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META-R (multi-environment trial analysis in R) is a suite of R scripts linked by a graphical
user interface (GUI) designed in Java language. The objective of META-R is to accurately
analyze multi-environment plant breeding trials (METs) by fitting mixed and fixed linear
models from experimental designs such as the randomized complete block design (RCBD)
and the alpha-lattice/lattice designs. META-R simultaneously estimates the best linear and
unbiased estimators (BLUEs) and the best linear and unbiased predictors (BLUPs).
Additionally, it computes the variance-covariance parameters, as well as some statistical
and genetic parameters such as the least significant difference (LSD) at 5% significance, the
coefficient of variation in percentage (CV), the genetic variance, and the broad-sense
heritability. These parameters are very important in the selection of top performing
genotypes in plant breeding. META-R also computes the phenotypic and genetic
correlations among environments and between traits, as well as their statistical
significance. The genetic correlations between environments or traits can be visualized in
a biplot graph or a tree diagram (dendrogram). Genetic correlations are very important for
identifying environments with similar behavior or making indirect selection and
identifying the most highly associated traits. META-R performs multi-environment
analyses by using the residual maximum likelihood (REML) method; these analyses can
be done by environment, across environments by grouping factors (stress conditions,
nitrogen content, etc.) and across environments; the analyses across environments can be
done with a pre-defined degree of heritability.
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1. Introduction

Appropriate use of statistical methods for selecting individ-
uals (genotypes) with good performance under different
environmental conditions is essential for breeding programs.
Those individuals can be assessed in trials in single or
multiple environments (locations, years, etc.) under different
management conditions such as water stress and low
nitrogen, or normal conditions. These trials, known as multi-
environment trials (METs), can detect and explain whether
there are repeatability or interaction mechanisms between
genotypes and environments. They also indicate what kind of
genotype is repeatable by estimating broad-sense heritability
[1].

The experimental design is a core component of METs
because it controls plot-to-plot variability and reflects the true
genetic potential of each set of genotypes [2]. Two experi-
mental designs are widely used to lay out METs: randomized
complete block designs (RCBD) and incomplete block designs
(e.g., lattice and alpha-lattice designs). The type of design that
is used depends on the number of individuals to be evaluated,
as well as field conditions, soil homogeneity and, sometimes,
weather conditions. For example, when a small number of
individuals (<10) are evaluated under homogeneous soil and
optimal field conditions, a randomized complete block design
is a good option. However, if the number of individuals to be
evaluated is higher (>10), and field conditions include biotic
and/or abiotic stress factors such as nutrient deficiencies (low
nitrogen, phosphorus, potassium, etc.) and/or water availabil-
ity (drought, optimal conditions), small sub-blocks should be
used to try to homogenize field conditions and significantly
reduce the within-environment variation. As a result, the
differences between individuals can be detected accurately. In
this case, a lattice or alpha-lattice design is a good choice [3].

Multi-environment trials generate a great deal of data and
can give breeders valuable insight into the behavior of their
genotypes and testing programs, especially if there is a simple
and efficient way of analyzing them. However, unbalance is
an inherent problem in data from RCBD and lattice designs,
that can compromise precision when evaluating individuals,
for instance, due to adverse field conditions, seed shortages or
other errors. Linear mixed models containing a mixture of
fixed and random effects, have been commonly used to
analyze data derived from METs [4]. Incomplete blocks,
replicates and sites are considered random effects [3]. In
breeding programs, the goal is to estimate the variance
components and make inferences about fixed effects (such
as the effects of genotype, environment or management) and/
or random effects (such as the effect of a genotype's breeding
value). Inferences about fixed effects have come to be called
estimates, whereas inferences about random effects are
known as predictions. Procedures for obtaining estimators
and predictors, such as ordinary least squares (OLS) or the
likelihood theory, have been developed. Themost widely used
procedures are the best linear unbiased estimator (BLUE) and
the best linear unbiased predictor (BLUP) [5–7].

Sometimes it is suspected that a trait, identified as the
main response variable (MRV), is affected by another trait or
set of traits called a covariate(s). Statistically speaking, this
implies the existence of a high correlation or association
between the MRV and the covariate(s). The importance of a
covariate in METs is that it can improve the estimation of
individuals' performance and reduce the experimental error.
For example, in the case of yield, when crops are damaged by
unusual meteorological events or external agents such as
birds, rodents, worms, etc., this means that some plants are
missing from the experiment; hence, to obtain a good yield
estimate, we need to include the number of plants as a
covariate. For more effective selection of genotypes under
stress conditions (drought stress or low nitrogen), it is very
common to adjust yield (t ha−1) by anthesis date (days) and/or
number of plants. In addition to significance, the sign of the
covariate must be considered. For instance, if the covariate
anthesis date is significant and positive, this implies that
yield will increase with more days to anthesis; if the covariate
is significant and negative, this implies that yield will
decrease with more days to anthesis. The sign (positive or
negative) of the covariate depends on the type of environ-
ment; if the target and selection environments do not match
perfectly, selection will be ineffective unless yield is adjusted
[8,9].

Very often breeders are interested in determining the
genetic or environmental effect on the studied trait but rarely
they consider how these effects act simultaneously on several
traits or environments. The genetic correlation is an estimate
of the additive genetic effect that is shared between a pair of
traits or environments. Many important traits are positively or
negatively correlated because they are controlled by the same
genes. METs are a core component of breeding programs
because they allow: (i) selecting individuals in one environ-
ment; (ii) selecting individuals based on analyses across-
environments; (iii) selecting individuals based on a set of
multiple management conditions; (iv) determining the ge-
netic correlations among traits; and (v) determining the
genetic correlations among environments.

With the purpose of helping breeders to select the top
performing individuals, a free suite of scripts called META-R
was developed and linked to a graphical user interface (GUI)
created in JAVA language. META-R analyzes METs by consid-
ering two experimental designs: RCBD and lattice experimen-
tal designs, which also perform covariance analyses (one or
more covariates simultaneously), compute BLUEs and BLUPs,
variance components for each model term, least significant
difference (LSD at 5% of significance), coefficient of variation
(CV) in percentage, and broad-sense heritability (H2). Most or
all of these analyses can be obtained from ANOVA performed
in other software, for instance, metan [10] is an R-package
that offers a great variety of analyses for METs. META [3], QTL
IciMapping [11], GenStat [12], and CropStat [13] are other
alternatives that contain a user interface. META-R focuses
only on analyzing multi-environment phenotypic data from
experimental designs. Besides, META-R computes both phe-
notypic and genetic correlations among environments; and
phenotypic and genetic correlations among traits either by
environment or combined across environments. These corre-
lations can be calculated either by management level or
across all management levels. To show how META-R works,
we used two data sets generated by the International Maize
and Wheat Improvement Center (CIMMYT) with alpha-lattice
and randomized complete block designs.
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2. Materials and methods

2.1. Experimental data

The first data set comes from the DTMA (Drought Tolerance
Maize for Africa) project and consists of 90 genotypes evaluated
in nine environments; the experimental design per environment
is a 9 × 10 alpha-lattice with two replications. Each environment
represents a combination of location (Bako, Kakamega, Kiboko,
Busia, Elgon) and planting condition (drought, low nitrogen,
optimal). Four environments were managed under drought
stress, two had low nitrogen and three had optimal conditions.
The traits included in the analyseswere anthesis date (AD, days),
anthesis-to-silking interval (ASI, days), ratio of ears per plant
(rEPP), number of plants at harvest (nP), and ear appearance (EA),
in addition to grain yield (YLD, t ha−1). The YLD was adjusted by
anthesis date or/and number of plants at harvest. For this
experimental data set, BLUEs and BLUPs by environment and
across environments (with and without covariable) will be
calculated to determine the performance of the genotypes
together with the heritability in wide sense, LSD at 5% and CV
in %, among others. Furthermore, genetic correlations among
environmentswill be assessed to create groups of environments
in which the rank of genotypes are similar. Genetically corre-
lated environments can be exploited to determine a selecting
environment that can be used to breed for a target environment.

The second data set consists of 60 genotypes evaluated in 12
environments in seven Latin American countries; the experi-
mental design was an RCBD with two replications. The traits
assessed were: YLD, AD, silking date (SD, days), plant height (PH,
cm), ear height (EH, cm), ear position (ratio between ear height
and plant height, rEPH), and nP. The YLD data were collected in
all environments, whereas data on the other traitswere collected
only in 11 environments. For this data set, the genetic correlation
between traitswill be calculatedwith the purpose of determining
those highly correlated traits mainly with YLD. Genetic correla-
tions among traits are used for doing indirect selection,
predicting correlated responses (genetic gain), developing selec-
tion indices to select for multiple traits simultaneously, and
determining the extent of G × E interaction to develop breeding
strategies and understand the evolutionary process of traits.

2.2. META-R

META-R is a graphical user interface designed to work under
the windows operating system. Its core component consists of
a set of seven R scripts [14] developed fromMETA [3]. This suite
is linked to a graphical user interface (GUI) created in the Java
language. All scripts were developed using the LME4 package
[15], which fits linear and generalized mixed effects models. A
flow diagram of how META-R works is given in Fig. 1.

2.3. Running META-R

META-R can be downloaded at no cost from the CIMMYT
web link: https://data.cimmyt.org/dataset.xhtml?
persistentId=hdl:11529/10201. Once META-R is downloaded,
it can be installed by clicking twice on the file META-R.exe;
the installed file is deposited in drive C; the software also
generates a manual that can be consulted in case that any
doubt arises. The next step is to load the data to be analyzed
by clicking on ‘Open File’ (Fig. 2) and the raw data to be
analyzed. The data must be in a comma-separated file (csv)
format with the names of the components of the experi-
mental design (factors) and traits in the first row. After
loading the data, the user must specify the details of the
analysis to run (Fig. 3): the experimental design to be
analyzed, factor names, and the name of the output folder
where the results will be saved. Analyses can be performed
separately for each level of any grouping factor such as
management, country, soil type, crop or any other criterion.
Also, if adjusting by covariate(s) is desired, the user will be
able to choose up to three covariates.

To go on to the next step, click on ‘Continue’. In this step,
the user needs to select the type of analysis to be performed
(genetic correlation among environments, genetic correlation
among traits, or BLUEs and BLUPs), the type of analysis
(individual or combined, identifying or not identifying the
management conditions) and the traits to be analyzed (Fig. 4).
When there are selected covariates, it is necessary to specify
the trait of interest (MRV–Main Response variable-) that will
be adjusted by the covariate(s), as well as choose secondary
traits which could be adjusted by the covariate(s). META-R
allows selecting whether the type of analysis will be by
management, by environment, combined across all analyses
without identifying management, or combined across all
environments. Additionally, it is possible to select the
environments to be included in the analysis.

The last step is running the analysis by clicking on
‘Analyze’. While the program is running, a bar indicating
that it is running will be displayed. When the analysis is
complete, META-R will send the user a message that says
“successful analysis” and the results will be saved in the
output folder the user indicated at the beginning of the
process. A window with a file explorer containing all files
created in the output folder will be shown; the files can be
opened by clicking twice on them, and the results of the
analysis will be created in the same directory as the raw data.
If the process finishes with errors, it will be displayed in the
META-R screen where the possible causes can be seen.

A user-defined heritability threshold (default 0.05) will be
applied to each single environment analysis to be considered
in the calculation of both genetic correlations (among
environments and among traits). Likewise, only those envi-
ronments passing the heritability threshold will be included
in all the combined analyses across environments.

2.4. Mixed and fixed models that make up META-R

The linear mixed models used in META-R are implemented in
the LME4 R-package [15] that uses REML to estimate the
variance components.

When the experimental design is an RCBD by one
environment and adjusted by a covariate, the model becomes

Yij ¼ μþ Repi þ Gen j þ Covþ εij ð1Þ

where Yij is the trait of interest, μ is the overall mean effect,
Repi is the effect of the ith replicate, Genj is the effect of the jth

https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10201
https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10201


Fig. 1 – Flow diagram showing the logical process that META-R follows to perform METs analyses.
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genotype, Cov is the effect of the covariate, and εij is the effect
of the error associated with the ith replication and jth
genotype, which is assumed to be independently and identi-
cally distributed (iid) normal with mean zero and variance σε

2.
The replicates correspond to the complete blocks.

On the other hand, the linear model for analyzing
individual environments using a lattice or alpha-lattice design
and adjusting by a covariate is:

Yijk ¼ μþ Repi þ Block j Repi
� �þ Genk þ Covþ εijk ð2Þ

where Yijk is the trait of interest, μ is the overall mean effect,
Repi is the effect of the ith replicate, Blockj(Repi) is the effect of
the jth incomplete block within the ith replicate, Genk is the
effect of the kth genotype, Cov is the effect of the covariate,
and εijk is the effect of the error associated with the ith
replication, jth incomplete block, and kth genotype, which is
assumed to be iid normal with mean zero and variance σε

2. In
both models, all effects, except the overall mean and
covariate, are declared to be random and iid normal with
mean zero and effect-specific variances. The random as-
sumption for the genotype effects allows to calculate BLUPs
and broad-sense heritability; however, when calculating
BLUEs the genotypes are considered as fixed effects. For
analyses of one environment without adjusting by a
covariate, the models are the same as in Eqs. (1) and (2),
except that the term of the covariate is deleted.

Regarding across environments analysis by management
conditions or across all environments by all managements,
new terms are added to the above models. Hence, for a
combined analysis across environments on an RCBD, the
model becomes

Yijk ¼ μþ Loci þ Rep j Locið Þ þ Genk þ Loci � Genk þ Covþ εijk ð3Þ

where the new terms Loci and Loci × Genk are the effects of the
ith environment and the environment × genotype (G × E)
interaction, respectively.

For the lattice or alpha-lattice design adjusted by a
covariate, the model is

Yijkl ¼ μþ Loci þ Rep j Locið Þ þ Blockk LociRep j

� �
þ Genl

þ Loci � Genl þ Covþ εijkl ð4Þ

Likewise, all the effects, except the overall mean and
covariate, are considered random and iid normal with mean
zero and effect-specific variances. The genotype is regarded as
fixed effect when calculating BLUEs. For combined analyses
without adjusting by a covariate, the models are the same as
in Eqs. (3) and (4), except that the term of the covariate is
deleted.

Image of Fig. 1


Fig. 2 – META-R input menu ‘Open file’ (needs comma delimited format (.csv) data) and ‘Help’ which contains the operation
manual as well as the theory regarding multi-environment trials (METs) that supports META-R.
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2.5. Heritability, genetic correlations and other statistics
computed by META-R

The broad-sense heritability of a given trait at an individual
environment is calculated as

H2 ¼ σ2
g

σ2
g þ σ2

ε=nRep
ð5Þ

where σg
2 and σε

2 are the genotype and error variance
components, respectively, and nRep is the number of repli-
cates, whereas regarding combined analyses, heritability is
calculated as

H2 ¼ σ2
g

σ2
g þ σ2

ge=nLocþ σ2
ε= nLoc� nRepð Þ ð6Þ

where the new term σge
2 is now the G × E interaction variance

component and nLoc is the number of environments in the
analysis. In both cases, the heritability of a given trait in a
environment or across all environments is displayed on the
screen of META-R. The estimated broad-sense heritability
(repeatability) provides good insight into the quality of a
breeding program for traits and environments that are well
known.

META-R calculates matrices of phenotypic and genetic
correlations among environments (for a given trait) and
among traits (either within a single environment or across
environments), from which a distance matrix is calculated as
the identity matrix (matrix with ones in the main diagonal
and zeros elsewhere) minus the genetic correlation matrix.
The distance matrix is used as the input data set to perform a
cluster analysis and to create a dendrogram, as well as a biplot
graph of the principal component analysis (PCA). Only traits
whose heritability passing the user-specified threshold (the
default is 0.05) are considered to create these plots. Both plots
can be saved as a PDF, PNG, or WMF file. The WMF files can be
imported into several Microsoft Office programs (Power Point,
Excel, MS Word) in order to improve the quality by modifying
such characteristics as size, color, and font type in labels or
titles, among others.

The phenotypic correlations among environments or
between traits are simple Pearson correlations between
different pairs of environments or traits. The genetic correla-
tions among environments are calculated using equations

Image of Fig. 2


Fig. 3 – META-R analysis menus. First specification: the user should select the experimental design (RCBD or Lattice), use a
covariate (if desired), and must match the raw data set; the Grouping factor, the Environment, the Replicate, the Block and the
Genotype.
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from Cooper [1], as

ρgij ¼
ρpij
hih j

ð7Þ

where ρpij
is the phenotypic correlation between environ-

ments i and j; and hi and hj are the square roots of heritabilities
of environments i and j, respectively, obtained using Eq. (5).

The genetic correlation among traits is computed using
variance components obtained by fitting the model as in
Fig. 4 – META-R analysis menus. Second specification: the user s
correlations among environments or genetic correlations among
environments and/or management levels to be included in the a
either Eqs. (1) or (2) for the within environment case, or as in
Eqs. (3) or (4) for the across environments case. The model is
fitted separately for trait i, for trait j, and for the sum of both
traits i and j. An estimate of the genotypic covariance between
traits i and j is then derived as

σ2
gij

¼ 1
2

σ2
giþ j

−σ2
gi
−σ2

g j

� �
hould select the type of analysis (BLUPs and BLUEs, genetic
traits), the response traits to be analyzed, and the
nalysis.

Image of Fig. 3
Image of Fig. 4
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where σgi+j
2 is the genotypic covariance of the sum of traits i

and j; and σgi
2 and σgj

2 are the genotypic variances of the ith and
jth traits, respectively. Finally, the genetic correlation between
traits i and j is

ρgij ¼
σ2
gij

σgiσg j

ð8Þ

where σgi and σgj are the square roots of the genotypic
variances of the ith and jth traits, respectively.

When META-R calculates BLUEs and BLUPs for all traits,
the variance components as well as broad-sense heritabilities
by trait, by environment and by management are shown on
the screen. The average of lsmeans or adjustedmeans (BLUEs)
of all genotypes, known as the grand mean, is calculated. The
LSD at 5% of significance is calculated as LSD = t(1−0.05,
dfErr) × ASED, where t is the cumulative Student's t distribution,
0.05 is the selected α level (5%), dfErr is the degrees of freedom
for error in the linear mixed model, and ASED is the average
standard error of the differences of the means. The coefficient

of variation in % is calculated as: CV ¼ ð
ffiffiffiffiffiffiffiffiffiffi
MSE

p

grand mean
Þ � 100,

where MSE is the mean squared error; caution must be
exercised when interpreting the CV because it is highly
dependent on the level of the grand mean of the trial.
Experiments under stress conditions often show high CV
values because of a low grandmean. META-R calculates BLUPs
for all traits using genotypes as random effects; these BLUPs
are reported as the estimated random effect for each genotype
plus the grand mean. Heritability is calculated using the
expressions provided in Eqs. (5) and (6). All files generated
from BLUEs, BLUPs, genetic correlations among environments
(Eq. (7)), and genetic correlations among traits (Eq. (8)) are
printed in a csv output file.
3. Results

3.1. Lattice data set, drought tolerance data

Genetic and phenotypic correlation among environments
analyses were performed according to Eq. (7) and results are
presented in Table 1. The heritability for each environment
was calculated as in Eq. (5) after fitting the model in Eq. (2) for
grain yield with the genotype effect considered as random. In
Table 1 – Phenotypic (upper diagonal) and genetic correlatio
environments for the sample lattice data set

Pairs of environments Bako K

Low N Optimum Low N

Bako; low N 1 0.98 0.75
Bako; optimum 0.57 1 0.70
Kakamega; low N 0.98 0.98 1
Kakamega; optimum 0.96 0.92 0.81
Kiboko; drought 0.55 0.78 0.55
Busia; drought 0.98 0.70 0.89
Elgon; drought 0.71 0.98 0.85
all environments, grain yield had a heritability >0.05; there-
fore, all environments were kept in the analysis. A clustering
dendrogram (not showed) was constructed from the correla-
tion matrix, and a PCA biplot graph was generated for the first
two principal components of the distance matrix (Fig. 5). Four
groups can be identified from the genetic correlations' biplot:
(i) Kiboko under drought; (ii) Kakamega under low N and Busia
under drought; (iii) Kakamega and Bako under normal
conditions; and (iv) Bako under low N and Elgon drought.

BLUEs and BLUPs were also calculated: (i) within environ-
ment (Table 2) after fitting model in Eq. (2), (ii) combining
environments within management (Table 3) using model in
Eq. (4), and (iii) combining all environments (Table 4) using
model in Eq. (4). In addition, statistics including variance
component estimates, heritability, grand mean, LSD at 5%,
and CV in percentage are provided. For this data set, anthesis
date was used as a covariate because under stress conditions
(low N, drought, etc.) it can reduce the variability associated
with random patterns, and more precise estimates and
predictions are obtained. Given that 30 genotypes were
analyzed, it would not be practical to present results for
each genotype; instead, the first three genotypes and the
statistics were chosen. For the same reason, only the results
for the first two environments and two management condi-
tions were included. Results in the tables are organized as
follows: each trait has two columns, one for BLUEs and
another for BLUPs; the first column also contains the
statistics, which helps the user to make decisions. It is
important to highlight that grain yield was corrected by
using anthesis date as a covariate.

3.2. RCBD data set from CIMMYT's Global Maize Program for
Latin America

The second data set comes from CIMMYT's Global Maize
Program for Latin America and the Caribbean containing
seven traits. Phenotypic and genetic correlations among all
pairs of traits were calculated according to Eq. (8) where
variance components were calculated by fitting the model in
Eq. (3) with the genotype effect considered as random. The
PCA biplot constructed from the distance matrix among traits
is shown in Fig. 6. This biplot allowed to distinguish three
main clusters: (i) days to flowering (both AD and SD), (ii) grain
yield and height (PH, EH, and the ratio rEPH), and (iii) number
of plants.
ns (lower diagonal) for grain yield between all pairs of

akamega Kiboko Busia Elgon

Optimum Drought Drought Drought

0.71 0.34 0.47 0.46
0.58 0.41 0.28 0.64
0.97 0.78 0.47 0.62
1 0.58 0.63 0.39
0.84 1 0.34 0.35
0.98 0.78 1 0.23
0.52 0.56 0.50 1



Fig. 5 – Plot of the first two principal components of the genetic correlation for grain yield among environments for the DTMA
sample lattice data set.

Table 2 – Results for the first three genotypes of the sample lattice data set individual analysis for each location using
anthesis date as a covariate for grain yield.

Genotype/statistics a Grain yield Anthesis date ASI Ears per plant Number of
plants

BLUE BLUP BLUE BLUP BLUE BLUP BLUE BLUP BLUE BLUP

Bako Low N
EVL1-# 1.12 1.52 87 87 2.0 2.1 0.77 0.86 14 14
EVL1/EVL16 2.01 2.02 86 87 2.3 2.1 0.93 0.88 15 14
EVL1/EVL16-STR 1.70 1.76 88 88 2.0 2.1 0.84 0.87 13 14

Heritability 0.65 0.30 0.27 0.00 0.91
Genotype variance 0.15 0.72 0.00 0.00 0.05
Residual variance 0.48 3.43 0.44 0.04 3.01

Grand mean 1.78 87.74 2.06 0.88 13.56
LSD 1.35 3.63 1.30 0.41 3.40
CV 39 2 32 24 13

n Replicates 3 3 3 3 3
Genotype significance 0 0 0 0 0

Bako
EVL1-# 5.59 5.89 81 – 0.3 – 1.35 1.37 15 –
EVL1/EVL16 6.19 6.25 76 – 2.3 – 1.33 1.37 16 –
EVL1/EVL16-STR 7.02 6.80 78 – 1.0 – 1.40 1.37 17 –

Heritability 0.65 0.30 0.27 0.00 0.91
Genotype variance 0.63 0.99 0.19 0.00 1.92
Residual variance 1.03 7.10 1.53 0.07 0.57

Grand mean 6.43 79 1.8 1.4 16
LSD 1.99 5.22 2.42 0.52 1.48
CV 16 3 70 19 5

n Replicates 3 3 3 3 3
Genotype significance 0 0 0 0 0

Shown are the best linear unbiased estimators (BLUEs) and best linear unbiased predictors (BLUPs) for grain yield (Mg ha−1), anthesis date (days
after planting), anthesis-to-silking interval (ASI, days), ratio of ears per plant, and number of plants harvested. The statistics listed for every trait
are broad-sense heritability, genotype variance, residual variance, grand mean, least significant difference (LSD), the coefficient of variation
(CV), number of replications (n Replicates), and genotype significance from ANOVA.
a The statistics shown are the estimates derived by fitting model in Eq. (2) only for grain yield; the term Cov was removed from the model for
other traits. Heritability was calculated using expression in Eq. (5).
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Image of Fig. 5


Table 3 – Results for the first three genotypes of the sample lattice data set combined analysis by management conditions
(optimum and drought) using anthesis date as a covariate for grain yield.

Genotype/statistics a Grain yield Anthesis date ASI Ears per plant Number of
plants

BLUE BLUP BLUE BLUP BLUE BLUP BLUE BLUP BLUE BLUP

Optimum
EVL1-# 4.81 5.06 78 78 0.2 0.7 1.3 1.3 25 25
EVL1/EVL16 5.73 5.87 74 75 1.2 1 1.2 1.3 25 25
EVL1/EVL16-STR 6.88 6.84 77 77 0 0.7 1.2 1.3 26 26

Heritability 0.86 0.74 0.25 0.34 0.76
Location variance 0 9.06 1.44 0.02 162
Genotype variance 1.07 1.73 0.09 0 3.69
Gen × Loc variance 0.01 0 0.18 0 0.91
Residual variance 1 3.68 1.09 0.05 4.34

Grand mean 6.62 77 0.9 1.3 25
LSD 2 3.8 2 0.4 4.1
CV 15.1 2.5 114 16.9 8.3

n Replicates 3 3 3 3 3
n Locations 2 2 2 2 2

Genotype significance 0 0 0 0 0

Drought
EVL1-# 1.47 1.67 75 75 5.3 5.2 0.6 0.7 33 35
EVL1/EVL16 1.59 1.75 73 74 6.9 5.5 0.6 0.7 33 35
EVL1/EVL16-STR 2.09 2.04 76 75 4.2 5 0.7 0.7 34 35

Heritability 0.62 0.75 0.18 0.41 0
Location variance 0.85 129 15.1 0.08 2.04
Genotype variance 0.07 0.6 0.24 0 0
Gen × Loc variance 0.04 0.04 1.87 0 0
Residual variance 0.24 1.65 4.03 0.01 13.2

Grand mean 1.95 75 5.1 0.7 34
LSD 1 2.5 3.9 0.2 7.1
CV 25.2 1.7 39.4 16.5 10.5

n Replicates 3 3 3 3 3
n Locations 3 3 3 3 3

Genotype significance 0 0 0 0 0

Shown are the best linear unbiased estimators (BLUEs), best linear unbiased predictors (BLUPs) for grain yield (Mg ha−1), anthesis date (days after
planting), anthesis-to-silking interval (ASI, days), ratio of ears per plant, and number of plants harvested. The statistics listed for each trait are
broad-sense heritability, location variance, genotype variance, G × E variance (Gen × Loc), residual variance, grand mean, least significant
difference (LSD), the coefficient of variation (CV), number of replications (n Replicates), number of locations (n Locations), and genotype
significance from ANOVA.
a The statistics shown are the estimates derived by fitting model in Eq. (4) only for grain yield; the term Cov was removed from the model for
other traits. Heritability was calculated using expression in Eq. (6), for each management level.
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4. Discussion

4.1. Lattice data set, drought tolerance maize data

Interesting conclusionsmay be drawn fromMETs information
on genotypes and response variables that were evaluated
under different management conditions. For instance, grain
yield showed a higher correlation among environments; and
genotypes that showed good performance under optimal
conditions did not show good performance under low
nitrogen when they were assessed in the same environment.

To obtain BLUEs and BLUPs, META-R can adjust any trait
using one or more covariates. By applying covariance analy-
sis, performed through regression models, we can reduce the
error variance to a greater extent; overall, under stress
conditions, much of the variation is due to the inherent
variation in soil conditions [9]. When grain yield was adjusted
by anthesis date as a covariate, results showed that BLUEs and
BLUPs are quite different than when they are adjusted
without a covariate. For example, for the combined analysis
across all environments, the BLUP of the highest yielding
genotype (ECAVL2/ECAVL16-STR) was 4.42 t ha−1, while
without adjustment it was 4.31 t ha−1 (Tables S1 and S2). On
the other hand, regarding management conditions, we can
see that under optimal conditions and adjusting by anthesis
date, ECAVL2/ECAVL16-STR yielded 8.01 t ha−1, but only
7.88 t ha−1 without adjusting by the covariate (Tables S3 and
S4). Furthermore, under low nitrogen management, this
genotype yielded only 3.51 t ha−1 and 3.34 t ha−1 adjusting
and not adjusting by the covariate, respectively (Tables S5 and
S6). Similarly, under drought management it yielded
2.32 t ha−1 and 2.31 t ha−1 with and without adjusting by
anthesis date, respectively (Tables S7 and S8). This confirms
the findings of previous studies that showed the importance
of adjusting by anthesis date when the trial analysis is



Table 4 – Results for the first three genotypes of the sample lattice data set combined analysis across seven locations using
anthesis date as a covariate for grain yield.

Genotype/statistics a Grain yield Anthesis date ASI Ears per plant Number of
plants

BLUE BLUP BLUE BLUP BLUE BLUP BLUE BLUP BLUE BLUP

ECAVL1-# 2.67 2.77 78 78 3.2 3.3 0.91 0.92 28 28
ECAVL1/ECAVL16 3.03 3.11 76 76 4.4 3.7 0.91 0.92 28 28
ECAVL1/ECAVL16-STR 3.73 3.71 78 78 2.8 3.2 0.90 0.91 29 29

Heritability 0.89 0.95 0.36 0.47 0.70
Location variance 5.54 65.98 9.41 0.10 88.51
Genotype variance 0.36 2.66 0.15 0.00 1.41
Gen × Loc variance 0.14 0.02 0.99 0.00 1.25
Residual variance 0.50 2.78 2.55 0.03 8.87

Grand mean 3.60 78 3.3 0.92 28
LSD 1.4 3.3 3.1 0.3 5.8
CV 19.7 2.1 47.9 18.2 10.5

n Replicates 3 3 3 3 3
n Locations 7 7 7 7 7

Genotype significance 0 0 0 0 0

Shown are the best linear unbiased estimators (BLUEs) and best linear unbiased predictors (BLUPs) for grain yield (Mg ha−1), anthesis date (days
after planting), anthesis-to-silking interval (ASI, days), ratio of ears per plant, and number of plants harvested. The statistics listed for every trait
are broad-sense heritability, location variance, genotype variance, G × E (Gen × Loc) variance, residual variance, grand mean, least significant
difference (LSD), the coefficient of variation (CV), number of replications (n Replicates), number of locations (n Locations), and genotype
significance from ANOVA.
a The statistics shown are the estimates derived by fitting model in Eq. (4) only for grain yield; the term Cov was removed from the model for
other traits. Heritability was calculated using expression in Eq. (6).
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performed under stress conditions [9]. META-R provides
BLUEs and BLUPs for all traits, including MRVs that can be
adjusted by a covariate. If the data are balanced and
orthogonal, then BLUEs and BLUPs are equivalent; however,
this is rare in METs, especially under incomplete block
Fig. 6 – Plot of the first two principal components of the genetic co
Global Maize Program for Latin America.
designs, including lattice and alpha-lattice designs. It is
important to note that the genotypes with the best perfor-
mance under optimal conditions do not always perform well
under stress conditions. In this case, ECAVL2/ECAVL16-STR
was the highest yielding genotype under optimal conditions;
rrelations among traits for the RCBD data set from CIMMYT's

Image of Fig. 6
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however, when tested under low nitrogen and under drought,
it was ranked third and second, respectively. The differences
in ranking were within the LSD statistical criteria.

4.2. RCBD data set from CIMMYT Global Maize Program for
Latin America

The RCBD data showed some interesting patterns when
genetic correlations among traits were plotted (Fig. 6). Three
groups can be distinguished from this analysis: (i) days to
flowering (both male and female): for instance, in this case,
genetic correlations between days to flowering and yield were
−0.7085 and −0.7289 for anthesis and silking dates, respec-
tively; this suggests that selection in earlier maturing plants
may increase grain yield in these hybrids, because in late
periods there is poor grain-filling due to a less favorable
photoperiod; of course we must also consider other factors
such as water availability; (ii) grain yield and height: for this
group, all correlations between grain yield and height were
positive, e.g., 0.8584, 0.7926 and 0.6554 for plant height, ear
height and ear position (ear height-plant height ratio),
respectively; for this data set, it could be that selection for
grain yield increases when plants and ears are tall; (iii) the last
group comprises only number of plants; however, this trait
had a positive genetic correlation with grain yield (0.6522),
which indicated that selection for grain yield increases with
plant density, as expected, up to certain densities.

4.3. Contribution of META-R

META-R offers plant breeders an easy way to analyze data
derived from METs. The importance of METs in breeding
programs relies in the increase of the number of environ-
ments (year, location, year-location, etc) as well as some types
of management conditions (well-watered, stress, etc) to
expand the space of evaluation of genotypes. With this,
METs enable breeders to take more robust decisions related
to the performance of genotypes. Analyses provided byMETA-
R include calculation of BLUEs and BLUPs for every trait, as
well as statistics such as broad-sense heritability to estimate
the selection response, the least significant difference for
comparing and selecting the best performing genotypes, and
the coefficient of variation to determine whether the exper-
iment was well conducted in the field. Furthermore, META-R
allows adjusting the variable of interest by a covariate, for
example, when working under different management condi-
tions such as nutrient deficiency (macro- andmicronutrients),
water availability (drought or optimal conditions), and biotic
stress (pests and diseases). META-R also calculates genetic
correlations among environments and genetic correlations
among traits for METs with large amounts of data, including
different types of management. Scripts of META-R are derived
from META [3] which does not calculate genetic correlations
among traits; it only computes genetic correlations among
environments.

Genetic correlations among environments are useful for
characterizing and grouping environments based on G × E
interaction. This means that we can identify which environ-
ments within each group have more genetic similarities or
differences. Based on the latter approach, environments that,
singly or in conjunction (referred to as mega-environments),
provide effective screening for genotypes can be identified
[16]. Determining genetic correlations among traits can be
helpful to evaluate the correlated response in a target trait
that can be achieved by indirectly selecting for a secondary
trait [17]. For instance, NDVI (normalized difference vegeta-
tion index) or CT (canopy temperature) can be used to
indirectly select for physiological aspects such as chlorophyll
content, water status, and biomass [18]. Indirect selection will
be more effective than direct selection if the correlated
secondary trait is highly heritable, and less difficult and
inexpensive to measure or evaluate.
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