Monsoon and climate variability in South Asia and Bangladesh: ongoing work and ideas

Carlo Montes

Agricultural Climatologist
CIMMYT - Bangladesh

Outline

- Climate variability
- Scales
- Datasets available
- Importance
- Examples:
 - Large scales monsoon dynamics
 - Local scale in Bangladesh
 - Predictability: onset, heavy rainfall events, dry spells
 - Linkage with crop models
- Future ideas

Annual cycle of precipitation

Rainfall (mm/month)

- Summer monsoon season
- JJA ~52% annual precipitation
- Source of water for Kharif crops

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Multiple datasets

- 35 BMD stations: observational reference
- Period 1981 2017 (variable)
- Gridded climate products
 - Satellite, ground observations, reanalysis
- Model outputs
 - GCMs, RCGs (CORDEX)
- Satellite products
 - NDVI3g, LAI3g, BNU LAI, MODIS
- Gridded crop yields, phenology, area
- Crop modeling

Seasonal Bias

6 PCs retained for clustering

0.35

0.3

(votation of the control of the control

6 clusters selected Based on explainded variance and experience

Spatial distribution of APHRODITE groups and stations

At least 1 station in each cluster

Monthly rainfall

Monsoon season precipitation

Seasonal variability

Monthly rainfall: JJAS climatology

Subseasonal metrics

A typical year in Bangladesh

A typical year in Bangladesh

Monsoon onset withdrawal definition

Monsoon onset withdrawal definition

Spatial pattern for different rainfall thresholds

Monsoon onset and retreat

Monsoon onset definition for crop modeling

Parameters for Marteau et al. definition of monsoon onset

Calculated from May 1 to October 31

- 1. The duration of the initial wet spell
- 2. The amount of rainfall received during the initial wet spell
- 3. The length of post-onset dry spell to avoid false starts of the
- 4. The maximum amount of rainfall received during the post-onset dry spell

Rice yields and planting date (1981-2016)

- Stable yield since planting date DOY 173
- High variability after planting date DOY 215

- High interannual fluctuation

"Real" vs "potential" rice yields

Correlation matrix with climate variables

Relationship between variables in time

- Higher yields for "potential" model configuration
- Positive trend in both cases

Rajshahi

PC 2 (12.5%)

PC 2 (16.2%)

• GDD

Mretreat

PC 1 (55%)

Monset

Rmon

potential case

Expected correlations between anomalies of climate metrics, strong in some cases

mate in the

- Ymax correlates with SD in the potential case
- Higher correlation between SD and Rmon
- Well differentiated rain categories (colored dots) and climate: e.g. Variables concentrate in wet years
- Potential case: higher association with climate anomalies

- East-West monsoon progression
- Earlier NE Bangladesh
- Late onset SE India
- Significant trends over some regions

- Earlier in NW India and NW Bangladesh
- Late in SE India
- General WE progression
- Significant trends over some regions

Historical variability and future projections: 21 CMIP5 GCMs

Net shortening in monsoon season

RCP45 minus historical RCP85 minus historical

Historical variability and future projections: 21 CMIP5 GCMs RCP45 minus historical RCP85 minus historical Onset **Research question:** Onset • Implications for agriculture? 1960 1980 2000 2020 2040 Net shortening in monsoon season Retreat

Sensitivity of rainfed rice yields to historical and projected monsoon precipitation and temperature over South Asia

Data

- NASA NEX GDDP downscaled (0.25° x 0.25°) CMIP5 21 GCMs
 - Daily rainfall, maximum and minimum temperature
 - Historical period 1950-2005
 - RCP45 and RCP85 2006-2095
- Gridded rainfed rice annual yields (Lizumi et al., 2017*)
 - 1961-2006
 - Bilinearly interpolated from 0.5° x 0.5° to 0.25° x 0.25°
- Princeton Global Meteorological Forcing (0.25° x 0.25°)
 - Daily rainfall, maximum and minimum temperature
- Reference rice planting date from RiceAtlas product (Laborte et al., 2017**)
- Monsoon-derived rice planting date (Mathison et al, 2018)

Sensitivity of rainfed rice yields to historical and projected monsoon precipitation and temperature over South Asia

Selected climate explanatory variables

Timing:

- Monsoon onset
- Monsoon retreat
- Monsoon-derived rice planting date

From planting date to monsoon retreat

- Monsoon total precipitation
- Growing degree days
- Number of dry spells (rainfall < 1 mm, 5 or more days)
- Number of warm days (Tmax > 35°C)
- Number of warm nights (Tmin > 28°C)
- Length of the growing season

Modeled historical and future projections

- Annual rice yields

Rice yield anomalies: statistical crop modeling

Lizumi et al. rice yields product (1961-2005)

$$Y_{i,j,gcm} = \alpha_{i,j,gcm} + \beta_{i,j,gcm} Climate_{i,j,gcm} + \delta_{i,j,gcm} Int_{i,j,gcm} + \epsilon_{i,j,gcm}$$

Where, for every grid cell *i,j* and model (*gcm*)

 $Y_{i,j,gcm}$: simulated rice yield anomalies

 $lpha_{\!\scriptscriptstyle i,j,gcm}$, $eta_{\!\scriptscriptstyle i,j,gcm}$ and $\delta_{\scriptscriptstyle i,j,gcm}$: regression coefficients

 $\epsilon_{i,j,gcm}$: error term

Climate: vector of seasonal climate and derived variables (planting date, monsoon onset, monsoon retreat, monsoon rainfall, GDD, warm days, warm nights, dry spells)
Int vector of interaction terms (monsoon onset × GDD; monsoon rainfall × GDD, monsoon retreat × GDD, dry spell × GDD, monsoon rainfall × warm days, monsoon rainfall × warm nights)

Rice yield anomalies: CMIP5 models, 1950-2005

Percentage of grid cells with significant correlation (*p* value <= 0.05) between observed and simulated rice yield anomalies for CMIP5 models

Average correlation between simulated and observed yield anomalies

Average *p* value (significant)

Rice yield anomalies: Princeton GMF, 1950-2005

Dominance analysis to determine the relative importance (fraction) of the predictors of rice yields anomalies

Rice yield anomalies: Princeton GMF, 1950-2005

Understanding climate variability in bangladesh: precipitation and temperature

Mean annual cycle and standard deviation

Precipitation:

- MMA: strong increase in rainfall
- JJAS: peak in July

Maximum temperature:

- MAM: maximum precipitation
- Surface heating interrupted by cloudiness and surface wetness
- JJAS: decrease and then stable
 - Deacreasing incoming energy and precipitation

Minimum temperature:

- MAM: slight increase
- JJAS: stable values
- Typical annual cycle
- Diurnal vs nocturnal processes

Climate - circulation covariability and sources of predictability in Bangladesh

Principal Component Analysis to monthly anomalies

SLP: sea level pressure; H500: geopotential height 500 hPa; Ω500: vertical pressure velocity 500 hPa; UZ: zonal wind at Z = 850, 500 and 250 hPa; VZ: meridional wind at Z = 850, 500 and 250 hPa; QZ: specific humidity at 850, 500 and 250 hPa

Precipitation and circulation anomalies

Point-to-point correlation between synoptic fields and PC1

- Significant (medium) correlations/covariability
- Main large scale factors explaining climate in Bangladesh
 - Pressure velocity
 - Zonal and meridional wind
 - Geopotential height

Collaboration

North American Multi-Model Ensemble (NMME)

Dynamical forecast

 Seasonal forecasting: monsoon rainfall and subseasonal relevant climate metrics

NOAA MME Dynamical forecast

 Sub-seasonal forecasting (~1 month): monsoon onset predictability

Collaboration

GEFS-CHIRPS sub-seasonal forecast for Bangladesh

- 21 models, 16-days forecast, every 6 hours
- Monsoon onset predictability

