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Abstract
Key message  Genomic selection with a multiple-year training population dataset could accelerate early-stage testcross 
testing by skipping the first-stage yield testing, which significantly saves the time and cost of early-stage testcross 
testing.
Abstract  With the development of doubled haploid (DH) technology, the main task for a maize breeder is to estimate 
the breeding values of thousands of DH lines annually. In early-stage testcross testing, genomic selection (GS) offers the 
opportunity of replacing expensive multiple-environment phenotyping and phenotypic selection with lower-cost genotyp-
ing and genomic estimated breeding value (GEBV)-based selection. In the present study, a total of 1528 maize DH lines, 
phenotyped in multiple-environment trials in three consecutive years and genotyped with a low-cost per-sample genotyping 
platform of rAmpSeq, were used to explore how to implement GS to accelerate early-stage testcross testing. Results showed 
that the average prediction accuracy estimated from the cross-validation schemes was above 0.60 across all the scenarios. 
The average prediction accuracies estimated from the independent validation schemes ranged from 0.23 to 0.32 across all 
the scenarios, when the one-year datasets were used as training population (TRN) to predict the other year data as testing 
population (TST). The average prediction accuracies increased to a range from 0.31 to 0.42 across all the scenarios, when 
the two-years datasets were used as TRN. The prediction accuracies increased to a range from 0.50 to 0.56, when the TRN 
consisted of two-years of breeding data and 50% of third year’s data converted from TST to TRN. This information showed 
that GS with a multiple-year TRN set offers the opportunity to accelerate early-stage testcross testing by skipping the first-
stage yield testing, which significantly saves the time and cost of early-stage testcross testing.
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Introduction

Modern breeding tools and technologies, such as doubled 
haploid (DH) technology and genomic selection (GS), pro-
vide new approaches to increase the genetic gain in plant 
breeding. The DH technology, firstly proposed in maize 
breeding more than half a century ago, allows breeders 
to obtain homozygous inbred lines in two generations 
compared to more than six generations of inbreeding in 
conventional breeding (Prasanna 2012; Sleper and Ber-
nardo 2016). The other advantage of DH technology is the 
selection effectiveness, due to the genetic uniformity of 
the tested genotypes across seasons (Masuka et al. 2017). 
As the cost of developing DH lines decreased, thousands 
of DH lines are able to be generated in a maize breeding 
program every year. Therefore, the main task for a maize 
breeder is to estimate the breeding values of thousands of 
DH lines, rather than to generate thousands of homozy-
gous inbred lines annually.

GS is a molecular marker-based selection method, in 
which the marker effects are estimated in the training 
population (TRN) based on prior phenotypic and molec-
ular marker data, and then the marker effects estimated 
from the training population (TRN) are used to predict the 
genomic estimated breeding value (GEBV) of the geno-
types in a target breeding population, which have been 
genotyped but not phenotyped (Meuwissen et al. 2001). In 
maize, GS has been implemented in several studies in vari-
ous kinds of genetic and breeding populations to estimate 
the genomic prediction accuracy and evaluate the genetic 
gain (Crossa et al. 2014; Beyene et al. 2015; Zhang et al. 
2017a and b). The main factors affecting genomic predic-
tion accuracy include the size of TRN, the relationship 
between TRN and TST (testing population), the genetic 
architecture and the heritability of the target trait, the 
genotype by environment interaction, statistical models, 
etc. (Beyene et al. 2015;  Guo et al. 2014; Kadam et al. 
2016; Kadam and Lorenz 2018). Brandariz and Bernardo 
(2019) showed that the relationship between TRN and 
TST was more important in improving prediction accuracy 
than the size of TRN. Multiple-environment trials have an 
important role in plant breeding to assess the genotype by 
environment interaction and select breeding materials with 
good preference and stability. However, most previous GS 
studies only used single-environment prediction models. 
Until recently, several studies showed that incorporating 
genotype by environment interaction into the statistical 
models was able to improve the genomic prediction accu-
racy (Burgueño et al. 2012; Jarquín et al. 2014; Sousa et al. 
2017; Zhang et al. 2015).

The breeding data in a maize breeding program are 
dynamic and complex. As part of the routine maize 

product development pipeline, thousands of DH lines 
derived from genetically diverse parents and populations 
are able to be generated for each breeder every year at an 
affordable cost; the general combining ability and breeding 
value of this large number of DH lines need to be evalu-
ated in the first-stage yield testing trials, i.e., the early-
stage testcross testing, where the testcross formed between 
a large number of DH lines and a few testers is always 
phenotyped in multiple-environment trials. Several differ-
ent testers from the complementary heterotic groups are 
used to make the testcross, according to the genetic back-
ground of the DH lines (Albrecht et al. 2011 and 2014). 
In a maize breeding program, the process of early-stage 
testcross testing repeats every year, and the DH lines tested 
across years are partially connected as full-sibs or half-
sibs, as the key inbred lines are repeated as parental lines 
for recycling for several years (Schrag et al. 2018; Rio 
et al. 2019). GS enables the GEBV estimation and selec-
tion on the untested DH lines prior to phenotyping (Andorf 
et al. 2019; Brauner et al. 2018). In early-stage testcross 
testing, GS offers the opportunity of replacing expensive 
multiple-environment phenotyping and phenotype-based 
breeding value selection with lower-cost genotyping and 
GEBVs-based selection. However, the strategy of imple-
menting GS to replace phenotyping in the early-stage test-
cross testing needs to be further explored by employing the 
multiple years of breeding data, due to the complexity of 
the early-stage testcross testing  (Marulanda et al. 2016).

In the present study, a total of 1528 DH lines, phenotyped 
in multiple-environment trials in three consecutive years and 
genotyped with a low-cost per-sample genotyping platform 
of rAmpSeq, were used to explore how to implement GS to 
accelerate the early-stage testcross testing in a maize dou-
bled haploid breeding program. rAmpSeq is a newly devel-
oped sequencing method, which scores thousands of markers 
with the cost of less than 5 US dollars per sample (Buckler 
et al. 2016). The main objectives of the present study are to: 
(1) estimate the genomic prediction accuracies in the within 
and across year analyses; (2) evaluate the effect of genomic 
prediction model incorporating genotype by environment 
interaction on the genomic prediction accuracy estimation; 
(3) explore the breeding strategy of implementing GS to 
accelerate the early-stage testcross testing in a maize dou-
bled haploid breeding program.

Materials and methods

Plant materials and field experiments

In the present study, a total of 1528 DH lines, developed 
by the lowland tropical maize breeding program of CIM-
MYT in Mexico in three consecutive years, were used to 
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explore how to implement genomic prediction to accel-
erate early-stage testcross testing in a DH breeding pro-
gram. In 2015, 291 DH lines from 19 biparental popu-
lations were derived from the F1 crosses made between 
11 parental lines; the number of DH lines per population 
ranged from 1 to 53, with an average of 15. In 2016, 739 
DH lines from 138 biparental populations were derived 
from the F1 crosses made between 97 parental lines; the 
number of DH lines per population ranged from 1 to 66, 
with an average of five. In 2017, 498 DH lines from 120 
biparental populations were derived from the F1 crosses 
made between 92 parental lines; the number of DH lines 
per population ranged from 1 to 58, with an average of 
four (Fig. 1). The number of full-sib and half-sib DH lines 
shared between different years is shown in Fig. 1a. Among 
the 291 DH lines tested in 2015, 286 and 67 lines are full- 
or half-sibs with part of the 739 lines tested in 2016 and 
part of the 498 lines tested in 2017, respectively. Among 
the 739 DH lines tested in 2016, 61 and 325 lines are 
full- or half-sibs with the part of the 291 lines tested in 
2015 and part of the 498 lines tested in 2017, respectively. 
Among the 498 DH lines tested in 2017, 2 and 64 lines are 
full- or half-sibs with part of the 291 lines tested in 2015 
and part of the 498 lines tested in 2017, respectively. The 
number of full-sibs across the three tested years is 67, 12, 
and 2 in 2015, 2016, and 2017, respectively. The number 
of biparental populations and the number of parental lines 
used to form biparental populations are shown in Fig. 1b, 
as well as the number of biparental populations and the 
number of parental lines shared between different years. 
The number of evaluated biparental populations is 19, 138, 
and 120 in 2015, 2016, and 2017, respectively. The num-
ber of parental lines used to form biparental populations 

is 11, 97, and 92 in 2015, 2016, and 2017, respectively. 
The number of shared biparental populations is 17, 28, 
and 2 for the pairwise years of 2015 and 2016, 2016 and 
2017, and 2015 and 2017, respectively. The number of 
shared parental lines is 11, 49, and 8 for the pairwise years 
of 2015 and 2016, 2016 and 2017, and 2015 and 2017, 
respectively. Across the three tested years, the number of 
shared biparental populations and the number of shared 
parental lines are 2 and 8, respectively.

The testcrosses made between each DH line and the 
corresponding tester from the complementary heterotic 
group were evaluated in multiple-environment trials for 
phenotypic data collection; the target trait of the present 
study was grain yield (GY). Each DH line only crossed 
with one tester to make the testcross, and the number of 
testers used for making testcross in the year of 2015, 2016, 
and 2017 was two, four, and six, respectively (Fig. 1c). 
The testers were different between years, only one tester, 
i.e., T3, appeared in both 2016 and 2017. The number 
of testcrosses made with each tester ranged from 1 to 
456 across the 3 years. In 2015 and 2016, the testcrosses 
were phenotyped in Mexico in three experimental sta-
tions, i.e., Agua Fria (AF, 20°27′N, 97°38′W), Cotaxtla 
(Cot, 19°15′N, 96°12′W), and Tlatizapan (TL, 18°41′N, 
99°07′W). In 2017, the testcrosses were only evaluated 
in two experimental stations in Agua Fria and Tlatiza-
pan. The number of trials conducted in the year of 2015, 
2016, and 2017 was five, seven, and seven, respectively. 
A different subset of DH lines was evaluated in each trial. 
Each trial was laid out in an α-lattice design with two 
replications, and one-row plot was planted with 5 m long, 
0.75 m between rows, and 0.25 m between hills. For each 
trial, the best linear unbiased predictor (BLUP) values 

Fig. 1   The basic information 
of the phenotypic dataset from 
three consecutive years from 
2015 to 2017. a the number 
of full-sib and half-sib DH 
lines shared between different 
years; blue color—2015, yellow 
color—2016, green color—
2017; b the number of biparen-
tal populations and the number 
of parental lines used to form 
biparental populations; blue 
color—2015, yellow color—
2016, green color—2017; c 
number of testers used in each 
year and number of testcrosses 
evaluated in each tester
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and broad-sense heritability (H2) of GY were calculated 
in within and across location analyses using the META-R 
software (http://hdl.handl​e.net/11529​/10201​). The broad-
sense heritability (coefficient of repeatability) equation for 
within environment is:

For the across locations analyses, broad-sense heritability 
equation is

where �2

g
 is the genotypic variance, �2

gE
 is the geno-

type × environment variance, �2

�
 is the error variance, n is the 

number of environments, and r is the number of 
replications.

Genotyping and genotypic data

The genomic DNA of all the DH lines was sent to Cornell 
University Biotechnology Resource Center (Ithaca, NY, 
USA) for repeat Amplification Sequencing (rAmpSeq). 
The details of the protocol have been described by Buck-
ler et al. (2016), where the DNA library was constructed 
in 3072-plex and sequenced on Illumina HiSeq 2000, each 
sequence tag was treated as a unique dominant marker, the 
tags from the B73 reference genome were considered as the 
present markers; otherwise, the sequence tags not mapped 
to the B73 reference genome were considered as the absent 
markers. Initially, 7595 dominant markers identified from 
the intergenic regions were called for all the genotyped DH 
lines. The markers with minor allele frequency (MAF) less 
than 0.05 were discarded, resulting in 6137 markers for fur-
ther analysis.

Genomic prediction analyses

All the genomic prediction analyses were conducted using 
the BGLR library (Perez and de los Campos 2014) in R pro-
gram version 3.6.1 (R Core Team 2019). A total of 300,000 
MCMC (Markov chain Monte Carlo) samples were col-
lected, with 250,000 discarded as burn-in. Thinning was 
done by keeping one of every 10 samples.

Both the single-environment (year–location combination) 
model (SM) and multiple-environment model (MM) were 
implemented to evaluate the effect of modeling the geno-
type by environment interaction into genomic prediction. 

H2 =
�
2

g

�2
g
+ �2

�
∕r

H2 =
�
2

g

�2
g
+ �

2

gE
∕n + �2

�
∕nr

In SM, let yij be the GY testcross performance for genotype 
j , which was tested in the environment i . The GY testcross 
performance can be predicted as follows: 

 where �i is an intercept particular to a given environment, 
since we are fitting the model for each environment, and Ei 
is the same for all individuals (a constant); therefore, we can 
reparametrize the model by writing �i = � + Ei , gj is the 
random effect of the genotype j, and eij is the model residuals 
with eij ∼ NI

(

0, �2

ei

)

 , where “NI” stands for normal and inde-
pendent, and �2

ei
 is the variance for the residual in the envi-

ronment i (stratified analysis model in López-Cruz et al. 
2015). We assume that g ∼ MN

(

�,G�2

g

)

 , where g is a vector 
of gj , MN stands for a multivariate normal distribution, �2

g
 is 

the variance associated with genotypes, and G is a genomic 
relationship matrix derived from marker scores. G = ZZ�∕p 
with Z being the matrix of markers centered and standard-
ized (López-Cruz et  al. 2015) and p is the number of 
markers.

In MM, the SM is extended to include the main effect of 
environment (year–location combination) and the interaction 
between genotype and environment. Here, we described the 
model proposed by Jarquín et al. (2014) to include the inter-
action through the reaction norm model, as follows:

where Ei is the effect of the environment, with 
Ei ∼ NIID

(

0, �2

E

)

 , and gEij is the interaction between envi-
r o n m e n t  i  a n d  ge n o t y p e  j  .  We  a s s u m e 
gE ∼ MN(�, [ZgGZ

�

g
]#ZEZ

�
E
�
2

gE
) , where gE is a random term 

that represents the interaction between genotype and envi-
ronment jointly, Zg is the design matrix that connects the 
phenotypes with genotypes, ZE is the design matrix for envi-
ronments, and # is the Hadamard product (cell by cell) 
between two matrixes, and �2

gE
 is the variance component 

associated with this term.
Two validation schemes were used to assess the accu-

racy of prediction models, where the prediction accuracy 
(rMG) was defined as the Pearson correlation between the 
observed and predicted phenotypes. A fivefold cross-val-
idation scheme with 50 replications was used to generate 
the TRN and TST sets and assess the prediction accuracy. 
In each of the 50 replications, the observations in randomly 
selected fourfold were assigned as TRN, and the remaining 
observations in the rest fold were assigned as TST. In order 
to assess the prediction accuracy across years, an independ-
ent validation scheme was applied, where the TRN and TST 
were from different years, and TRN was either from 1 year 
of breeding data or from 2 years of breeding data.

yij = �i + gj + eij,

yij = � + Ei + gj + gEij + eij,

http://hdl.handle.net/11529/10201
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The TRN using 2 years of breeding data always has big-
ger population size and larger environmental variation than 
using 1 year of data as TRN. For separating the effects of 
population size and environmental variation on estimation of 
the prediction accuracy, the random sampling selection was 
applied on the TRN using 2 years of breeding data, and the 
size of the TRN using 2 years of breeding data was adjusted 
same as the size of the TRN using 1 year of data. The 2 years 
of breeding data with adjusted size were used as the TRN set 
to predict the third year’s data as the TST set. The random 
sampling selection was repeated 30 times, SM was applied 
in the within and across location analyses, and the average 
prediction accuracy was estimated in the TST set.

Results

Phenotypic data analysis and heritability

The mean performance and broad-sense heritability of GY 
in each year–location combination are shown in Table 1. For 
each year–location combination, the average GY varied. In 
AF, the highest GY with 8.40 t/ha was observed in 2017 and 
the lowest GY with 7.01 t/ha was observed in 2015. In TL, 
the highest GY with 11.22 t/ha was observed in 2015 and 
the lowest GY with 9.19 t/ha was observed in 2016. Across 
all 3 years, the highest GY value was observed in TL and 
the lowest GY value was observed either in AF or in Cot. 
The average variation across years was 1.16 t/ha, which was 
smaller than the variation across locations of 2.56 t/ha, indi-
cating that GY varied both across locations and across years.

The heritabilities of GY in most of the trials were mod-
erate to high, only except for two trials evaluated in 2017, 
in which the heritabilities were lower than 0.05 (Table 1). 
The average heritability across locations and trials was 
0.53, 0.71, and 0.39 in the years 2015, 2016, and 2017, 
respectively.

Prediction accuracies estimated 
from the fivefold cross‑validation schemes

The prediction accuracies estimated from the fivefold cross-
validation schemes are shown in Fig. 2, when the SM and 
MM models were applied in the within location analyses 
and the across location analyses (Fig. 2). In either the within 
location analyses or the across location analyses, the pre-
diction accuracies estimated from the MM were higher 
than those estimated from the SM. In the SM, the average 
prediction accuracy (rMG) was 0.60 across the within loca-
tion analyses and the across location analyses. In the MM, 
the average prediction accuracy was 0.68 across the within 
location analyses and the across location analyses. Among 
all the three locations, the highest prediction accuracy was 
observed in Cot for SM and MM, where the highest herit-
ability was observed.

Prediction accuracies estimated 
from the independent validation schemes

The prediction accuracies estimated from the independent 
validation schemes are shown in Table 2. The SM and MM 
were applied in the within and across location analyses, the 
prediction accuracies were estimated, when the TRN and 
TST were from different years, and either 1 year of data or 2 
years of data were used as TRN. When the 1-year data were 
used as TRN to predict the other year data as TST, the pre-
diction accuracies of SM had an average value of 0.23 and 
ranged from − 0.11 to 0.36 in the within location analyses, 
and the prediction accuracies of MM in the within location 
analyses also had an average value of 0.23 and ranged from 
0.10 to 0.36. In the across location analyses, the prediction 
accuracies of SM had an average value of 0.31 and ranged 
from 0.22 to 0.42, and the prediction accuracies of MM had 
an average value of 0.32 and ranged from 0.18 to 0.43. The 
prediction accuracies estimated from the across location 
analyses were higher than those estimated from the within 
location analyses, but the prediction accuracies estimated 

Table 1   The basic information of the phenotypic dataset from three 
consecutive years from 2015 to 2017, including the number of trials 
evaluated in each year, mean value and standard error of the target 

trait grain yield (GY) evaluated in each location and each year, and 
the broad-sense heritability (H2) estimated from the trials evaluated in 
each location and each year

AF Agua Fria; Cot Cotaxtla; TL Tlatizapan

Year No. of trials GY H2

AF Cot TL Across locations AF Cot TL Across locations

2015 5 7.01 ± 0.88 4.57 ± 1.50 11.22 ± 1.68 7.60 ± 0.95 0.30–0.59 0.10–0.70 0.55–0.78 0.11–0.70
2016 7 7.51 ± 1.46 7.48 ± 1.40 9.19 ± 1.99 7.73 ± 1.25 0.56–0.92 0.27–0.86 0.57–0.88 0.39–0.92
2017 7 8.40 ± 1.44 – 9.56 ± 1.54 8.40 ± 1.14 0.01–0.85 – 0.01–0.78 0.01–0.73
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from the SM were similar to those estimated from the MM, 
despite in the within location analyses or in the across loca-
tion analyses.

When the 2 years of data were used as TRN to predict the 
other year data as TST, the prediction accuracies of SM had 
an average value of 0.31 and ranged from 0.22 to 0.42 in the 
within location analyses, and the prediction accuracies of 
MM in the within location analyses had an average value of 
0.34 and ranged from 0.18 to 0.43 (Table 2). In the across 

location analyses, the prediction accuracies of SM had an 
average value of 0.41 and ranged from 0.36 to 0.50, and the 
prediction accuracies of MM had an average value of 0.42 
and ranged from 0.38 to 0.49 (Table 2).

When the 2 years of data were used as TRN to pre-
dict the other year data as TST, the prediction accuracies 
estimated from the SM were similar to those estimated 
from the MM, despite in the within location analyses or 
in the across location analyses. However, the prediction 

Fig. 2   Prediction accuracies of grain yield (GY) estimated from the 
fivefold cross-validation schemes in the within and across location 
analyses using the single-environment model (SM) and multiple-envi-

ronment model (MM). Within location analyses are from locations 
of Agua Fria (AF), Cotaxtla (Cot), and Tlatizapan (TL). AC is the 
across location analyses

Table 2   The prediction 
accuracies estimated from the 
independent validation schemes 
either using 1-year data or 
2-year data as TRN, when the 
single-environment model 
(SM) and multiple-environment 
model (MM) were applied in 
the within and across location 
analyses, and the TRN and TST 
were from different years

TRN training set; TST testing set.
AF Agua Fria, Cot Cotaxtla, TL Tlatizapan

Location Year in TST Year in TRN (SM) Year in TRN (MM)

2015 2016 2017 2 years 2015 2016 2017 2 years

AF 2015 0.36 0.26 0.42 0.36 0.26 0.43
2016 0.19 0.15 0.22 0.19 0.14 0.18
2017 0.27 0.32 0.35 0.28 0.31 0.34

Cot 2015 0.29 0.29
2016 − 0.11 0.13
2017

TL 2015 0.27 0.10 0.26 0.17 0.10 0.36
2016 0.34 0.35 0.40 0.21 0.35 0.35
2017 0.15 0.25 0.23 0.17 0.25 0.25

Across locations 2015 0.48 0.19 0.50 0.48 0.22 0.49
2016 0.32 0.35 0.36 0.34 0.35 0.39
2017 0.26 0.35 0.38 0.27 0.34 0.38
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accuracies estimated from the across location analyses 
were higher than those estimated from the within location 
analyses, which indicated the importance of the multiple-
environment trials. Moreover, the prediction accuracies 
estimated from the 2 years of data used as TRN were 
higher than those estimated from the 1 year of data used 

as TRN, which indicated the effect of increasing TRN size 
on prediction accuracy improvement.

The prediction accuracies estimated from the independ-
ent validation schemes are shown in Table 3, when the size 
of the TRN using 2 years of breeding data was adjusted the 
same as the size of the TRN using 1 year of data, and the 
third year’s data were used as the TST set. In the within 
location analyses, the prediction accuracies of SM had an 
average value of 0.25 and ranged from 0.14 to 0.37. In the 
across location analyses, the prediction accuracies of SM 
had an average value of 0.35 and ranged from 0.26 to 0.46, 
and the prediction accuracies estimated from the across 
location analyses were higher than those estimated from 
the within location analyses, indicating the importance of 
the multiple-environment trials for improving the predic-
tion accuracy.

In both the within and across location analyses, the pre-
diction accuracies estimated from the adjusted size of 2 
years of data used as TRN were similar to those estimated 
from the 1 year of data used as TRN, while the prediction 
accuracies estimated from the adjusted size of 2 years of 
data used as TRN were lower than those estimated from 
the 2 years of data used as TRN. This result confirmed 
that the improved prediction accuracies estimated from 
the 2 years of data as TRN are mainly caused by larger 
TRN size, rather than by incorporating environmental 
variations.

Table 3   The prediction accuracies and the standard errors of pre-
diction accuracies were estimated from the independent validation 
schemes, when the size of the TRN using 2 years of breeding data 
was adjusted the same as the size of the TRN using 1 year of data, 
and the third year’s data were used as TST set. The random sampling 
selection was repeated 30 times. SM was applied in the within and 
across location analyses

Standard errors of prediction accuracies from 30 replications are 
shown between brackets.
⃰Adjusted size of the TRN using 2 years of breeding data was the 
same as the size of below single year’s breeding data
+ The TST of 2015 breeding data was predicted with the adjusted size 
of the 2016 and 2017 breeding data, the TST of 2016 breeding data 
was predicted with the adjusted size of the 2015 and 2017 breed-
ing data, and the TST of 2017 breeding data was predicted with the 
adjusted size of the 2015 and 2016 breeding data

Location Year in TST ⃰Adjusted size of TRN same as below 
year

2015 2016 2017

AF +2015 0.37 (0.05) 0.31 (0.05)
+2016 0.19 (0.04) 0.14 (0.03)
+2017 0.29 (0.04) 0.32 (0.02)

TL +2015 0.22 (0.04) 0.18 (0.05)
+2016 0.19 (0.00) 0.28 (0.02)
+2017 0.21 (0.02) 0.26 (0.01)

Across +2015 0.38 (0.04) 0.46 (0.06)
Locations +2016 0.26 (0.03) 0.33 (0.02)

+2017 0.31 (0.03) 0.37 (0.02)

Fig. 3   The prediction accuracies 
estimated from the independent 
validation schemes; when the 
single-environment model (SM) 
was applied in the across loca-
tion analyses, the across years’ 
predictions were implemented 
by using TRN and TST from 
(1) all the DH lines from dif-
ferent years (all blue bars); (2) 
the full-sib- or half-sib-related 
DH lines shared between the 
different years (common red 
bars); and (3) the DH lines 
without any shared parental 
lines between the different years 
(non-common green bars)
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Strengthening the relationship between TRN 
and TST, and increasing the TRN size 
to improve the prediction accuracies 
estimated from the independent validation 
schemes

The prediction accuracies estimated from the independent 
validation schemes are shown in Fig. 3; when the SM was 
applied in the across location analyses, the across years’ 
predictions were implemented by using TRN and TST from 
(1) all the DH lines from different years (the blue bars in 
Fig. 3 represent the same values with those values of the 
across location analyses in Table 2 estimated from the SM); 
(2) the full-sib- or half-sib-related DH lines shared between 
the different years; and (3) the DH lines without any shared 
parental lines between the different years. Only a few full-
sib- or half-sib-related DH lines are shared between 2015 
and 2017, so the across years’ predictions between 2015 
and 2017 were not implemented with the shared full-sib- or 
half-sib-related DH lines.

The across years’ prediction accuracies estimated with 
the shared full-sib- or half-sib-related DH lines were higher 
than those estimated with all the DH lines from different 
years, except for using the 2016 breeding data as TRN to 
predict the 2015 breeding data as TST. The lowest prediction 
accuracies were observed, when the across years’ predictions 
were made with the DH lines without any shared parental 
lines between the different years. These results indicated that 
the prediction accuracies estimated from the across years’ 
predictions could be improved by strengthening the relation-
ship between TRN and TST and incorporating the shared 
full-sib- or half-sib-related DH lines as TRN and TST.

In addition to strengthening the relationship between 
TRN and TST, the prediction accuracies estimated from 
the across years’ predictions also could be improved by 

increasing the size of TRN (Table 4). When the 2 years of 
data were used as TRN to predict the other year’s data as 
TST, the prediction accuracies of SM had an average value 
of 0.41 and ranged from 0.36 to 0.50 in the across location 
analyses. The prediction accuracies were further improved 
by converting 50% of the TST to TRN. The accuracies of 
predicting 50% of the 2017 breeding data, 50% of the 2016 
breeding data, and 50% of the 2015 breeding data increased 
to 0.50, 0.56, and 0.50, when the TRN was formed by 2 
years of breeding data with 50% of the 2017 breeding data, 
50% of the 2016 breeding data, and 50% of the 2015 breed-
ing data, respectively.

Discussion

As part of the routine maize product development pipeline 
at CIMMYT, thousands of DH lines are able to be gener-
ated for each breeder every year, the main task for a maize 
breeder is to estimate the breeding values of thousands of 
DH lines, rather than to generate thousands of homozygous 
inbred lines annually. However, it is very difficult to phe-
notype thousands of newly developed DH lines in the first-
stage yield testing in multi-environment trials and advance 
them to second-stage yield testing trials based on their phe-
notype-based breeding values, due to the limited space and 
resources for phenotyping. In the present study, a total of 
1528 DH lines, phenotyped in multiple-environment trials 
in three consecutive years and genotyped with a low-cost 
per-sample genotyping platform of rAmpSeq, were used to 
explore how to implement GS to improve breeding efficiency 
in a maize doubled haploid breeding program. rAmpSeq is 
a newly developed sequencing method; the genotyping cost 
is less than 5 US dollars per sample (Buckler et al. 2016), 
which is cheaper than the phenotyping cost of a single plot 
evaluated at CIMMYT maize breeding program. The aver-
age prediction accuracy estimated from the fivefold cross-
validation schemes was above 0.60 across all the scenarios, 
which are consistent with several previous maize stud-
ies (Crossa et al. 2014; Zhang et al. 2015). These results 
indicated that a low-cost per-sample genotyping platform 
of rAmpSeq offers the opportunity of implementing GS to 
replace the expensive multiple-environment phenotyping 
trials, to reduce the breeding cost of the first-stage yield 
testing, and to predict the GEBVs of the un-phenotyped DH 
lines for further selection. However, the prediction accura-
cies estimated from the fivefold cross-validation schemes 
are always higher than the prediction accuracies estimated 
from a real maize breeding program, because the breeders 
always prefer to phenotype as less breeding materials as 
they can, when they build the TRN. Recently, the maize 
breeding program of CIMMYT in Kenya validated that the 
GS performed similarly as the phenotypic selection in the 

Table 4   The prediction accuracies estimated from the independent 
validation schemes using 2 years of data as training population, or 
using training population consisted of 2 years of breeding data and 
50% of third year’s data converted from testing population to training 
population, when the single-environment model (SM) was applied in 
the across location analyses

Standard errors of prediction accuracies from 50 replications are 
shown between brackets

Training population Testing population Prediction accuracy

2015 + 2016 2017 0.38
2015 + 2017 2016 0.36
2016 + 2017 2015 0.50
2015 + 2016 + 50% 2017 50% 2017 0.50 (0.03)
2015 + 2017 + 50% 2016 50% 2016 0.56 (0.02)
2016 + 2017 + 50% 2015 50% 2015 0.50 (0.04)
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first-stage yield testing, when the testcrosses of 50% new 
developed DH lines were evaluated as TRN to predict the 
GEBVs of the remaining 50% un-phenotyped DH lines for 
further selection. Moreover, the GS reduced the cost by 32% 
over the PS with similar selection gains (Beyene et al. 2019).

Instead of implementing GS to predict the remaining 50% 
un-phenotyped DH lines, the 100% un-phenotyped DH lines 
also could be predicted by using the historical breeding data 
as TRN; this requires to build a multiple-year TRN set. In 
the present study, a total of 1528 DH lines, phenotyped in 
three consecutive years, were used to estimate the across 
years’ genomic prediction accuracies, when the TRN and 
TST were from different years. Results of the present study 
showed that the average prediction accuracies of MM were 
0.23 in the within location analyses and 0.32 in the across 
location analyses, when the 1-year data were used as TRN to 
predict the other year data as TST. When the 2 years of data 
were used as TRN to predict the other year data as TST, the 
average prediction accuracies of MM increased to 0.34 in 
the within location analyses and 0.42 in the across location 
analyses; these results indicated that the prediction accuracy 
of GS needs to be improved by incorporating the historical 
breeding data from multiple years as TRN. When multiple 
years of historical breeding data are used as TRN, the larger 
size of TRN contributes to the improvement in the predic-
tion accuracy. The development of a multiple-year TRN set 
will allow GS advancing all the 100% un-phenotyped DH 
lines directly to the second-stage yield testing trials, and 
the first-stage yield testing is skipped. No phenotyping cost 
occurs in the first-stage selection; the selection is only based 
on predictions. Compared with the breeding strategy imple-
mented by Beyene et al. (2019), the total breeding cost of 
the breeding strategy proposed in the present study is further 
reduced; it will reduce the cost by more than 32% over the 
PS. This breeding strategy significantly saves the cost of the 
multiple-environment trials in the first-stage yield testing, as 
well as saving the time of testcross formation and evaluation 
of the first-stage yield testing (Beyene et al. 2019). These 
independent validation schemes mimic real maize breed-
ing situations. The results of this study also showed that 
the prediction accuracies estimated from the independent 
validation schemes could be further improved by strength-
ening the relationship between TRN and TST. When the 
1-year data were used as TRN to predict the other year data 
as TST, the prediction accuracy estimated with the shared 
full-sib- or half-sib-related DH lines was higher than that 
estimated with all the DH lines, and the prediction accuracy 
estimated with DH lines without any shared parental lines 
between the different years was lower than that estimated 
with all the DH lines. These results agree with the obser-
vations of Brandariz and Bernardo (2019); the prediction 
accuracy could be improved by strengthening the relation-
ship between TRN and TST. The prediction accuracies were 

increased from ~ 0.41 to ~ 0.50, when the TRN consisted of 2 
years of breeding data and 50% of third year’s data converted 
from TST to TRN. These results show that TRN set using 
the historical breeding data from multiple years and adding 
more TRN materials with closer relationship with TST set 
could improve the prediction accuracy, when it is used to 
predict the similar germplasm untested in any environment.

Multiple-environment trials play an important role in 
early-stage testcross testing. Several studies showed that 
incorporating genotype by environment interaction into the 
statistical models is able to improve the genomic prediction 
accuracy (Burgueño et al. 2012; Jarquín et al. 2014; Sousa 
et al. 2017; Zhang et al. 2015). In this study, the MM out-
performed the SM in the fivefold cross-validation schemes 
on improving the prediction accuracy, and the prediction 
accuracies estimated from the across location analyses were 
consistently higher than those estimated from the within 
location analyses. This result indicated the importance of 
conducting multiple-environment trials in early-stage test-
cross testing and incorporating genotype by environment 
interaction into the genomic prediction model. However, 
MM had a similar performance as SM in all the independ-
ent validation schemes; the development of advanced mod-
els incorporating genotype by environment interaction still 
demands to improve prediction accuracy.

The prediction accuracy can be increased by modeling 
the tester effect into the prediction model, it had been dis-
cussed in several previous studies, and it is more important 
in genomic prediction of the hybrid performance (Albre-
cht et al. 2011 and 2014). In the present study, 11 testers 
were used for making testcrosses for evaluation of the 19 
multiple location trials conducted in 3 years, and only one 
tester overleaped between years. In the early-stage testcross 
testing, a large number of tested inbred lines are derived 
from genetically diverse parents and populations; the main 
objective of using multiple testers are to evaluate the general 
combing ability and breeding value of this large number of 
tested inbred lines, rather than to predict the best perfor-
mance hybrid made between the tested inbred line with a 
specific tester. Therefore, we did not incorporate the tester 
effect into the prediction model in the present study, which 
will be assessed in further studies.
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