Conservation Agriculture based Sustainable Intensification for Challenging the Climate Change

ML Jat

Principal Scientist/Systems Agronomist (M.Jat@cgiar.org) International Maize and Wheat Improvement Center CIMMYT.

Climate Change Induced Extreme Weather Events in Recent Past

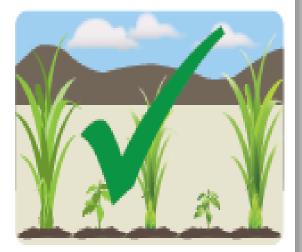
		Extreme Events
Year	SWM Rainfall	• 2002 drought
	Departure (%)	 20 day heat wave during May 2003 in Andhra
2000	-8	Pradesh
2001	-15	Extreme cold winter in the year 2002-03
2002	-19	Drought like situation in India in July 2004 Abnormal temperatures during March 2004
2003	+2	 Abnormal temperatures during March 2004 and Jan 2005
2004	-13	 Floods in 2005
2005	-1	• Cold wave 2005 - 06
2006	-1	 Floods in arid Rajasthan & AP and drought in NE regions in 2006
2007	+5	 Abnormal temperatures during 3rd week of Jan
2008	-2	to 1 st week of Feb 2007
2009	-23	 All India Severe drought 2009 2010 – One of warmest years
2010	+2	 2010 – One of Warmest years 2011 – Failure of September rains in AP
2011	+1	 2012 – Drought in Punjab, Haryana, Gujarat
2012	-8	and Karnataka. Neelam cyclone, AP floods

Transitioning Towards Sustainability/Resilience

Need three non-linear stages in technology development (Pretty et al., 2018)

- *(i) Efficiency*-focuses on making better use of resources within existing system configurations
- *(ii) Substitution-* focus on replacement of technologies, practices etc

(iii)Redesign centers on composition and structure of agro-ecosystem involving social and institutional dimensions


Science of scaling & enabling policy for impact at scale

Conservation Agriculture (CA): Provide opportunities for transitioning towards sustainability

Conservation Agriculture Basic Principles

Residue retention (no burning)

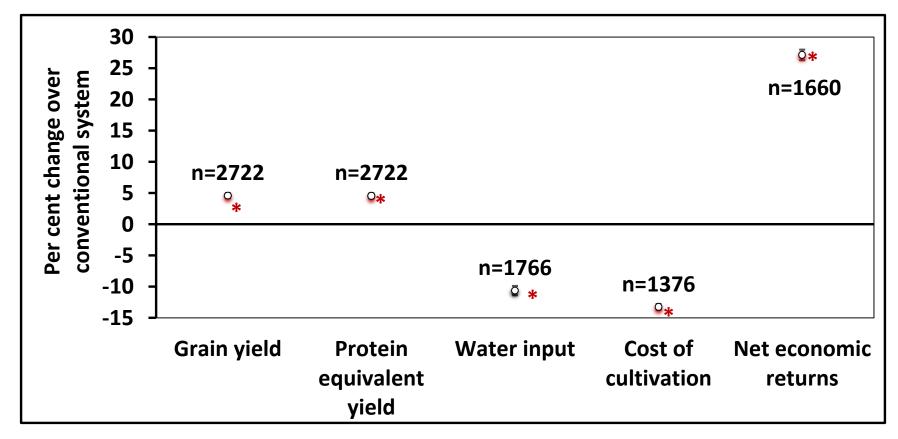
Zero tillage

Crop rotation

The Theory of Change (ToC) for <u>'Transitioning Towards</u> <u>CA Mediated Sustainability and Resilience'</u>

- Long-term process research- Science
 Evidence
- Participatory on-farm validation and refinement: backward and foreword integration
- Multi-disciplinary and multistakeholder (farmer centric) approach
- Science evidence backed policy informing
- Science of scaling: Business models and social inclusivity
- Capacity <u>(Confidence)</u> development

CIMMYT

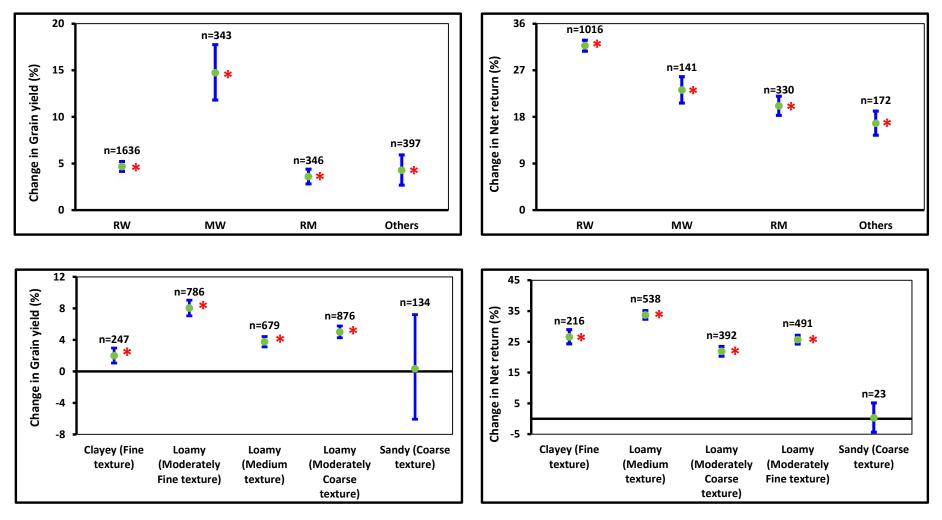

Eight Years of CA based Sustainable Intensification of Cereal Systems in NW India: Productivity, Profitability, Soil quality and Environmental footprints

Scenario	Productivity (Mg ha ⁻¹)	Irrigation water (mm ha ⁻¹)	Energy requirement (MJ ha ⁻¹)	Net return (USD ha⁻¹)	Organic carbon (%)	Total GWP (t CO ₂ eq ha ⁻¹)
Conventio nal RW	12.40	2557	75225	1361	0.45	6.3
CA based	13.17	1868	57833	1629	0.90	4.9
RW	(6)	(-27)	(-23)	(20)	(100)	(-22)
CA based	14.09	738	39376	2122	0.84	4.5
MW	(14)	(-71)	(-48)	(56)	(87)	(-29)

*In parenthesis= % change over conventional system

Source: ICAR-CSSRI-CIMMYT Collaborative Long-term Research platform

Meta analysis: Multi-criteria performance of CA in major cereal based systems in South Asia



Yield: 5, water: 10, Cost: 13, Income: 27

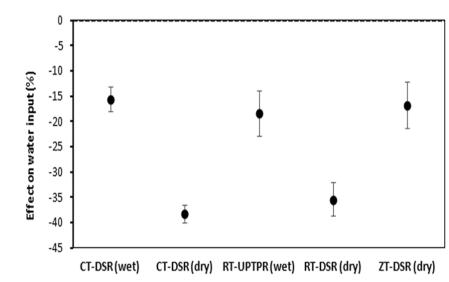
Jat et al (Forthcoming)

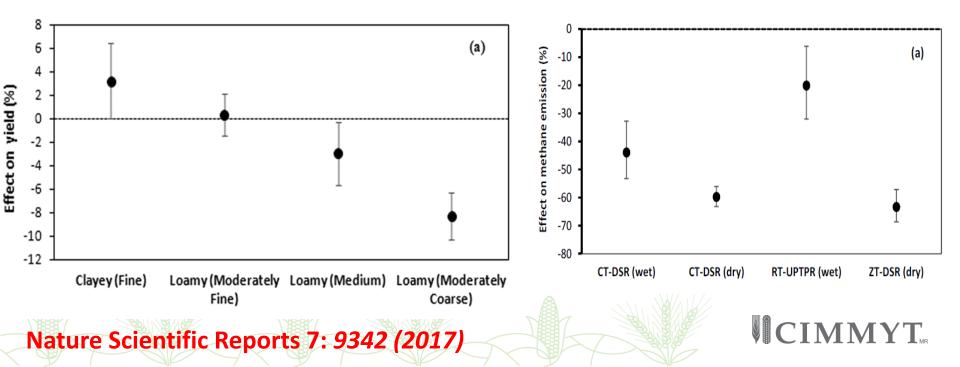
Meta analysis: performance (yield and income) of CA in different cropping systems and soil types

Jat et al (Forthcoming)

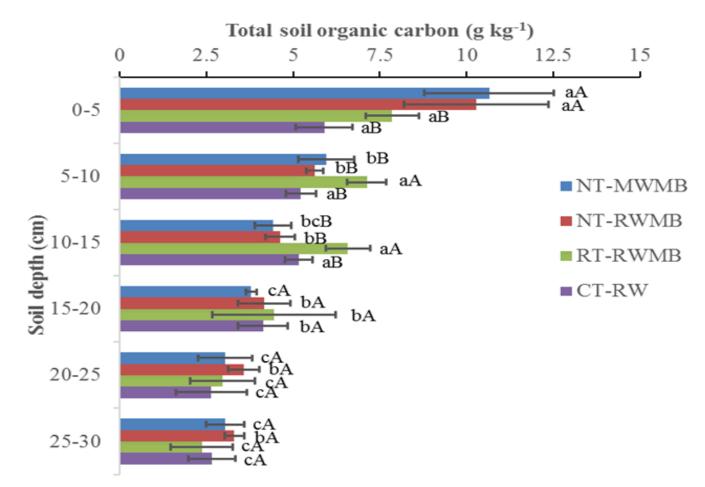
Meta-Analysis: Alternate Rice Production Systems

www.nature.com/scientificreports


SCIENTIFIC **REPORTS**

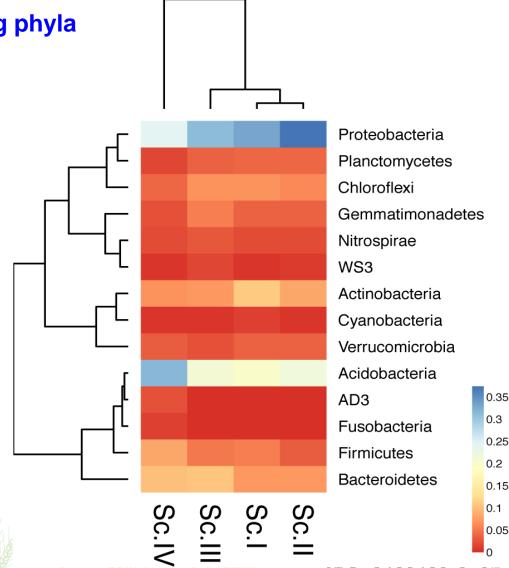

OPEN

Received: 7 June 2017


Accepted: 28 July 2017 Published online: 24 August 2017 A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production

Debashis Chakraborty¹, Jagdish Kumar Ladha², Dharamvir Singh Rana³, Mangi Lal Jat⁴, Mahesh Kumar Gathala⁵, Sudhir Yadav², Adusumilli Narayana Rao⁶, Mugadoli S. Ramesha² & Anitha Raman⁶

Total SOC concentrations under different management systems

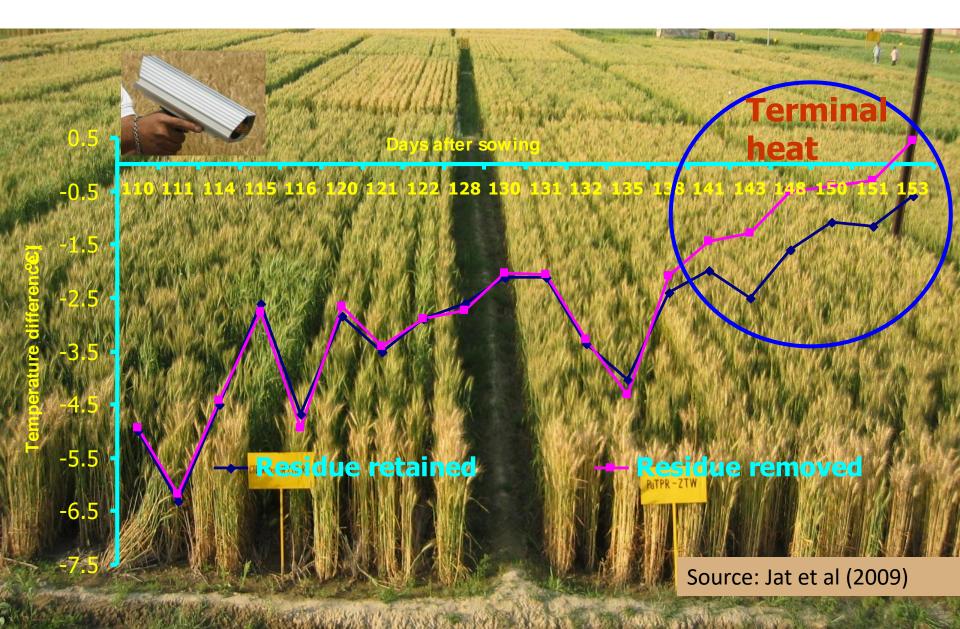

The various small letters indicate significant differences among the soil depths, and the capital letters indicate significant differences among the treatments (P<0.05)

Patra et al (ICAR-CSSRI-CIMMYT-UNU, Germany) collaboration

Metagenomics: Soil bacterial communities under CA and conventional management

Heat map: distribution of dominating phyla in different management scenarios

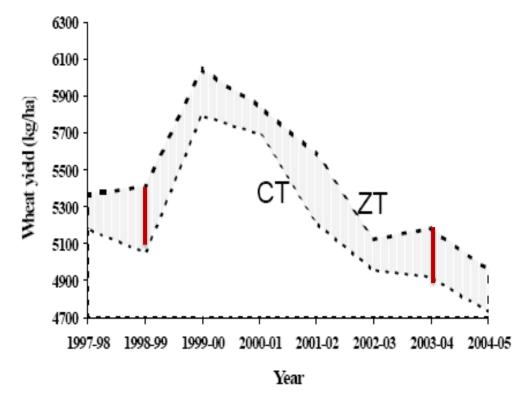
- Alphaproteobacteria-Nitrifying (Nitrosomonas, nitrobacter), Rhizobium
- Gammaprotobacteria- N fixation (Azotobacter), Pseudomonas
- Betaprotobacteria- S oxidizing- thiobacillus
- Fermicutes- PGPR-Bacillus



Choudhary et al (2018)

Adapting to Climatic Risks: Direct Seeded Rice

CA in Wheat Systems Adapting to Terminal Heat

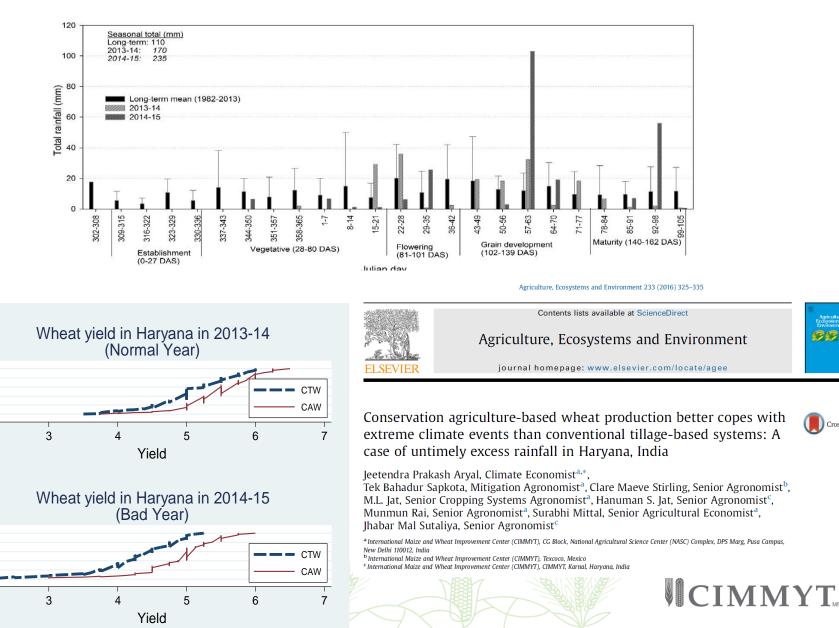


Conservation Agriculture and Wheat Yields Under Variable Climatic Conditions

March 2004 Heat wave Effects on Wheat Production

Wheat yields under ZT and CT in different years in NW IGP

State	Yield Ioss, %	Production loss, million
		tons
Uttranchal	8.60	0.066
Punjab	8.32	1.287
Haryana	7.62	0.704
Uttar Pradesh	6.75	1.720
Himachal Pradesh	5.79	0.033
Bihar	4.73	0.230
Rajasthan	3.87	0.213
Madhya Pradesh	1.11	0.084
Maharashtra	0.00	0.000
West Bengal	0.00	0.000
India		4.387



Source: Gupta et al (2007)

No-till Wheat Under Extreme Climate Risks: (Excess Rains at Wheat Grain Filling in 2014-15)

Landscape Scale Evidence on How CA is Climate Smart : a case of climate risks in wheat during 2014-15 in Western IGP

.2.4.6.8

.2.4.6.8

0

2

0

2

CrossMark

January 2019: Ludhiana, India

CA in Maize Systems: Adapting to Climate Risks (200+ mm in 3 days in end of June 2017) in Haryana, India

Source: Jat et al (2018)

India Has Profitable Alternatives to Crop Burning That Can Help Farmers and Reduce Air Pollution Substitution with CA based Technological Options

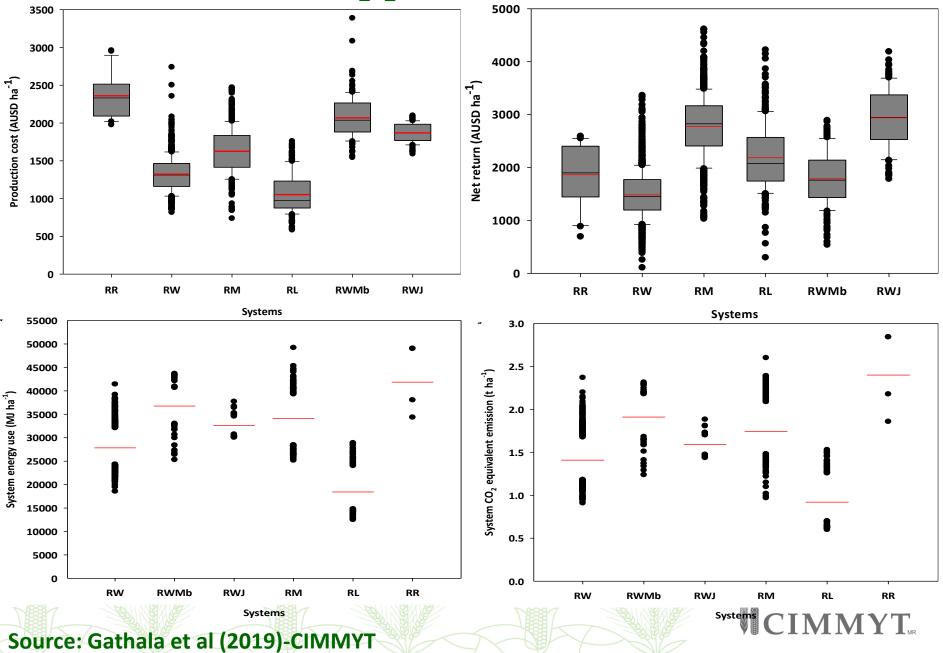
Α Happy Seeder Happy Seeder + SMS Bale + Zero Till Burn + Zero Till Bale + Rotavate Burn + Rotavate Bale + Disc Harrow Burn + Disc Harrow Incorporate + Rotavate Incorporate + Plow 40.000 60.000 20.000 0 Farmer Profit (INR ha-1 year-1)

Shyamsundar, Springer, Tallis, Polasky, Skiba, Jat et al, Science- Under process

80.000

CA in Cotton-Wheat Systems

Wheat yield loss (%) in 2009-10 (Terminal Heat) over 2008-09 in Indian Punjab



- Cotton-wheat, 2nd largest wheat systems in South Asia (>4.5 mha)
- In CW system, wheat is more prone to terminal heat than that of RW

• CA based intensification through relay planting

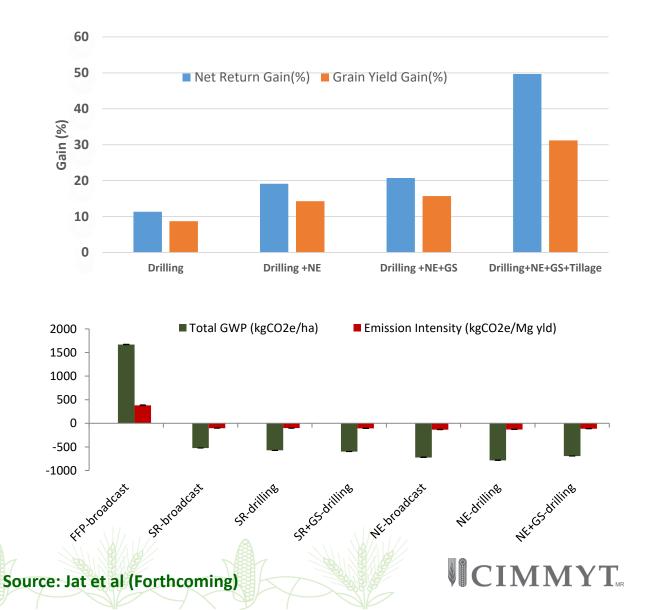
[Expl. Agric. 49: 19-30 (2013); Expl. Agric. (2016); Field Crops Res. 199: 31-41(2016); Applied Engg. Agric. 32: 341-352 (2016)]

Substitution opportunities: Eastern IGP

Windows of Opportunity for Sustainable Intensification through CA based system optimization approach

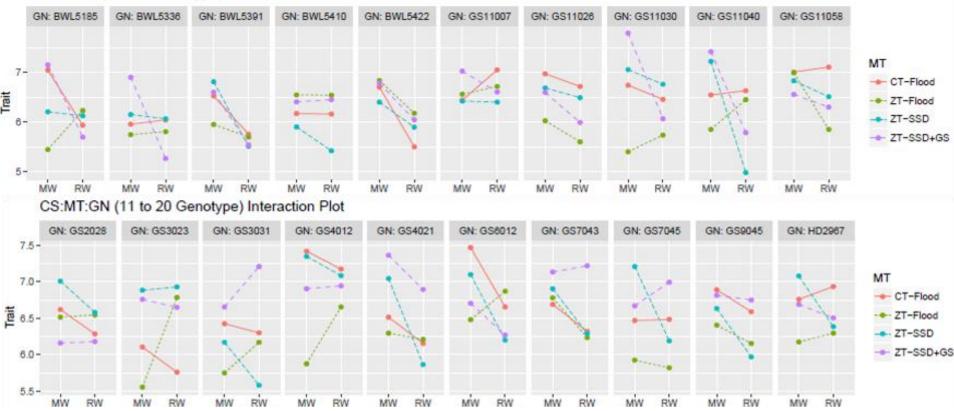
- System approach solutions
- High system productivity, profits, resource (water, nutrient) use efficiency
- Ensuring nutrition through legumes
- System sustainability and soil resilience

Innovative packaging for sustainable intensification portfolio (CA+ Diversification+ precision water & N)


Scenarios	Grain yiel (t ha ⁻¹)	d		Irrigation water use (mm ha ⁻¹)		
	Rice/ Maize	Wheat	System	Rice/ Maize	Wheat	System
Conv RW system-Flood	7.04a	5.68b	13.36b	1886a	435 a	2321 a
CA- RW system-Flood	5.87b	6.47a	13.06b	1447b	385a	1832b
CA- RW system+ SSDI	6.30b	6.70a	13.75a	785c	207b	992c
CA- MW system- Flood	7.14a	6.51a	14.38a	110d	372a	482d
CA -MW system + SSDI	7.48 a	6.59a	14.81a	85d	198b	283e

Source: ICAR-CSSRI-CIMMYT Collaborative Research @ Karnal, Haryana, India

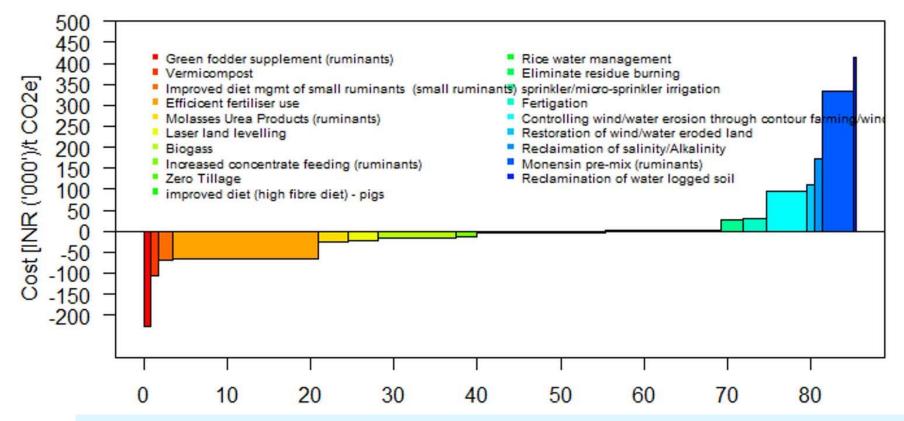
Precision Nutrient Management in CA: Example from *Eastern IGP*


Green solutions for addressing the food-energy-water (FEW) nexus in western IGP

Scenario	System yield (rice eq) (t/ha)	System irrigation water use (cm)	WPi (kg grain m ⁻³ water)	Net return, (Rs/ha/yr)	Energy use (kWh)	GHG (Kg CO ₂ eq. ha ⁻¹ year ⁻¹
RWCT-FP	11.79cd	208.61a	0.58e	128402	3995	3680
RWZT-FL	11.72d	193.22b	0.61e	135338	3702	3530
RWZT-SSD	12.06c	109.98c	1.11d	143058	3551	0
MWCT-FP	11.87cd	75.38d	1.60c	123305	1665	1655
MWPB-FU	12.43b	61.70e	2.03b	138324	1356	1348
MWPB-SSD	12.93a	35.14f	3.70a	147612	1196	0

Jat et al (2018): CIMMYT-BISA-PAU Collaborative Research @ Ludhiana, Punjab, India

Genotype x Environment x Management: Opportunities for realizing yield potential


CS:MT:GN (1 to 10 Genotype) Interaction Plot

- Significant interactions of genotypes with cropping systems and management
- For targeting genotypes for future agronomic domains considering future residue scenario, G x E x M research is important for realizing the potential of genotypes

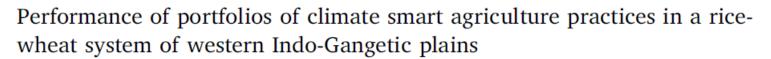
Source: Sidhu, Jat et al

Cost-effective opportunities for climate change mitigation in Indian Agriculture: NRM/CA systems on lead

- Technical Mitigation potential = 85.5 MtCO₂e/year
- 40 MtCO₂e/year is related to NRM specially CA, nutrient, water mgt
- 80% of mitigation potential achieved via cost saving options

Sapkota, Vetter, Jat et al; Science of the Total Environment 655 (2019) 1342–1354

Moving from Single Technology to Portfolio of Practices


Agricultural Water Management 202 (2018) 122-133

Contents lists available at ScienceDirect

Agricultural Water Management

journal homepage: www.elsevier.com/locate/agwat

CIMMYT

躢

Agricultural

Water Management

S.K. Kakraliya^a, H.S. Jat^b, Ishwar Singh^a, Tek B. Sapkota^b, Love K. Singh^c, Jhabar M. Sutaliya^b, Parbodh C. Sharma^d, R.D. Jat^b, Meena Choudhary^e, Santiago Lopez-Ridaura^f, M.L. Jat^{b,*}

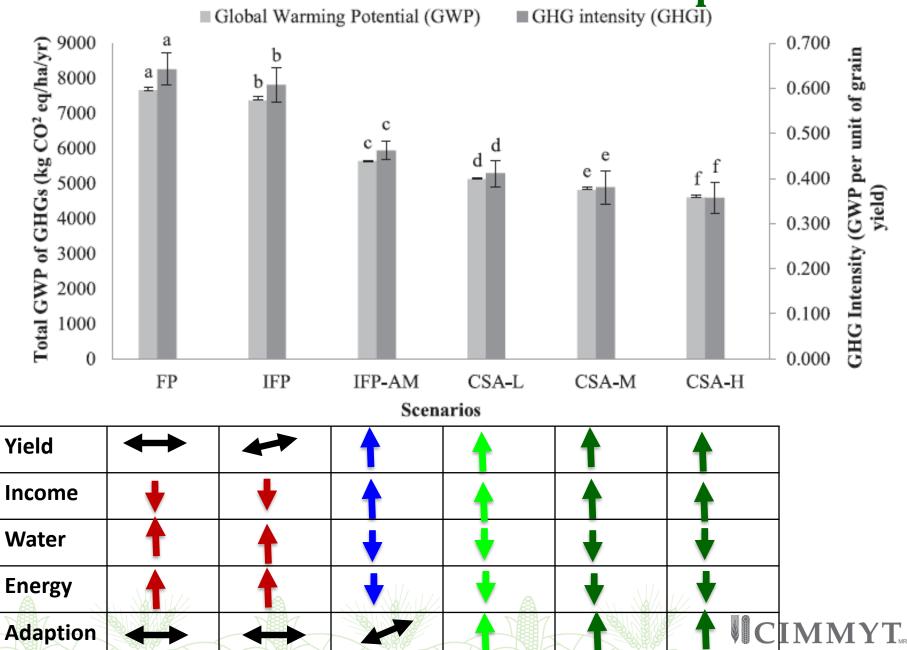
^a Chaudhary Charan Singh Haryana Agriculture University (CCSHAU), Hisar, India

^b International Maize and Wheat Improvement Centre (CIMMYT), NASC Complex, New Delhi, India

^c Borlaug Institute for South Asia (BISA), CIMMYT, Ludhiana, Punjab, India

^d ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, India

e SKN Agriculture University, Jobner, Jaipur, Rajasthan, India

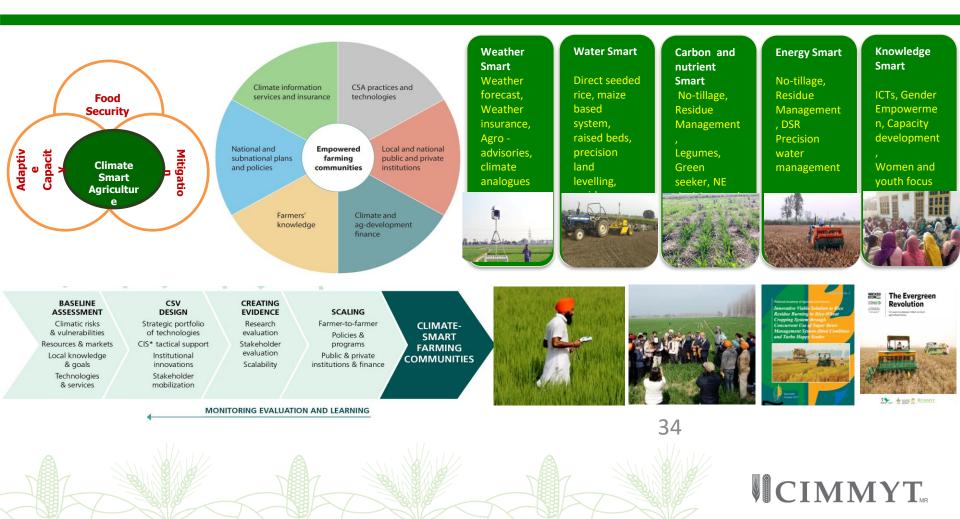

^f International Maize and Wheat Improvement Centre (CIMMYT), El Batan, Texcoco, Mexico

ARTICLE INFO

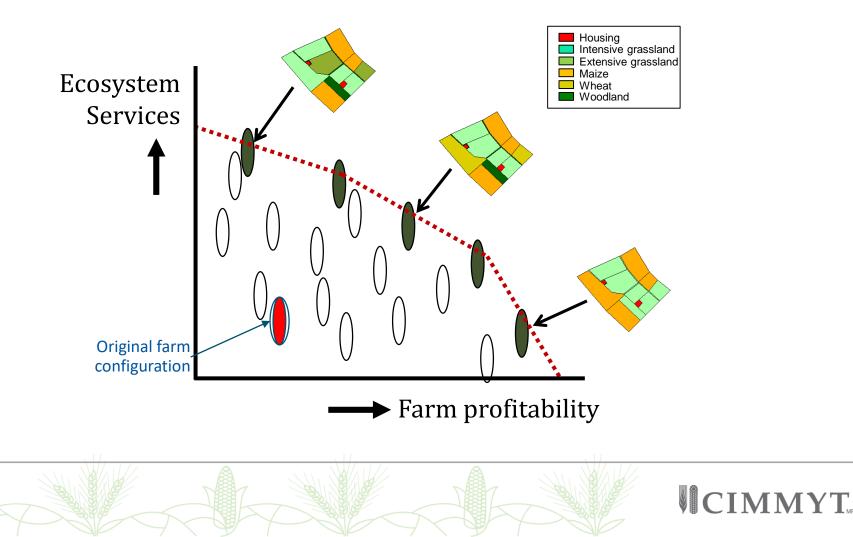
ABSTRACT

Keywords: Portfolio of management practices Systems productivity Water productivity Several resource use efficient technologies and practices have been developed and deployed to address the challenges related to natural resource degradation and climatic risks management in rice-wheat (RW) rotation of Indo-Gangetic Plains (IGP). However, the practices applied in isolation may not be effective as much as in combination due to changing input responses under varied weather abnormalities. Therefore, a multi-location farmer's parti-

Portfolio of Practices-Example



CSA Matrix of different technologies


1													
I NAPS	Adapt (3)	Mitig (3)	Yield/i ncome (3)	Mat. Tech Dev (2)	Adop. dom (2)	Farmer	gender imnl	Innova tion strengt h (1)	Lever by R&D inst. (1)	Policy backup (1)	Results with No weights (Maximum of 40 points)	Results with No weights as fraction of maximum attainable	weighted
LLL	2	3	2	4	3	4	3	3	4	4	1 32	0.80	64
NT	3	3	2	4	3	3	3	3	3	2	29	0.73	61
RM-HS	3	4	2	4	3	3	3	3	3	4	1 32	0.80	66
DSR	3	3	1	3	3	2	3	3	2	2	4 25	0.63	52
PNM-NE	2	4	2	4	3	2	3	3	1	2	4 26	0.65	56
PNM-GS	2	4	2	4	3	2	3	3	1	1	4 25	0.63	55
Legume	2	3	3	3	3	2	3	3	3	2	4 27	0.68	56
RBP	3	2	2	4	4	2	2	3	2	1	4 25	0.63	53
AWD	3	3	2	4	4	2	3	3	2	1	4 27	0.68	58
Agro-forestry	3	4	2	3	3	2	3	3	2	3	28	0.70	59
STW-Var	3	1	2	4	4	3	3	3	3	2	28	0.70	57
STM-Var	3	1	2	4	4	3	3	3	2	2	4 27	0.68	56
STR-Var	3	1	2	4	4	3	3	3	3	2	28	0.70	5

CLIMATE SMART VILLAGE (CSV) PROGRAM

"A community based holistic approach for empowering farm families for building resilience against climatic risks"

Science of Scaling for impact at Scale Targeting with Clarity of Objectives

Business Models for Scaling

Journal of Cleaner Production 210 (2019) 1109-1119

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Business models of SMEs as a mechanism for scaling climate smart technologies: The case of Punjab, India

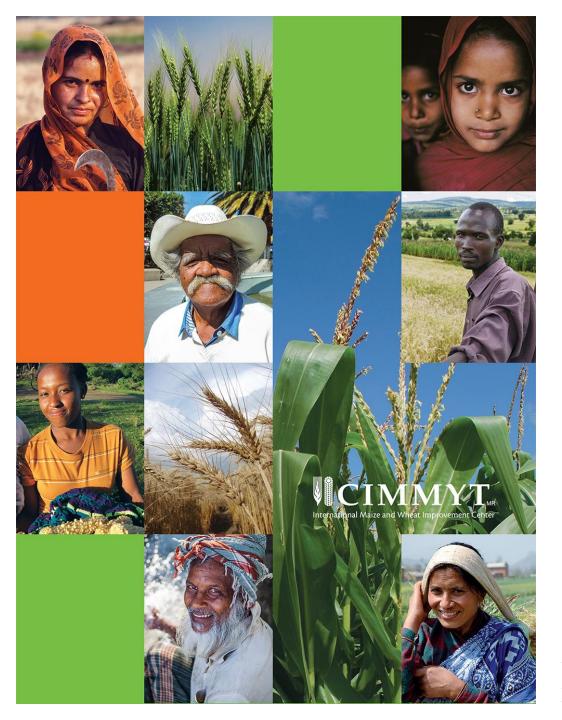
A.E. Groot ^{a, *}, J.S. Bolt ^a, H.S. Jat ^b, M.L. Jat ^c, M. Kumar ^c, T. Agarwal ^c, V. Blok ^d

^a Climate Change Group, Wageningen Environmental Research, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB the Netherlands

^b ICAR-Central Soil Salinity Research Institute (CSSR), Karnal, Haryana, India

^c Researcher International Maize and Wheat Improvement Centre (CIMMYT), NASC Complex, New Delhi, India

^d Management Studies Group, Wageningen University, Wageningen University & Research, the Netherlands


Tuesday, December 25, 2018

Impact at scale

Punjab agriculture secretary: Direct sowing in 17 per cent of wheat area

800000 ha in Punjab & Haryana in

2018-19

Thank you for your interest!

Photo Credits (top left to bottom right): Julia Cumes/CIMMYT, Awais Yaqub/CIMMYT, CIMMYT archives, Marcelo Ortiz/CIMMYT, David Hansen/University of Minnesota, CIMMYT archives, CIMMYT archives (maize), Ranak Martin/CIMMYT, CIMMYT archives.