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A B S T R A C T   

Local food prices are key indicators of food security and market conditions. Yet price data are often not available, 
particularly for rural areas of Sub-Saharan Africa. We compiled data from 168 markets to study spatial and 
temporal price variation. We found that prices slightly increase when the preceding growing season was dry. 
Across the continent, there is pronounced seasonal variation, with lowest prices 2–3 months after harvest and 
highest prices just before harvest. A predictive model explained 42% of the spatial variation in prices. Our results 
show that spatial and temporal price variation can be generalized and that prices can be estimated for unsampled 
locations or months. Such estimates may be used to improve the targeting of food security interventions and 
strengthen empirical policy-oriented research.   

1. Introduction 

Households in developing countries spend a large share of their in
come on food, making them particularly sensitive to food prices and 
their fluctuations (Minot and Dewina, 2013). Moreover, the prices 
farmers receive for their marketed products is a determinant of the 
profitability of farming, thus affecting farm household welfare and in
centives for investments. Data on market food price variation is thus 
important to understand the constraints and opportunities for in
terventions in food security and agricultural development. Yet available 
price data is typically sparse and may not adequately reflect spatial and 
temporal variation in the market prices faced by producers and con
sumers (Chamberlin and Jayne, 2013; Minten et al., 2013; Aggarwal 
et al., 2018). 

There is a significant body of literature on temporal price variation 
(e.g. Manda, 2010; Aker, 2008; Gitonga et al., 2013; Kaminski et al., 
2014; Hirvonen et al., 2015; Gilbert et al., 2017) and price formation in 
Sub-Saharan Africa (SSA) (Rashid and Minot, 2010; Brenton et al., 2014; 
Yami et al., 2017; Gitau and Meyer, 2018) and the role of economic 
remoteness in determining prices (e.g. Minten and Kyle, 1999; Stifel and 
Minten, 2008; Minten et al., 2013; Aggarwal et al., 2018). However, 
there has not been much empirical research on the broad 
spatio-temporal structure of market price variation with a view to 

predicting them at unobserved market locations and moments in time. 
An exception is Bonilla Cedrez et al. (2020) who modeled spatial vari
ation in fertilizer prices in SSA to predict local fertilizer prices at loca
tions for which no empirical data was available. 

Because of the scarcity of local market price data (particularly for 
rural areas), researchers often assume that farmers across large areas 
face a common market price – sometimes defined as the average of 
regional or district prices available from household surveys, but often 
defined at the national level, even where such analyses are explicitly 
spatial in other dimensions (e.g. You et al., 2014; Kaminski et al., 2014). 
When sub-national prices are used, they are typically average prices for 
relatively large areas (e.g. Liverpool-Tasie et al., 2017) which may 
include significant internal heterogeneity, and they may not consider 
temporal (within or between year) price variation. Many studies are 
ambiguous about the nature of prices used in analysis. For example, 
Jama et al. (2017) describe using data from “market surveys” for each of 
the four countries in their study of fertilizer profitability, but do not 
specify the level of price observation or aggregation. Similarly, Magrini 
et al.’s (2017) analysis of household-level welfare responses to price 
changes uses nationally-representative survey data from several coun
tries, but the authors do not specify the geographic level at which price 
indices are constructed for any of the countries in their analysis. Neither 
study addresses how the timing of the survey may have affected the 
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prices observed, and the interpretation of the data. 
In this paper, we analyze and model how local market prices for food 

in SSA vary between years (annual variation), within the year (seasonal 
variation), and locations (spatial variation) using time-series of market 
price data for cereals from 168 markets in 30 countries in SSA. The input 
data for our analysis are local market prices for staple food grains. As 
most crop production in SSA is under rainfed conditions, precipitation 
variability is an important source of annual price variation, also 
depending on the integration of local markets with regional and global 
markets (Aker, 2008; Raleigh et al., 2015). We therefore modeled 
annual price variation as a function of rainfall in the preceding growing 
season. Seasonal price variation can be strongly related to the cropping 
cycle, with high prices in the “lean-season” before harvest, and much 
lower prices just after harvest (Kaminski et al., 2014; Dillon, 2020; 
Burke et al., 2019), particularly in more remote areas (Ndiaye et al., 
2015), in part because of higher transportation costs during the rainy 
season (Minten and Barrett, 2005). We modeled seasonal price variation 
across SSA as a function of time since harvest. In addition, we used 
spatial predictor variables (e.g. access to market and climate) to predict 
spatio-temporal price variation at unsampled locations. 

The contribution of our analysis is twofold. First, we provide novel 
descriptions of the magnitude of the annual and seasonal market price 

variation in SSA. We show that prices vary considerably in time and 
within countries, underscoring the importance of time- and location- 
specific market price information. Our analysis indicates that using 
national average or capital market prices as proxies for local market 
prices is likely to diverge considerably from actual market prices in 
many areas. The second contribution of this paper is our description of 
relatively simple approaches to estimate prices at unobserved market 
locations (the expected market price for a given location if there were a 
market in that location). Spatio-temporal predictions of prices, produced 
by methods such as those we outline here, can support more accurate 
assessments of food security and the economic returns to farming, and 
thus help design more effective interventions and policies. 

2. Materials and methods 

2.1. Price data 

We compiled sub-national monthly food price data for thirty coun
tries in Sub-Saharan Africa from three data sources. We collected data 
for five countries (Chad, Malawi, Nigeria, Somalia, and Zimbabwe) for 
2000 to 2018 from the FEWS-NET “Price Watch” system (FEWS-NET, 
2019). The second data source was the FAO Global Information and 

Fig. 1. Locations of markets for which we obtained food price data for at least one of the following four products: maize, millet, rice, and sorghum.  
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Early Warning System (GIEWS, 2019) “Food Price Monitoring and 
Analysis” from which we obtained price data for 2000 to 2018 for 
twenty-one countries (Angola, Benin, Burkina Faso, Burundi, Chad, 
Central African Republic, Côte d’Ivoire, Djibouti, Ethiopia, Ghana, 
Guinea, Kenya, Madagascar, Malawi, Mali, Mozambique, Namibia, 
Niger, Nigeria, Rwanda, Sierra Leone, Senegal, Somalia, South Sudan, 
Sudan, Tanzania, Togo, Uganda, Zambia, Zimbabwe). The third data 
source was the Regional Agricultural Trade Intelligence Network 
(RATIN, 2019) from which we obtained data for five East African 
countries (Burundi, Kenya, Rwanda, Tanzania, and Uganda) for 2016. 
We only acquired one year of RATIN data, mainly to increase the 
number of markets (spatial coverage) for which we had data. 

All sources reported monthly price data for a particular market town. 
The foods reported varied by data source and country. We compiled 
monthly price data for maize, millet, sorghum, and rice because these 
are the major staple grains in SSA and the products for which the most 
observations were available (Fig. 1). 

To allow for comparison of prices between years and countries, we 
converted prices from national currency to purchasing power and 
inflation adjusted United States dollars (USD) by dividing them by the 
monthly consumer price index (CPI) and monthly purchasing power 
parity (PPP) dollar value for each year according to the World Bank 
(World Bank, 2012). The CPI tracks the changes in the cost to the 
average consumer of acquiring a basket of goods and services that may 
be fixed or changed between years. Our base year was 2010 (CPI = 1). 
The PPP conversion factor, represent how much of a country’s currency 
(expressed in USD using the international exchange rate) is required to 
buy the same amounts of goods and services in the domestic market as 
one USD would buy in the United States. 

The final dataset consisted of 43,399 prices records, for 168 different 
market locations across the 30 countries. We had 13,278 observations 
for maize from 108 markets in 20 countries; 10,171 observations for 
millet from 74 markets in nine countries; 8989 observations for rice in 
87 markets in 17 countries, and 10,961 observations for sorghum in 79 
markets in 12 countries (Table 1S). 

In 41 markets, both retail and wholesale prices were reported. In 89 
markets, only retail prices were reported and in 40 markets, only 
wholesale prices were reported. We fit linear regressions models to study 
the relationship between reported retail and wholesale prices (USD 
kg− 1) where both were available. We estimated that the wholesale price 
was 0.88 times the retail price for maize, 0.91 for millet, 0.94 for sor
ghum, and 0.83 for rice (slopes of regression lines). We adjusted the 
wholesale prices using these fractions to estimate retail prices for mar
kets where only wholesale prices were available. For all other markets, 
we used the reported retail price data. After that, the total number of 
records was 39,481, containing 20,971 unique (market/year-month) 
price observations. 

For markets where maize and other cereals were reported, we 
calculated the median price for each year and cereal and fit a linear 
regression model to study the relationship between maize prices and 
other cereals. Visual inspection showed good support for a linear rela
tionship between the cereal prices (e.g. maize prices and other cereals). 
The Root Mean Square Error of the models varied between 0.22 and 0.25 
USD kg− 1 while mean crop prices varied between (0.74–1.72 USD kg− 1) 
(see Appendix B for details). We used the fitted model to estimate a 
maize price equivalent for market where no maize price was available 
but where other cereals prices were reported, in order to expand the 
input data for spatial prediction of maize prices. 

2.2. Timing of harvest 

For each location we used a time series of monthly precipitation data 
(Harris et al., 2014) at a 0.5◦ (about 50 km) spatial resolution from 2000 
to 2018. We determined the month of harvest (end of the growing sea
son) for each market by using a simple rule: the harvesting starts in a 
month after a sequence of adjacent months that have at least a minimum 

amount of precipitation. This minimum amount of precipitation was 
location-specific and was defined as the observed median monthly 
precipitation for a year bounded between 30 and 90 mm (see Appendix 
C for the algorithm). In some regions, this rule creates single, and 
sometimes short, seasons. In other regions, there can be two growing 
seasons. We used a fixed cropping calendar to have a simple robust 
predictor and because, while the seasonal rainfall amount may vary 
considerably between years, the season duration in months changes 
little from year to year. The algorithm generated growing seasons that 
were very similar to published crop calendars (Sacks et al., 2010), but 
with much more spatial detail. For example, it showed two harvests 
seasons in areas where that is expected such as in northern Tanzania, 
Uganda, and Kenya. In some very dry regions (that is, with an annual 
precipitation lower than 200 mm) in Chad, Somalia, and Sudan the al
gorithm could not identify a growing season. These markets were 
removed from the seasonal price variation analysis. 

2.3. Annual price variation 

We studied the relationship between annual (between years) price 
variation and precipitation by fitting linear regression models where 
price was a function of the precipitation of the preceding growing sea
son. In order to identify a dry year or a shock in prices related to the 
weather, we only considered the markets where we had at least 10 years 
of data, and a subset of 65 markets was used in this analysis. For each 
crop, market and “year” (from harvest to harvest, which is less than 12 
months if there are multiple harvests per year), we computed the median 
price and the total precipitation. We detrended the price data by market 
and we selected the best out of three regression models of price as a 
function of year (intercept-only, first, and second-degree polynomial) 
using AIC. Finally, we fit a linear regression model between detrend 
price data and total precipitation in the preceding season and we 
analyzed the results by plotting the slope of these regression lines 
against average annual rainfall for each market. 

2.4. Seasonal price variation 

For each market, month and crop, we created a temporal price index 
computed as the twelve average monthly prices divided by the median 
observed price. Thus, for each month we obtained a value that repre
sents how much the price in a month was lower or higher than the 
median price in each market. We fit linear regression models where 
price index was a function of month since harvest to study the rela
tionship between seasonal price and crop cycle in relative terms. In re
gions with a single growing season, the maximum number of months 
since harvest is 11, and in regions with multiple growing seasons it is 
less; e.g. in Ethiopia, Uganda, and Kenya maximum number of months 
since harvest varied between 6 and 11 depending on the market. 

2.5. Spatial price prediction 

2.5.1. Temporal price index 
To study the spatial variation in the seasonal variation of food prices, 

we use the temporal price index described in the previous section. The 
index indicates at which time of the year prices are lower, equal, or 
higher than the annual median price for that location and allows us to 
compare temporal price variation in space while, controlling for price 
differences between locations. We fitted a Random Forest model to 
predict the temporal price index across Sub-Saharan Africa for each 
month. In the model, temporal price index was a function of longitude, 
latitude, precipitation, and month. The predictor variables were orga
nized as raster data sets with a 5-arc minute (~9 km) spatial resolution. 
While our modeling framework is defined at this spatial resolution, our 
spatial summary of seasonal rainfall is calculated over an area defined 
by a 50 km buffer around each market location. We used the Random 
Forest algorithm as implemented in the R-package ‘randomForest’ (Liaw 
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and Wiener, 2017). The spatial data was handled with the “raster” 
package (Hijmans, 2018). We computed Pearson’s correlation coeffi
cient and Root Mean Square Errors (RMSE) as test statistics to evaluate 
the model. We compared the RMSE with the RMSE of a Null-model (TE0) 
in which we assumed no temporal price variation by computing relative 
RMSE as TER=1-(TEI/TE0). TER expresses how much better the inter
polated predictions are relative to using a single national price over the 
months. 

2.5.2. Spatial price 
We also modeled the actual spatial price variation, focusing on maize 

prices since maize is the most important staple grain in SSA. In this case, 
we compared maize prices as observed with estimated maize prices from 
the regression models described in Section 2.1. We used Random Forest 
to build a model of the maize price (USD kg− 1) as a function of location 
(longitude and latitude), access to market and annual precipitation. Our 
market access indicators were the estimated travel time to the nearest 
town with 20,000 to 50,000 inhabitants, 200,000 to 250,000 in
habitants, and 1 to 5 million inhabitants (Nelson et al., 2019). Our 
measure of annual precipitation (mm) is from WorldClim v2 (Fick and 
Hijmans, 2017). We used the fitted model to predict maize prices across 
SSA, following a similar approach that was used to estimate fertilizer 
prices in SSA (Bonilla Cedrez et al., 2020). 

2.6. Comparison between annual, seasonal, and spatial price variation 

We computed annual, seasonal, and temporal price variation in 
countries with more than one market in order to compare the amounts of 
spatial, seasonal, and annual variation. For the annual variation, we 
computed the average national price by year and markets and then 
computed the price range (difference between the maximum and min
imum price). For the seasonal variation, we computed the monthly 
average price in each market and then the seasonal price range, and 
averaged this by country. For the spatial variation, we computed the 
average price by market and then computed the price range for the 
country. 

3. Results 

3.1. Annual price variation 

We found a modest effect of precipitation in the preceding growing 
season (hereinafter “lagged rain”) on food prices. The effect of rainfall 
was most pronounced when the average growing season rainfall was 
below 950 mm (Fig. 2). For example, regions with average growing 
season rainfall of 500 mm, a decrease of 100 mm in rainfall leads to a 
price increase of USD 0.05. In humid areas, in contrast, we did not find 
large price effects of lagged rainfall except at very high average rainfall 
levels, where excessive rainfall may be problematic. The annual price 
variation was similar for maize, sorghum, and millet, but much less 
pronounced for rice. It is important to note that rice is not typically 
grown in very dry areas, and when is it, it is irrigated. We found that the 
crops had very similar response curves, and we therefore generalized the 
relationship between cereal prices and rainfall with a single model. In 
addition, differences between models for different crops cannot directly 
be interpreted, as not all crops are present in each market. We never
theless differentiate the observations by crop in Fig. 2 to give a better 
sense of the underlying data. The markets in areas with less than 350 
mm average annual rainfall (Al Fashir and El Obeid in Sudan, Saint Louis 
in Senegal, Borama in Somalia, Dire Dawa in Ethiopia, and Moussoro in 
Chad) show a strong price effect, even though rainfed crop production is 
very limited in these regions. The countries with the most pronounced 
effect of rainfall on prices (price decreasing with an increase in lagged 
precipitation) were in the Sahel (Sudan, Mali, and Chad). 

3.2. Seasonal price variation 

Food prices in SSA were lowest three months after harvest (96% of 
the median annual price), and they were highest in the month before 
harvest (108% of the median annual price). From the lowest price to the 

Fig. 2. Price effect (USD kg− 1 per 100 mm of rainfall) per market and crop as a 
function of average annual precipitation (mm) for 65 markets in sub-Saharan 
Africa. The regression line shows the estimated price effect (averaged over 
crops) as a function of the natural logarithm of rainfall. The dashed lines 
represent the 95% confidence interval, R2 = 0.32. 

Fig. 3. Seasonal food price as a function of month since the beginning of 
harvest for 160 markets in sub-Saharan Africa. Shown are averages across crops 
for the four crops considered. The prices are expressed as the median monthly 
price divided by the annual price. The two regression lines show (1) price 
decrease after harvest (slope = − 0.04) followed by (2) increases until the next 
harvest (slope = 0.02). The gray envelope represents 70% of the observations. 
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month before harvest price increase with a rate of 2% per month (Fig. 3). 
The Random Forest model of the temporal price index explained 60% 

of the variance and the cross-validation correlation coefficient between 
observed and predicted values was to 0.93. The most important vari
ables in the model were month and rainfall. The temporal RMSE of the 
model was 0.05 and the RMSE of the null-model assuming a constant 
price was 0.11. Thus, the model improved accuracy by 56% in com
parison with assuming no temporal price variation. 

In the semi-arid regions of west and northeast Africa, harvests are in 
September and October and prices were low from November to March 
while they were higher from June to September. In south-east Africa the 
inverse pattern is visible, with high prices from December to March and 
lower prices from May to September (Fig. 4). 

We found strong spatial variation in the magnitude of the seasonal 
variation (that is, the. difference between the maximum and minimum 
value of the temporal price index). In South-East Africa it is > 0.25 while 
it is very low in Kenya and North-Uganda, and in West Africa except 
north-Nigeria. (Fig. 5). 

The Random Forest model of spatial price variation explained 42% of 
the variance, the cross-validation correlation coefficient was 0.68, the 
RMSE of the model was 0.17 USD kg− 1 and the RMSE of the null-model 
assuming a constant price was 0.22 USD kg− 1. The most important 
variables in the model were location and rainfall. Prices were higher in 
West and South-West Africa than East Africa. Prices were highest in very 

isolated areas (e.g. desserts) and in some areas with very high popula
tion density (major cities) in West Africa (Fig. 6). 

Annual, seasonal, and spatial price variation. 
Across countries, average annual price variation was 0.88 ± 0.66 

USD kg− 1, which is larger than the spatial variation (0.76 ± 0.65 USD 
kg− 1), and much larger than the seasonal variation (0.22 ± 0.29 USD 
kg− 1) (Fig. 7). 

4. Discussion and conclusions 

While there has been a considerable amount of research on food 
price variation in Africa (e.g. Manda, 2010; Aker, 2008; Gitonga et al., 
2013; Hirvonen et al., 2015; Gilbert et al., 2017) there have been no 
prior efforts at systematic analysis across the continent with a view to 
generalization that allows estimating prices at unsampled locations and 
points in time. Our study addresses this gap, using price observations 
spanning ten years from 168 local markets in 30 countries to describe 
spatio-temporal patterns in market prices for cereals in SSA. While our 
modeling results support many of the broad generalizations about price 
patterns in the region, our detailed description of such patterns at the 
continental scale is a novel contribution, which suggests good scope for 
predictive modeling to fill data gaps in local market prices. 

At the country level, inter-annual variation was the largest source of 
price variation in our data, particularly in arid and semi-arid 

Fig. 4. Predicted spatial variation in the seasonal grain prices in Sub-Saharan Africa (SSA). Prices are expressed as the temporal price index is the local median 
monthly price divided by the annual price. The predictions where made with a Random Forest model using longitude, latitude, month of the year, and annual rainfall 
as predictor variables. Predictions were made for countries in SSA for which we had price data from local markets, excluding areas with annual precipitation lower 
than 200 mm. 
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agroecological zones, where local production outcomes are most sensi
tive to rainfall. In these areas, rainfall in the preceding growing season is 
associated with price variation for all grains except for rice, which is not 
grown in very dry areas, and where it is, it is irrigated. Also, much of the 
rice consumed in Africa is imported from Asia (World Bank, 2012). 
Further research might also consider the effect of world market prices on 
national and local prices. 

As expected, we found that within-year price variation is strongly 
related to the cropping cycle, with highest prices in the “lean-season” 
before harvest, and lowest prices after harvest. We found that the lag 
between the onset of harvest and maximum market saturation (the 
lowest price) is two to three months. We also showed that the season
ality is much more pronounced in South-East Africa than in other parts 
of the continent. The reasons for these geographical patterns are unclear 
and deserve more study; they possibly reflect the prevalence of short- 
term maize trade bans in Eastern and Southern Africa (Porteous, 2017). 

Understanding food price seasonality in developing countries is 
important for many reasons. First, seasonality in prices may translate 
into seasonal variation in dietary intake and nutrition (Dercon and 

Krishnan, 2000; Kaminski et al., 2014; Kaminski et al., 2014). Secondly, 
poverty measurement relies heavily on food expenditure information for 
each household which is typically collected only once a year. Annual 
expenditures measures derived from these surveys will be incorrect 
when food price seasonality is substantial and not corrected for (Muller, 
2002; Van Campenhout et al., 2015). This should be considered in sur
vey design since a sample which is nationally random may fail to be 
seasonally random. Third, food buying households face important wel
fare losses because they are frequently trapped in “sell-low, buy-high” 
strategies to meet short term cash needs at harvest (Moser et al., 2009; 
Stephens and Barrett, 2011; Palacios-Lopez et al., 2015; Fink et al., 
2018; Burke et al., 2019). 

In terms of spatial variability, our results underscore the fact that 
smallholder farmers in SSA occupy very heterogeneous environments in 
terms of remoteness from markets, and such remoteness strongly affects 
farm gate price ratios, price volatility, and other local market charac
teristics (e.g. Stifel and Minten, 2008; Minten et al., 2013; Chamberlin 
and Jayne, 2013; Ndiaye et al., 2015; Le Cotty et al., 2017). For example, 
seasonal variation in food prices on rural African markets is associated 

Fig. 5. Predicted spatial variation in the annual range of the temporal price index in Sub-Saharan Africa (SSA). The temporal price index was computed by sub
tracting the median annual price for the mean monthly price. The range represent the difference between the highest and lowest value. Predictions were made for 
countries in SSA for which we had price data from local markets, excluding areas with annual precipitation lower than 200 mm. 
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with poor infrastructure, and lack of competition in transport and 
storage (Osborne, 2005; Dillon and Barrett, 2013: Poulton et al., 2006), 
all of which increase with remoteness (Stifel and Minten, 2008). Moctar 
et al. (2015) used data on local maize prices in Burkina Faso to show that 
price volatility increases with remoteness. Investments in rural road 
infrastructure and in local commercial food storage can reduce price 
variability (Barret, 1996) and lead to increased consumption and real 
incomes (Stifel and Randrianarisoa, 2006). Another strand of literature 
has emphasized trade barriers as a source of increased price volatility (e. 
g. Porteous, 2017). Our model of spatial price variation explained about 
half of the spatial variation in maize prices, which suggests that pre
dictive maps of spatial prices are warranted and may help to fill in data 
gaps related to location-specific market information. 

Spatio-temporal price predictions have direct implications for efforts 
to address food security concerns. Monitoring of food prices, along with 
production conditions, is a cornerstone of information systems aimed at 
tracking food security situations, such as the Famine Early Warning 
Systems Network. Better understanding of how local food prices vary 
across time and space can support such monitoring efforts as well as the 

targeting of food security interventions. In addition, predictive price 
models can enable ex ante analysis of the potential food security impacts 
of policies and public investments in, for example, transportation 
networks. 

Furthermore, predictive price models can support policy-oriented 
microeconomic research. In SSA, facilitating productive investments 
by smallholder farmers is a considered key to improving agricultural 
productivity, food security and rural household welfare outcomes. Input 
and output prices, and their volatility, affect profitability, risk, and the 
willingness of farmers to invest in agricultural technologies (Foster and 
Rosenzweig, 2010; Ceballos et al., 2017; Bridle et al., 2020, Michler 
et al. 2020). Empirical assessments of the incentives driving farmer in
vestments will benefit from more extensive market price data collection. 
For the time being, price observations will likely remain sparse, and 
plausible estimates of local prices could be highly valuable. Even with a 
relatively limited spatial database of prices, our predictive modeling 
results explain more than half of the observed variation in market prices, 
suggesting that predicted prices can serve as useful proxies for unob
served local market prices, even where model training data are limited. 

Fig. 6. Predicted spatial variation in the spatial maize price (USD kg− 1) in Sub-Saharan Africa. The predictions where made with a Random Forest model using 
annual precipitation, and estimated travel time to the nearest town with 20,000 to 50,000 inhabitants, 200,000 to 250,000 inhabitants, and 1 to 5 million inhabitants 
as predictor variables. Predictions were made for countries in SSA for which we had price data from local markets, excluding areas with annual precipitation lower 
than 200 mm. 
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The “price maps” generated by our predictive models are almost 
certainly closer to the truth than the assumption that all rural producers 
face a single spatially-invariant set of prices (often defined for a major 
urban area, or constructed as an average of available market prices). 
Given the importance of effective input and output prices in under
standing the economic returns of different production strategies pursued 
by smallholder farmers in different areas, it is important to recognize 
spatial price variability in analysis. 

The degree to which prices can be confidently estimated for a 
particular region will depend on a number of factors, including the 
amount, distribution and quality of the observed price data and the 
amount of price variation, the presence of discernible spatial patterns 
and the availability of relevant predictor variables. To improve pre
dicted prices in more remote areas, it may be especially important to 
collect more data from such locations to improve our understanding of 
transportation cost effects. Given the costs of data collection for large 
areas such as countries, the targeting of market price collection efforts is 
important. While the dataset we assembled is large in comparison to 
prior studies, and has relatively good spatial and temporal coverage, 
smaller rural markets are under-represented. Collecting price data from 
smaller markets in remote areas would be an important complement to 
the price data collected in the larger regional market centers. Such data 
could help increase our understanding of the influence of isolation on 
price formation and improve the accuracy of price predictions. 

To support such work, there is a need for investments to expand the 
set of publicly available market price observations across SSA, while 
assuring that sampling is representative of the region’s diverse pro
duction and market environments. Taking stock of existing national 
resources for market information may clarify the scope for national 
systems to feed into regional systems. The economies of scope and scale 
in predictive mapping and analysis may incentivize further national- 
level investments. For example, a country without a current market 
information system, may be incentivized to establish one if it enabled 
access to regional prices and improved price predictions within its 

territory. There would probably still be a need for analysis to be done at 
the regional level but sharing the costs of that over many contributing 
countries may make this feasible. Furthermore, given the costs of 
traditional market information systems, it may be worth exploring 
alternative data collection measures which may be cost-effective, such 
as crowdsourcing (Zeug et al., 2017). In addition to national-level ef
forts, it may be possible to build or extend existing regional systems. 
Several non-governmental price information systems currently collect 
data on food prices within the region, e.g. FAO’s Global Information and 
Early Warning System (GIEWS), FEWS NET, the Eastern African Grain 
Council’s Regional Agricultural Trade Intelligence Network (RATIN). 
Such systems could be extended to include predictive mapping. One 
caveat of our study is that we observe market prices, not farmgate prices. 
As such, our spatial price prediction is the expected market price for a 
given location if there were a market in that location. Given non-trivial 
“last-mile” transportation and other transfer costs between local markets 
and farm locations, the effective prices that farmers face at their pro
duction locations may differ considerably from prices at the nearest 
market (e.g. Minten et al., 2013). In the case of prices for marketed grain 
output, this would be the market price net of the transfer costs; in the 
case of grain for household consumption, this would be the market price 
plus the transfer costs. Additional data collection and modeling may 
usefully be directed at estimating farmgate prices from observed (or 
estimated) local market prices. 
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