIMMYT-derived improved

tropical and subtropical maize germplasm [25]. In the present

study, the most frequently used lines and testers before

CML300, as well as all the lowland tropical, mid-altitude/

subtropical lines between CML300 and CML577, were selected

for screening their response to FER.

The second population, designated as Drought Tolerant

Maize for Africa (DTMA) association mapping (AM) panel,

consisted of 296 tropical and subtropical inbred lines devel-

oped by CIMMYT. These lines originated from different breed-

ing programs of CIMMYT and consisted of several lines with

tolerance or resistance to an array of abiotic and biotic stres-

ses affecting maize in the tropics [26].

The third population, designated as SYN_DH, consisted of

324maize double haploid (DH) lines derived from four tropical

maize synthetic populations. Parental lines of each of these

synthetic populations were selected based on the information

of the kernel color (white or yellow) and heterotic groups. The

CIMMYT maize heterotic groups were classified as group ‘‘A”

(dent type) and group ‘‘B” (flint type). Besides, the parental

lines were also selected based on the information of their

general combining ability for grain yield, tolerance/resistance

to major abiotic and biotic stresses, and adaptation to low-

land tropical breeding environments. In total, 63 parental

lines were used to form the four synthetic populations; each

synthetic population was formed through twice intermated

pollinations, once self-pollination, and once DH process to

advance all the materials as inbred lines. The number of DH

lines in each synthetic population ranged from 39 to 97.

2.2. Experimental design and phenotypic evaluation

A total of 874 tropical maize inbred lines were used in the pre-

sent study for screening their response to FER. Detailed infor-

mation about these inbred lines is provided in Table S1. The

CMLs population of 254 inbred lines was screened in Mexico

at two experimental stations, Agua Fria (AF) located in the

state of Puebla (Latitude: 20�280N; Longitude: 97�380W), and

Tlaltizapan (TL) located in the state of Morelos (18�410N, 99�
070W). The trials were carried out at both AF and TL experi-

mental stations during the winter season (November–May)

in 2017–2018 and 2018–2019, and the summer season (May–

November) in 2018. The winter season was defined as Cycle

‘‘A”, and the summer season was defined as Cycle ‘‘B”. The

environment was defined as a combination of location and

year-season. In total, the CMLs population was screened in

six environments, designated as AF_18A, AF_18B, AF_19A,

TL_18A, TL_18B, and TL_19A, respectively. The DTMA AM

panel of 282 inbred lines was screened in four environments

at the AF experimental station during the summer season

in 2008 (AF_08B), 2010 (AF_10B), and 2011 (AF_11B); and at

TL experimental station during the winter season in 2013–
2014 (TL_14A). The SYN_DH population of 325 DH lines was

screened in four environments at the AF experimental station

during the summer season of 2015 (AF_15B) and 2016

(AF_16B), and at the TL experimental station during the sum-

mer season of 2015 (TL_15B), and the winter season of 2015–

2016 (TL_16A). The 63 parental lines used to form the SYN_DH

population, were screened at four environments at the AF

experimental station during the winter season in 2016–2017

(AF_17A) and 2018–2019 (AF_19A), and the summer season

in 2019 (AF_19B); and at the TL experimental station during

the winter season in 2018–2019 (TL_19A).

A randomized complete block design was utilized for all

the trials with three replications per environment: each

plot is a single 2.5 m row, with 20 cm spacing between

plants in a row and 75 cm spacing between rows. Two trop-

ical maize inbred lines, CML155 and Colombia-35, were

used in all the trials as the FER resistant and susceptible

checks, respectively. These two lines were selected based

on data from multiple years of artificial inoculation trials

[7]. Days to 50% anthesis and 50% silking were also

recorded.

Artificial inoculation with F. verticillioideswas applied on all

the trialswith a nail punch/spongemethod [27]. A single-spore

of aggressive Fusariumverticillioideswaspreviously isolatedand

inoculated on sterilizedmaize kernels, followed by incubation

for 14daysat 25 �C for the increase.After incubation, the spores

were harvested by washing the inoculated grains with sterile

water, and the final concentration of the spore suspension

was adjusted to 5 � 106 spores mL�1 with a hemocytometer.

Tween-20was added to the suspension (0.2mL L�1) as a surfac-

tant and mixed well before the field inoculation. The primary

ear of each plant was artificially inoculated 10–15 days after

pollination. Since the maize inbred lines had different flower-

ing times, the inoculations were conducted several times to

ensure the uniformity of the disease development and lower

the chances of disease escape.

At the grain maturity stage, the inoculated ears were har-

vested by hand and individually rated for disease severity

based on a seven-grade infected kernel evaluation scales:

where 0 = no visible disease symptoms, 0.05 = 1 to 5%,

0.10 = 6 to 10%, 0.25 = 11 to 25%, 0.50 = 26 to 50%, 0.75 = 51

to 75%, and 1 = 76 to 100%. The grade was then converted into

an average percentage of the infected area (Fv%) to represent

the FER severity [28] using the below formula:

Fv% ¼ R grade� number of ears in the gradeð Þ
� 100= 1� total number of earsð Þ

2.3. Phenotypic data analysis

For each population, the best linear unbiased estimates

(BLUEs) and broad-sense heritability (H2) of Fv% were calcu-

lated within single environment analysis and combined anal-

ysis across environments (CombinedENV) using the META-R

software [29] (http://hdl.handle.net/11529/10201). For the sin-

gle environment analysis, a mixed linear model (MLM) was

performed including line as a fixed effect, and replication as

a random effect. The broad-sense heritability ðH2Þ was esti-

mated using the following formula:

http://hdl.handle.net/11529/10201
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H2 ¼ r2
g

r2
g þ r2

e =r
ð1Þ

For the CombinedENV, a mixed linear model was per-

formed including line as a fixed effect, environment, replica-

tion within the environment, and line-by-environment

interaction as random effects. The environment was consid-

ered as the combination of location and year-season. The

broad-sense heritability (H2) was estimated using the follow-

ing formula:

H2 ¼ r2
g

r2
g þ r2

ge=nþ r2
e =nr

ð2Þ

where r2
g is the genotypic variance, r2

ge is the genotype-by-

environment variance, r2
e is the error variance, n is the num-

ber of environments, and r is the number of replications.

Besides, Pearson’s correlation coeffcients between environ-

ments were calculated by using R function cor.test within each

population.

2.4. Genotypic data

A genotyping-by-sequencing protocol developed by Elshire

et al. [30] was applied, which has been commonly used by

the maize research community. Genotyping was conducted

at the Genomic Diversity Facility of Cornell University, USA.

Genomic DNA was digested with the restriction enzyme

ApeKI, and DNA libraries were constructed by multiplexing

96 samples per library, and each DNA library was sequenced

on one sequencing lane of Illumina HiSeq2000. Details of

analyses of SNP calling and imputation have been previously

described [20]. For each inbred line, 955,690 SNPs evenly dis-

tributed on the maize chromosomes were called. The

imputed dataset was used to conduct further GWAS and GP

analyses. Genome Association and Prediction Integrated Tool

(GAPIT) [31] was used to filter raw marker datasets for SNPs

with minor allele frequency (MAF) greater than 0.05 and miss-

ing data rate less than 20% within each population and across

all the populations.

2.5. GWAS analysis

After filtering, GWAS analyses were performed on the popula-

tions of CMLs, DTMA AM panel, SYN_DH, and in all the 874

inbred lines with 212,353, 228,272, 212,558, and 201,970

high-quality SNPs, respectively. In the R package [32] of GAPIT,

the linkage disequilibrium analysis was conducted within

each of the above four populations. Principal component

analysis (PCA) was performedwithin each population to strat-

ify the population structure, and the relative kinship matrix

(K) was generated for each population to assess the related-

ness among individuals within each population. The popula-

tion structure within each population was illustrated using

the first two principal components, and a heat map of pair-

wise genetic distances between the genotyped inbred lines.

Both the GLM (general linear model) and MLM (mixed linear

model) methods were applied in GAPIT to detect the associa-

tions between the SNPs and the target trait of Fv% represent-

ing the disease severity. In the GLM method, GWAS was

conducted by incorporating BLUEs, SNP markers, and PCA.
To eliminate false-positive associations, GWAS was con-

ducted with the MLM method by incorporating BLUEs, SNP

markers, PCA, and K. In both GLM and MLM, the first three

principal components, the default parameter in GAPIT, were

used to stratify the population structure, and Kwas generated

for assessing the relatedness among individuals. The quan-

tile–quantile and Manhattan plots were created. Based on

the suggestions of the previous GWAS researches of FER in

maize [7,12,14], the P-value threshold used to declare the sig-

nificant associations in GLM and MLM was set as 1 � 10�5 and

1 � 10�4, respectively. Considering that the FER in maize is

controlled by many minor QTL with small effects, using a less

stringent threshold of 1 � 10�4 or 1.0 � 10�5 in this study is

reasonable. The candidate genes associated with FER resis-

tance were identified according to the B73 reference genome

information available in the MaizeGDB database (https://

www.maizegdb.org). In GLM, the genes containing the SNPs

significantly associated with FER resistance were considered

as the putative candidate genes. In MLM, the genes contain-

ing the SNP associations or adjacent to the SNP associations

in half of the linkage disequilibrium decay distance of the

874 inbred lines were considered as the putative candidate

genes. The general feature format gene annotation file and

functional annotation file of B73_RefGen_v2 were down-

loaded from the MaizeGDB database (https://www.maizegdb.

org). The annotation analysis of the candidate genes was per-

formed against the annotated B73 reference genome with the

customized Perl scripts.

2.6. GP analysis

The GP analysis was conducted using the BGLR library [33] in

the R program [32]. A total of 300,000 Markov chain Monte

Carlo samples were collected, with 250,000 discarded as

burn-in. Thinning was done by keeping one of every 10 sam-

ples. GP analyses were performed on the populations of

CMLs, DTMA AM panel, SYN_DH, and all the 874 inbred

lines. Within each population, prediction accuracies for

FER performance were estimated with the genome-wide

markers within each environment and in CombinedENV.

Across all the populations, GP analysis was only performed

in CombinedENV. The genome-wide marker datasets filtered

with MAF greater than 0.05 and missing data rate less than

20% within each population, were used to perform GP anal-

yses. A five-fold cross-validation scheme with 100 replica-

tions was used to generate the training and validation sets

and assess the prediction accuracy. The average value of

the correlations between the phenotypic and the genomic

estimated breeding values was defined as the prediction

accuracy.

In parallel, GP analyses with significantly associated SNPs

were also performed to simulate MAS, where the significantly

associated SNPs detected from the GLM method of the GWAS

analysis in each population, defined as the self-significant

SNPs (Self_sigSNP), were selected to perform GP on the same

population. Moreover, all the unique significantly associated

SNPs detected in the GLM method in all the GWAS analyses

across all the populations, defined as the all-significant SNPs

(All_sigSNP), were also selected to perform GS prediction on

each population. The prediction accuracies were estimated

https://www.maizegdb.org
https://www.maizegdb.org
https://www.maizegdb.org
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from the five-fold cross-validation scheme with 100

replications.

The transferability of the GP models across populations

was tested, when training and validation sets were indepen-

dent, and one or two populations were used as the training

set to predict the other population as the validation set. The

prediction accuracy was estimated as the correlation between

the phenotypic and the genomic estimated breeding values of

the validation set.

3. Results

3.1. Phenotypic variation and correlations among
environments

Broad phenotypic variation of disease severity was observed

within each population (Table 1, Fig. S1). In CombinedENV

analyses, Fv% ranged from 3.82% to 90.84% with an overall

mean of 31.76% in the CMLs population, from 15.95% to

96.61% with an overall mean of 45.40% in the DTMA AM

panel, from 1.02% to 96.98% with an overall mean of 28.17%

in the SYN_DH population, and from 9.26% to 68.94% with

an overall mean of 24.66% for the parental lines of the

SYN_DH population. The overall mean of Fv% varied in differ-

ent populations: the DTMA AM panel had a higher value than
Table 1 – Information of FER response in the populations of CM
environment and the combined-environment analyses, includin
value (Max), standard deviation, estimates of genotypic variance
(r2

e ), and heritability (H2).

Population Environment Mean (%) Min (

CMLs AF_18A 39.15 2.31
AF_18B 42.51 4.15
AF_19A 26.38 4.40
TL_18A 31.53 0
TL_18B 23.11 0
TL_19A 27.35 3.53
CombinedENV 31.76 3.82

DTMA AM panel AF_08B 59.89 14.67
AF_10B 52.77 8.33
AF_11B 35.35 1.09
TL_14A 32.95 0
CombinedENV 45.4 15.95

SYN_DH AF_15B 30.24 0.00
AF_16B 29.13 0.47
TL_15B 30.89 0
TL_16A 22.77 0
CombinedENV 28.17 1.02

SYN_DH parents AF_17A 21.86 1.67
AF_19A 23.51 5.00
AF_19B 15.65 5.00
TL_19A 37.89 8.11
CombinedENV 24.66 9.26

CML, CIMMYT maize inbred line; DTMA AM: Drought Tolerant Maize fo

haploid (DH) lines derived from synthetic population (SYN).

Environment, Location_Season, for examples, AF_18A means the environ

in 2017–2018, the winter season is defined as Cycle ‘‘A”; and TL_18B mean

summer season in 2018, the summer season is defined as Cycle ‘‘B”.
** Significant at P = 0.01. SD, standard deviation.
other populations, while the overall means of Fv% in the pop-

ulations of SYN_DH and their parental lines were lower than

those in the CMLs population and DTMA AM panel.

Within all the populations, the component of genetic variance

(r2
g) was significant at P-value of 0.01 in all the single-environment

ANOVA analyses. In the CombinedENV ANOVA analyses, both

genetic variance (r2
g) and genotype � environment variance (r2

ge)

components were significant at P-value of 0.01 within all the

populations, indicating that FER resistance is controlled by

genetic factors, but it is also greatly affected by

genotype � environment interactions (Table 1). The estimated

heritability of FER resistance in the single-environment anal-

yses ranged from 0.72 to 0.86 in the CMLs population, from

0.68 to 0.91 in the DTMA AM panel, from 0.84 to 0.89 in the

SYN_DH population, and from 0.69 to 0.89 for the parental

lines of the SYN_DH population. The heritability of FER esti-

mated in CombinedENV analyses in the populations of CMLs,

DTMA AM panel, SYN_DH, and the parental lines of the

SYN_DH were 0.87, 0.64, 0.87, and 0.76, respectively (Table 1).

The estimated heritabilities of FER resistance were relatively

high in both the single-environment and CombinedENV anal-

yses, indicating that the phenotypic data was reliable for fur-

ther genetic analyses.

In the single-environment analyses, the Pearson’s correla-

tion coeffcients among environments were moderate to high
Ls, DTMA AM panel, SYN_DH, and SYN_DH parents in each
g mean value (Mean), minimum value (Min), maximum
(r2

g), genotype-by-environment variance (r2
ge), error variance

%) Max (%) SD r2g r2ge H2

100 0.21 0.030** 0.75
97.94 0.23 0.047** 0.85
98.55 0.18 0.027** 0.86
100 0.22 0.031** 0.71
85.83 0.16 0.018** 0.77
99.19 0.18 0.024** 0.72
90.84 0.13 0.020** 0.010** 0.86

100 0.20 0.033** 0.83
100 0.22 0.034** 0.73
100 0.27 0.065** 0.91
100 0.21 0.029** 0.68
96.61 0.16 0.015** 0.024** 0.64

100 0.23 0.044** 0.85
100 0.23 0.044** 0.88
100 0.24 0.052** 0.88
100 0.21 0.036** 0.84
96.98 0.19 0.033** 0.013** 0.87

78.82 0.16 0.023** 0.86
88.23 0.19 0.031** 0.87
92.17 0.15 0.019** 0.89
75.12 0.18 0.024** 0.69
68.94 0.13 0.013** 0.011** 0.76

r Africa (DTMA) association mapping (AM) panel; SYN_DH, double

ment at Agua Fria (AF) experimental station during the winter season

s the environment at Tlaltizapan (TL) experimental station during the
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in the populations of CMLs (r = 0.42–0.59) and SYN_DH

(r = 0.55–0.74), and low to moderate in the DTMA AM panel

(r = 0.15–0.49). Within all the populations, much stronger Pear-

son’s correlation coeffcients were observed between the

single-environment and CombinedENV, which ranged from

0.73 to 0.81 in the CMLs population, from 0.56 to 0.76 in the

DTMA AM panel, and from 0.81 to 0.87 in the SYN_DH popu-

lation (Fig. S1). Therefore, subsequent GWAS analyses were

only performed using phenotypic data from CombinedENV

analyses.

Based on phenotypic data, a few maize inbred lines were

identified as sources of resistance to FER in each of the popu-

lations (Table S1). These sources of FER resistance were

CML287, CML300, CML360, CML362, CML424, CML452,

CML479, CML481, CML482, CML575, and CML577 among the

CMLs, which had Fv% consistently lower than 10% in the

CombinedENV analysis. In the DTMA AM panel, the sources

of FER resistance identified were DTMA55, DTMA56,

DTMA176, DTMA177, DTMA185, DTMA191, DTMA195,

DTMA196, DTMA215, DTMA252, which had Fv% consistently

lower than 20% in the CombinedENVanalysis. In the SYN_DH

population, the FER resistant line identified were RCGS60,

RCGS178, RCGS206, RCGSY20, RCGSY76, RCGSY99, and

RCGSY154, as these lines had Fv% consistently lower than

5% in the CombinedENV analysis.

3.2. Population structure analysis

The population structure within each population was illus-

trated based on the first two principal components in Fig. 1,

a heat map and a dendrogram of the kinship matrix in

Fig. S2. The results showed little population structure and

low levels of genetic relatedness among the inbred lines in

the CMLs population and DTMA AM panel. Much population

structure and higher levels of genetic relatedness were

observed among the inbred lines in the SYN_DH population.

A higher level of genetic relatedness was observed between

the CMLs population and the DTMA AM panel, and a lower

level of genetic relatedness was observed between the

SYN_DH population and the other two populations.

The average linkage disequilibrium decay distance over all

ten chromosomes in the populations of CMLs, DTMA AM

panel, and all the 874 inbred lines with r2 = 0.1 were 5.22,

5.66, and 7.31 kb, respectively. In the SYN_DH population,

the average linkage disequilibrium decay distance over all

ten chromosomes with r2 = 0.1 was greater than 50 kb.

3.3. GWAS analysis for FER resistance using the GLM
method

The results of GWAS for FER resistance using the GLMmethod

and CombinedENV phenotypic data are shown in Fig. 2 and

Table S2. In total, 41, 25, 26, and 3034 SNPs, significantly asso-

ciatedwith FER resistance at the P-value threshold of 1 � 10�5,

were identified in the CMLs population, DTMA AM panel,

SYN_DH population, and in all the 874 inbred lines, respec-

tively. These SNPs significantly associated with FER resistance

were distributed on all the tenmaize chromosomes. The aver-

age MAF across all the SNP associations was 0.22, 0.17, 0.27,

and 0.24 in the CMLs population, DTMA AM panel, SYN_DH
population, and in all the 874 inbred lines, respectively

(Table S2).

In the CMLs population, the greatest number of marker-

trait associations, i.e. 10 SNPs, were detected on chromosome

5. The average PVE (phenotypic variation explained) value of

these 41 associations was 10.55% with a range from 9.46%

to 13.23%, and 23 of them had a PVE value greater than 10%.

The association of SNP S7_145770513 had the lowest P-value

of 2.21 � 10�7, and the greatest PVE value of 13.23%. In the

DTMA population, the greatest number of associations, i.e.

12 SNPs, were detected on chromosome 5. The average PVE

value of the 25 associations was 7.83% with a range from

6.73% to 11.74%, and only two of them had a PVE value greater

than 10%. The association of SNP S3_56477054 had the lowest

P-value of 6.80 � 10�9, and the greatest PVE value of 11.74%.

The association of SNP S1_299329113 had the second-lowest

P-value of 5 � 10�8, and the second greatest PVE value of

10.31%. In the SYN_DH population, the greatest number of

associations, i.e. 10 SNPs, were detected on chromosome 3.

The average PVE value of the 26 associations was 6.77% with

a range from 6.14% to 8.39%. The association of SNP

S3_202836307 had the lowest P-value of 2.78 � 10�7, and the

greatest PVE value of 8.39%. In the GWAS analysis of all the

874 inbred lines, the number of associations per chromosome

ranged from 175 on chromosome 10 to 559 on chromosome 1,

with an average value of 303 associations per chromosome,

and 604 of the 3034 association had P-values lower than

1 � 10�7. The average PVE value of the 3034 associations

was 3% with a range from 2.33% to 6.92%, and 49 associations

had a PVE value greater than 5%. The association of SNP

S3_141271697 had the lowest P-value of 4.99 � 10�14, and

the greatest PVE value of 6.92% (Table S2).

The number of overlapping SNP associations between dif-

ferent populations is shown in Fig. S3. No overlapping SNP

association was observed among the CMLs population, DTMA

AM panel, and SYN_DH population. The number of overlap-

ping SNP associations with all the 874 inbred lines was 11,

1, and 7 in the populations of CMLs, DTMA AM panel, and

SYN_DH, respectively.

Compared with the GWAS analyses within each popula-

tion, GWAS analysis with all the 874 inbred lines detected

much more marker-trait associations, with lower P-values

and smaller PVE values. This result indicates that bigger pop-

ulation size is required to conduct GWAS to dissect the poly-

genic trait controlled by many genes with minor allele effects,

such as FER resistance in maize. However, the quantile–quan-

tile plots from all the GWAS analyses using the GLM method

implied that the false-positive rates have to be further

reduced through controlling both the population structure

and family relatedness in the GWAS statistical model (Fig. 2).

3.4. GWAS analysis for FER resistance using the MLM
method

The results of GWAS for FER resistance using the MLM

method and CombinedENV phenotypic data are shown in

Fig. 3, Tables 2 and 3. In total, 12, 5, 22, and 19 SNPs, signifi-

cantly associated with FER resistance at the P-value threshold

of 1 � 10�4, were identified in the CMLs population, DTMA AM

panel, SYN_DH population, and in all the 874 inbred lines,



Fig. 1 – Genetic relatedness among the inbred lines visualized using a principal component (PC) analysis in the populations of

(a) CMLs, (b) DTMA AM panel, (c) SYN_DH, and (d) in all the 874 inbred lines. The horizontal and vertical axes are the first and

second principal components, respectively.
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respectively. The average MAF across all the association SNPs

was 0.18, 0.15, 0.26, and 0.28 in the CMLs population, DTMA

AM panel, SYN_DH population, and in all the 874 inbred lines,

respectively (Tables 2, 3).

In the CMLs population, the SNP associations were dis-

tributed on chromosomes 2, 3, 4, 6, 7, 8, and 9. The number

of SNP associations per chromosome ranged from 1 to 3.

The greatest number of associations were detected on chro-

mosomes 6 and 9. The average PVE value of the 12 associa-

tions was 7.01% with a range from 6.34% to 7.71%. The

association of SNP S8_16910712 had the lowest P-value of

1.39 � 10�5, and the greatest PVE value of 7.71%. In the DTMA

AM panel, the SNP associations were distributed on chromo-

somes 1, 3, 5, 7, and 9, with only one SNP association per chro-

mosome. The average PVE value of the five associations was

5.01% with a range from 4.52% to 5.96%. The association of

SNP S3_56477054 had the lowest P-value of 6.73 � 10�6, and

the greatest PVE value of 5.96%. In the SYN_DH population,

the SNP associations were distributed on chromosomes 1, 2,

3, 6, 7, 8, and 9. The number of SNP associations per chromo-

some ranged from 1 to 6, and the greatest number of associ-

ations were detected on chromosome 3. The average PVE

value of the 22 associations was 4.88% with a range from

4.47% to 5.91%. The association of SNP S1_260142965 had
the lowest P-value of 7.80 � 10�6, and the greatest PVE value

of 5.91% (Table 2).

The GWAS analysis in all the 874 inbred lines using the

MLM method detected 19 SNP associations, which were dis-

tributed on all the maize chromosomes, except on chromo-

some 7. The number of SNP associations per chromosome

ranged from 1 to 5, and the greatest number of associations

were detected on chromosomes 1 and 9. The average PVE

value of the 19 associations was 1.60% with a range from

1.39% to 2.04%. The association of SNP S9_115952576 had

the lowest P-value of 2.33 � 10�6, and the greatest PVE value

of 2.04% (Table 3).

The number of overlapping SNP associations between dif-

ferent populations is shown in Fig. S3, only two overlapping

SNP associations, i.e., S3_142736417 and S6_159221992, were

observed between SYN_DH population and in all the 874

inbred lines. The presence of a few overlapping SNPs between

different populations implied that FER resistance in maize is

indeed a complex trait, and it is highly affected by the genetic

background of the populations used for analysis.

The quantile–quantile plots from all the GWAS analyses

using the MLM method implied that the population structure

and family relatedness were well controlled, and the false-

positive rates were further reduced (Fig. 3). In the same popu-



Fig. 2 – GWAS results for FER resistance using the GLM method and the Manhattan plots of the populations of (a) CML, (b)

DTMA AM panel, (c) SYN_DH, and (d) all the 874 inbred lines. The horizontal axis shows the physical positions on the 10

maize chromosomes, the vertical axis shows the value of �log10 (P). The horizontal line indicates the genome-wide

significance with a moderate stringent threshold of –log10 (1 � 10�5). The quantile–quantile (Q-Q) plots of the populations of

(e) CMLs, (f) DTMA AM panel, (g) SYN_DH, and (h) all the 874 inbred lines. The x-axis represents the expected �log10 (P), and

the y-axis represents the observed �log10 (P).
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lation, GWAS analysis detected fewer SNP associations and

smaller PVE values using the MLM method than using the

GLM method, which confirmed that FER resistance in maize

was controlled by many genes with minor effects. Similar to

the GLM method, the MLM method with all the 874 inbred

lines detected more associations with lower PVE values than

within the CMLs population and DTMA AM panel.

3.5. Putative candidate genes associated with FER
resistance in maize detected by GWAS

According to the genome and annotation information of the

B73 reference, GWAS analysis using the GLM method identi-

fied 1309 putative candidate genes that contained the SNPs

significantly associated with FER resistance: 19 genes from

the CMLs population, 11 genes from the DTMA AM panel, 13

genes from the SYN_DH population, and 1266 genes from
the population of all the 874 inbred lines. No overlapping can-

didate genes were observed among the CMLs population,

DTMA AM panel, and SYN_DH population. The number of

overlapping candidate genes with the population of all the

874 inbred lines were 7, 1, and 4 in the CMLs population,

DTMA AM panel, and SYN_DH population, respectively

(Fig. S3).

In total, GWAS analyses using the MLM method identified

39 putative candidate genes that either contained or were

adjacent to the SNPs significantly associated with FER resis-

tance in half of the linkage disequilibrium decay distance of

7.31 kb: 8 genes from the CMLs population, 4 genes from

the DTMA AM panel, 14 genes from the SYN_DH population,

and 13 genes from the population of all the 874 inbred lines.

One candidate gene of GRMZM2G146020, transcription factor

PosF21, shared between the SYN_DH population and the pop-

ulation of all the 874 inbred lines (Fig. S3). Several putative



Fig. 3 – GWAS results for FER resistance using the MLM method and the Manhattan plots of the populations of (a) CMLs, (b)

DTMA AM panel, (c) SYN_DH, and (d) all the 874 inbred lines. The horizontal axis shows the physical positions on the 10

maize chromosomes. The vertical axis shows the value of �log10 (P). The horizontal line indicates the genome-wide

significance with a moderate stringent threshold of –log10 (1 � 10�4). The quantile–quantile (Q-Q) plots of the populations of

(e) CMLs, (f) DTMA AM panel, (g) SYN_DH, and (h) all the 874 inbred lines. The x-axis represents the expected �log10 (P), and

the y-axis represents the observed �log10 (P).
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candidate genes associated with FER resistance were of inter-

est and include GRMZM5G879570 in bin 7.03, GRMZM2G025997

in bin 8.02, GRMZM2G061314 in bin 9.07, and GRMZM2G127416

in bin 10.03. GRMZM5G879570 in bin 7.03 was detected from

the SYN_DH population, which encodes a member of the

RLCK VII-4 subfamily of receptor-like cytoplasmic kinases

that have been shown to phosphorylate MAPKKK5 Ser-599

and MEKK1 Ser-603, both play important roles in PRR-

mediated resistance to bacterial and fungal pathogens.

GRMZM2G025997 in bin 8.02 is a putative ring zinc finger

domain superfamily protein, which was adjacent to the SNP

association of S8_16910712 detected from the CMLs popula-

tion, this SNP association had the lowest P-value and the
greatest PVE value in the GWAS analysis with MLM method.

GRMZM2G061314 in bin 9.07 detected from the DTMA AM

panel encodes a receptor-like protein, which consists of a

leucine-rich receptor-like repeat, a transmembrane region,

and a short cytoplasmic region, with no kinase domain. This

gene plays a possible role in fungal defense. GRMZM2G127416

in bin 10.03 belongs to secondary cell wall glycosyltransferase

family 47, which may be involved in cell and plant tissue

development. Other putative candidate genes had gene function

or expressing patterns showing a possible role in stress

response, such as binding proteins including GRMZM5G877773,

GRMZM2G134976, GRMZM2G181390, GRMZM2G017400, and

GRMZM2G154029 involved in posttranslational regulation;



Table 2 – Significantly associated SNPs and the annotation of the candidate genes revealed by the GWAS using the MLM method in the populations of CMLs, DTMA AM
panel, and SYN_DH.

SNP Name Bin Allele P-value PVE (%) MAF Candidate gene Annotation

CMLs
S2_211168475 2.08 G/C 7.683E-05 6.34 0.12 GRMZM2G358381 Pentatricopeptide repeat-containing protein mitochondrial
S3_161730661 3.05 C/G 3.465E-05 6.97 0.12 GRMZM2G103812 Selenium-binding protein 3
S4_207486641 4.09 A/G 5.118E-05 6.66 0.13
S4_234653907 4.09 G/C 2.088E-05 7.38 0.47 GRMZM2G073059 Cyclase
S6_146700213 6.05 G/A 3.713E-05 6.92 0.11
S6_4350527 6.01 A/G 2.763E-05 7.15 0.19
S6_4350528 6.01 T/C 2.763E-05 7.15 0.19
S7_145770513 7.03 C/T 2.248E-05 7.32 0.10 GRMZM2G485559 Blue copper protein

GRMZM2G006117 Transmembrane 9 superfamily member 9
GRMZM2G006416 Probable protein phosphatase 2C 21

S8_16910712 8.02 G/A 1.39E-05 7.71 0.22 GRMZM2G025997 Putative ring zinc finger domain superfamily protein
S9_138615621 9.06 T/G 4.093E-05 6.84 0.18 GRMZM2G095727 Two-component response regulator-like APRR3

GRMZM2G095868 Ypt/Rab-GAP domain of gyp1p superfamily protein
S9_138615643 9.06 A/C 4.093E-05 6.84 0.18 GRMZM2G095727 Two-component response regulator-like APRR3

GRMZM2G095868 Ypt/Rab-GAP domain of gyp1p superfamily protein
S9_138615701 9.06 C/T 3.991E-05 6.86 0.19 GRMZM2G095727 Two-component response regulator-like APRR3

GRMZM2G095868 Ypt/Rab-GAP domain of gyp1p superfamily protein

DTMA AM panel
S1_299329113 1.12 G/A 2.126E-05 5.29 0.20
S3_56477054 3.04 T/A 6.726E-06 5.96 0.06 GRMZM2G409309
S5_206046656 5.07 T/G 7.381E-05 4.58 0.18 GRMZM5G877773 NAD(P)-binding Rossmann-fold superfamily protein
S7_121545012 7.02 T/A 8.185E-05 4.52 0.11
S9_149540390 9.07 G/C 5.998E-05 4.70 0.21 GRMZM2G061280 Ras-related protein RABA4a

GRMZM2G061314 Receptor Like Proteins consists of a leucine-rich receptor-like
repeat, a transmembrane region, and a short cytoplasmic region, with no kinase domain

SYN_DH
S1_217252370 1.07 T/C 8.65E-05 4.53 0.37
S1_260142965 1.09 T/C 7.798E-06 5.91 0.10 GRMZM2G134976 Myosin-binding protein 7
S1_288742469 1.11 T/C 4.83E-05 4.86 0.48 GRMZM2G163912 Protein WVD2-like 3
S1_288742499 1.11 C/T 8.49E-05 4.54 0.48 GRMZM2G163912 Protein WVD2-like 3
S2_185868849 2.06 G/C 5.36E-05 4.80 0.27
S2_185869223 2.06 G/C 7.24E-05 4.63 0.34
S3_142736417 3.05 T/C 9.49E-05 4.47 0.20 GRMZM2G146020 Transcription factor PosF21
S3_168922004 3.06 G/T 2.052E-05 5.35 0.23 GRMZM2G035092 MADS-box transcription factor family protein

GRMZM5G807064 BTB/POZ and TAZ domain-containing protein 3
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transcription factors including GRMZM2G146020 and

GRMZM2G035092 involved with signal recognition.

3.6. Genomic prediction accuracies estimated from the
five-fold cross-validation schemes

The prediction accuracies of FER resistance estimated from

the five-fold cross-validation schemes are shown in Fig. 4.

In each population studied in the present study, the predic-

tion accuracy estimated with the genome-wide markers in

the CombinedENV is moderate, which is higher than those

estimated within the individual environment. In the Com-

binedEnv, the prediction accuracies estimated with genome-

wide markers in the CMLs population, DTMA AM panel,

SYN_DH population, and all the 874 inbred lines were 0.46,

0.53, 0.32, and 0.57, respectively. In the single-environment

analyses, the prediction accuracies estimated with the

genome-wide markers ranged from 0.25 to 0.42 in the CMLs

population within the six individual environments, from

0.28 to 0.42 in the DTMA AM panel within the four individual

environments, and from 0.17 to 0.30 in the SYN_DH popula-

tion within the four individual environments.

3.7. Genomic prediction accuracies estimated with the
SNPs significantly associated with FER resistance

The prediction accuracies of FER resistance estimated with

the significantly associated SNPs in all the populations were

greater than 0.50 in the CombinedEnv analyses, which were

relatively higher than those estimated with the genome-

wide markers within each population (Fig. 4). When the sig-

nificantly associated SNPs detected in each population were

used for predicting the same population, the prediction accu-

racy of FER resistance in the CMLs population, DTMA AM

panel, SYN_DH population, and all the 874 inbred lines were

0.74, 0.62, 0.63, and 0.65, respectively. In total, 3108 unique sig-

nificantly associated SNPs were detected in the GLM model in

all the GWAS analyses across all the populations. The predic-

tion accuracy of FER resistance estimated with these 3108 sig-

nificantly associated SNPs in the CMLs population, DTMA AM

panel, SYN_DH population, and all the 874 inbred lines were

0.66, 0.66, 0.55, and 0.67, respectively. Within the same popu-

lation, similar prediction accuracies were observed in the two

different types of significantly associated SNP datasets.

3.8. Genomic prediction accuracies estimation when the
training and validation sets were independent

The prediction accuracies estimated in the validation sets are

shown in Table 4, when the training and validation sets were

independent, and when one or two of the populations were

used as the training set to predict the other population as

the validation set. The prediction accuracies between the

CMLs population and the DTMA AM panel were moderate,

which were 0.45 using the CMLs population as the training

set to predict the DTMA AM panel as the validation set, and

vice versa. The prediction accuracies were low and ranged

from 0.04 to 0.21 between the SYN_DH population and the

other two populations. The prediction accuracy in the

SYN_DH population was 0.19 and 0.04, when the SYN_DH



Table 3 – Significantly associated SNPs and the annotation of the candidate genes revealed by the GWAS using the MLM method in the population comprising all the 874
inbred lines.

SNP Name Bin Allele P-value PVE (%) MAF Candidate gene Annotation

S1_215350780 1.07 G/C 6.80258E-05 1.45 0.21
S1_289064255 1.11 A/G 3.62493E-05 1.56 0.16 GRMZM2G072156 Cactin
S1_47993337 1.03 G/A 1.65098E-05 1.69 0.37 GRMZM2G017536 DUF4378 domain protein

GRMZM2G017400 Calmodulin-binding protein
S1_69095566 1.04 G/C 7.90317E-05 1.42 0.08
S1_9355044 1.05 A/G 1.32781E-05 1.73 0.19 GRMZM5G860938 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein
S2_187053202 2.06 G/A 4.01302E-06 1.94 0.28 GRMZM2G066516 Ternary complex factor MIP1-like protein
S3_142736417 3.05 T/C 2.5078E-05 1.62 0.26 GRMZM2G146020 Transcription factor PosF21
S4_180206370 4.08 G/A 9.2945E-05 1.39 0.20
S5_185646038 5.05 C/G 6.26077E-05 1.46 0.30 GRMZM2G028830 RmlC-like cupins superfamily protein
S5_53522776 5.03 T/A 8.17344E-05 1.41 0.49
S6_159221992 6.06 G/A 1.20711E-05 1.75 0.46
S8_130513588 8.05 G/A 3.96428E-05 1.54 0.26 GRMZM2G155889 DUF724 domain-containing protein 2
S9_115952569 9.04 C/A 3.89388E-06 1.95 0.30
S9_115952576 9.04 T/G 2.32544E-06 2.04 0.31
S9_117051071 9.04 C/T 9.0096E-05 1.40 0.49
S9_120747394 9.04 C/T 3.29508E-05 1.57 0.43 GRMZM2G154029 Putative HLH DNA-binding domain superfamily

protein isoform 1%3B; Putative HLH DNA-binding domain superfamily protein isoform 2
S9_137847927 9.06 A/C 7.40253E-05 1.43 0.15 GRMZM2G128971 Fatty acid desaturase 7
S10_103085578 10.04 C/T 6.93807E-05 1.44 0.11
S10_2656869 10.03 G/A 3.607E-05 1.56 0.22 GRMZM2G127416 Secondary cell wall glycosyltransferase family;

GRMZM2G127393 Trigger factor-like protein TIG Chloroplastic
GRMZM2G427014 40S ribosomal protein S16

SNP name, chromosome_position, for example, S1_215350780 means the SNP is on chromosome 1, the physical position is 215350780 bp. PVE, phenotypic variation explained; MAF, minor allele

frequency.
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Fig. 4 – Genomic prediction (GP) accuracies for FER resistance estimated from the five-fold cross-validation schemes in the

populations of (a) CMLs, (b) DTMA AM panel, and (c) SYN_DH with the genome-wide markers in each environment and the

combined-environment (CombinedENV) analyses, and with the significantly associated SNPs detected in each population

(Self_sigSNP) and across all the populations (All_sigSNP) in the combined-environment analyses.
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population was predicted by the CMLs population and the

DTMA AM panel, respectively. The prediction accuracy was

0.21 in the CMLs population and 0.10 in the DTMA AM panel,

when the SYN_DH population was used as the training set to

do prediction. The prediction accuracies in the CMLs popula-

tion, DTMA AM panel, and SYN_DH population was 0.52, 0.45,

and 0.17, when the other two populations were used as the

training sets. Higher prediction accuracies were observed

between the CMLs population and the DTMA AM panel, and

lower prediction accuracies were observed between the

SYN_DH population and the other two populations. This
result is in line with the population structure and genetic

relatedness analyses.

4. Discussion

Previous studies showed that most stable sources of resis-

tance to FER are mainly from tropical maize germplasm

[6,7]. In the present study, a total of 874 tropical and subtrop-

ical CIMMYTmaize inbred lines were phenotyped inmultiple-

location trials for screening their FER responses. Broad phe-

notypic variation of disease severity was observed, and sev-



Table 4 – The genomic prediction accuracies estimated in the validation sets, when the training and validation sets were
independent, and one or two of the populationswere used as the training set to predict the other population as the validation
set.

Training set Validation set Prediction accuracy

CMLs DTMA AM panel 0.45
CMLs SYN_DH 0.19
DTMA AM panel CMLs 0.45
DTMA AM panel SYN_DH 0.04
SYN_DH CMLs 0.21
SYN_DH DTMA AM panel 0.10
CMLs & DTMA AM panel SYN_DH 0.17
CMLs & SYN_DH DTMA AM panel 0.45
DTMA AM panel & SYN_DH CMLs 0.52

338 T h e C r o p J o u r n a l 9 ( 2 0 2 1 ) 3 2 5 –3 4 1
eral donor lines showing stable FER resistance were identified.

In all the multiple-location trials, the heritabilities of FER

resistance estimated from the replicated trials are high in

both the single-environment and CombinedENV analyses,

revealing that phenotypic selection is effective for improving

FER resistance, and the phenotypic data was reliable for fur-

ther genetic analyses to identify favorable alleles associated

with improved FER resistance for implementing MAS. How-

ever, it is still difficult to effectively incorporate the resistance

alleles from the tropical and subtropical donor lines to the

elite breeding lines through phenotypic selection, because

the heritability of individual plants against FER is relatively

low, and resistance to FER in maize is highly influenced by

large genotype-by-environment interactions [1]. The results

of this study confirmed that most of the Pearson’s correlation

coeffcients among environments were low to moderate in all

the populations, and the component of genotype-by-

environment variance was significant at P-value of 0.01 in

all the ANOVA analyses, which indicated that multiple loca-

tion trials are required to improve FER resistance through

the phenotypic selection to eliminate the effect of genotype-

by-environment interaction. However, improving FER resis-

tance through phenotypic selection could be expensive and

time-consuming.

GWAS is a powerful strategy for genetic dissection of com-

plex traits in plants. In this study, GWAS was conducted with

both GLM and MLM methods to identify the specific genomic

regions and SNPs conferring FER resistance in tropical maize

germplasm.The results showed that resistance to FER inmaize

is controlled by several QTL with small effects, and is highly

influenced by the genetic background of the populations stud-

ied. The GLMmethod identified 3034 SNPs significantly associ-

ated with FER resistance in all the 874 inbred lines at the P-

value threshold of 1 � 10�5, and 604 of the 3034 association

had P-values lower than 1 � 10�7. The average PVE value of

the 3034 associations was 3%, and only 49 associations had a

PVE value greater than 5%. TheMLMmethod identified 19 SNPs

significantly associated with FER resistance in all the 874

inbred lines at the P-value threshold of 1 � 10�4, the average

PVE value of the 19 associations was 1.60% with a range from

1.39% to 2.04%. Both GLM and MLM methods revealed a few

overlapping SNP associations among the populations studied.

No overlapping SNP association was observed between the

CMLs population and the DTMA AM panel, even thorough the
genetic relatedness between these two populations was not

far, it implied that the statistical power of GWAS should be

increased furtherly to map the stable minor QTL with small

effects across populations. These results are consistent with

the observations of previous studies [34], which implied that

MAS for improving FER resistance may not be very effective.

Several GWAS analyses have been conducted in maize to

detect genomic regions conferring FER resistance [13,14,34],

and a few stable genomic regions were identified across these

studies, although these genomic regions have minor effects.

Previous and present studies indicate that bins 3.04/05,

7.02/04, 9.06/07, and 10.03/04 were enriched in SNPs signifi-

cantly associated with FER resistance. In the GWAS analyses

with the MLM method, the SNPs in bin 3.04/3.05 significantly

associated with FER resistance were revealed across all the

four populations used in the present study. In the DTMA AM

panel, the association of SNP S3_56477054 at bin 3.04 had

the lowest P-value and the greatest PVE value. In the SYN_DH

population, the greatest number of SNP associations were

detected on chromosome 3, including S3_142736417 in bin

3.05. In all the 874 inbred lines, the SNP association of

S3_142736417 was detected as well, which was one of the

two overlapping SNP associations observed between the

SYN-DH population and in all the 874 inbred lines. These

results show that the genomic region in bin 3.04/05 is stable,

which is consistent with the observations of the previous

studies [7,13,14]. The genomic region in bin 7.02/04 conferring

the FER resistance was reported previously [12,13], the results

of this study confirm the previous observations. The genomic

region associated with FER resistance in the CMLs population,

DTMA AM panel, and SYN_DH population was in bin 7.03,

7.02, and 7.02/03, respectively. The genomic region at bin

9.06/07 associated with FER resistance was previously reported

[14,34]. The genomic region in bin 9.06/07 associated with FER

resistance was observed in this study in all the four popula-

tions, except for the SYN_DH population. The genomic region

in bin 10.03/04 associated with FER resistance was detected in

the SYN_DH population and all the 874 inbred lines, which

was also reported in previous studies [13,14,34]. Besides, the

genomic region in bin 9.00/01 detected in the SYN_DH popula-

tion and the genomic regions in bin 9.04 detected in all the 874

inbred lines are new and stable. Thus, these results indicate

that it could be effective to improve the FER resistance inmaize

by selecting multiple stable genomic regions simultaneously.
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Previously published studies and the present research

show that the detected genomic regions have minor genetic

effects and low frequencies of minor alleles, and the overlap-

ping of genomic regions across different studies is rare. These

results indicated that the statistical power of genetic mapping

should be increased, and the genetic mapping resolution

should be improved in further GWAS analyses. In this study,

GWAS analyses using both GLM and MLM methods detected

more associations at lower P-values in all the 874 inbred lines,

although the PVE values of these associations were smaller,

indicating that the statistical power of genetic mapping can

be dramatically increased by enlarging the population size.

Besides increasing the statistical power of genetic mapping,

the false-positive rate in the GWAS also should be controlled.

The quantile–quantile plots implied that the GWAS using the

GLM method did not adequately control the false-positive

rates, and a high number of false-positive associations were

detected. Therefore, the genomic regions and candidate

genes containing the SNP associations detected from the

GLM method were not furtherly explored, which were mainly

used for further GP analyses. In contrast, the quantile–quan-

tile plots implied that the GWAS analyses using the MLM

method did not well control the false-negative rates, SNPs

with lower significance may not have been detected, but this

should not affect the identification of SNPs and genomic

regions significantly associated with FER resistance.

Multiparent Advanced Generation Intercrossed (MAGIC)

population and Complete-diallel design plus Unbalanced

Breeding-like Inter-Cross (CUBIC) population have proved to

be a valuable method to improve the statistical power of

genetic mapping. This is mostly dues to the high phenotypic

diversity, enrichment of favorable alleles with low frequency,

clear population structure pattern, and rapid linkage disequi-

librium decay [12,35]. The SYN_DH population used in this

study is a multi-parental synthetic population, which is sim-

ilar to the MAGIC and CUBIC populations. The analyses of

GWAS with MLM method detected more significantly associ-

ated SNPs in the SYN_DHpopulation than in all the 874 inbred

lines, showing that the statistical mapping power was

improved in the SYN_DH population. Besides, several SNP

associations detected in the SYN_DH population have rela-

tively low MAF, i.e. S1_260142965, S3_219293102,

S7_130321001, and S7_143397458 having MAF less than 0.10,

implying that SYN_DH population has the advantage to

detect rare alleles associated with the target trait. Moreover,

the significantly associated SNPs detected in the SYN_DH

populations have no overlapping with those detected in the

CMLs population and DTMA AM panel, indicating the pres-

ence of unique phenotypic and genotypic diversity of the

SYN_DH population, and the low level of genetic relatedness

presented between the SYN_DHpopulation and the other two

populations.

GS is effective for the improvement of complex traits in

maize [16,17]. In each population studied in the present study,

the prediction accuracies of FER resistance estimatedwith the

genome-wide markers in the CombinedENV analyses were

moderate, and the prediction accuracies estimated in the

CombinedENV analyses were higher than those estimated

within the individual environment. These results show that

GS is a promising tool for improving FER resistance in maize.
However, the training set for predicting FER performance

needs to be phenotyped in multi-location trials to eliminate

the effect of large genotype-by-environment interaction to

achieve good prediction accuracy. The prediction accuracies

of FER resistance estimated with the significantly associated

SNPs were greater than those estimated with the genome-

wide markers across all the studied populations, suggesting

that GWAS information helped in improving the prediction

accuracy. When the training and validation sets were inde-

pendent, higher prediction accuracies were observed between

the CMLs population and the DTMA AM panel, and lower pre-

diction accuracies were observed between the SYN_DH popu-

lation and the other two populations, indicating that the

closely related training and validation sets produced higher

prediction accuracy. However, increasing the population size

of the training set by adding distantly related materials does

not help to improve prediction accuracy. When the SYN_DH

population was incorporated into the training set, the predic-

tion accuracies observed between the CMLs population and

the DTMA AM panel did not change or slightly increased.

The training set comprising of both populations produced

similar prediction accuracy, as either the CMLs population

or the DTMA panel was used as the training set to predict

the SYN_DH population.
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