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Introduction

“Today more people are hungry than entire population of
South Asia at beginning of Green Revolution (1970)”

D World hunger rising in 2016 for first time this century

D 815 million chronically undernourished – up to 38 million

D 489 million located in countries affected by conflicts

“Hunger and Malnutrition kill 1.5 more people than AIDS,
Tuberculosis, Diabetes, Road accidents, Malaria and all
natural disasters combined (US Department of State)”



Wheat Breeding in CIMMYT

Challenge: 1.6% increase in global production annually;
i.e. average yield to rise from 3 t/ha to 5 t/ha by 2050

D Globally the most important food crop

D Food for 2.5 billion poor (< US$2) in 89 countries

D Important source of calories and protein in developing
countries

D Product Lines as source of parents and/or for direct release
D Over 60 million ha:

D Climate change;
D Depleting ground water;
D Energy and fertilizer costs; and
D Emerging diseases and pests



Priorities Traits

D High and stable yield potential

D Durable resistance to rust fungi

D Water use efficiency

D Drought tolerance

D Heat tolerance

D Appropriate end-use quality

D Enhanced Zn and Fe content (South Asia)



Genotype x Environment x Management x Trait x . . .

D Evaluate the repeatability of certain types of interaction
D approach the similarities among test locations; and

D identify patterns of interactions across years.

D Target Definition: concept of Mega-Environment (ME)
D Broad area (not contiguous but frequently transcontinental);

D Climatic factors;

D Similar main stress (biotic/abiotic);

D Cropping system; and

D Consumer preferences



Pattern Analysis

D Multi-environment trials spans over years (GLY array)

yijk = µ+ xijk

D Assumes that genotypes in a year are representative

D Distances/Correlation among locations within years

D Classification and Ordination of environments across year

D Dii′ are dissimilarities

D aii′ are similarities

D Ds and as are complementary (Gower complements)

D . . .dimensional reduction methods (Eigen decomposition)

∗ DeLacy (90’s) collection of papers



Mega Environments

ME Latitude Moisture Weather Season Area

1 < 35◦ Irrigated Temperate Autumn 30
2 < 35◦ High Rainfall Temperate Autumn 5
3 < 35◦ High Rainfall Temperate Autumn
4A < 35◦ Low Rainfall Temperate Autumn 15
4B < 35◦ Low Rainfall Temperate Autumn
4C < 35◦ Residual Rainfall Hot Autumn
5A < 35◦ High Rainfall Hot Autumn 10
5B < 35◦ Irrigated Hot Autumn
6 > 35◦ Moderate Rainfall Temperate Spring

Total 60



Resistance to key Diseases

D Septoria leaf blight (ME2)

D Spot Blotch (ME5)

D Tan Spot (ME4)

D Fusarium – head scab and mycotoxins (ME2/4/5)

D Karnal bunt (ME1)

D Root rots and nematodes (ME4)

D Wheat blast new threat in South Asia (ME5)



Strategy (5-year cycle)

Up-scaled breeding and testing to deliver genetic gain. . .

D Parental diversity
D High value parents as donors for different traits

D Crosses: ~1500 Biparental, ~500 Top and ~500 Back

D Targeted utilization of new genes, traits and germplasm

D Large population sizes (depends)

D Selected-bulk selection scheme
D Selection of progenies in segregation generations

“Each selection adds to the gains for more than one trait”



Borlaug’s Shuttle Breeding

●

●

●

●

Leaf rust, Fusarium

Yield, WUE, heat, Stem rust (not Ug99)

Stem rust (Ug99), Yellow rust

Yellow rust, Septoria, Fusarium

Braun et al (1996) doi: 10.1007/BF00022843



Phases and Analysis

1st Year 2nd Year

Flat Sowing
Severe
Drought

Normal
Irrigated

Bed Sowing

Late Heat

Early Heat

Reduced
Irrigated

Normal
Irrigated

9044 lines, 323 RCBD
trials 2 reps, pedigree,
rows and columns

1092 lines, 39 RCBD
trials, 3 reps, pedigree,
rows and columns

Obregón → global yield (r̄ = 0.77)



International Trials

D Elite Nursery annually distributed by CIMMYT to collaborators
D ~200 sites with 50 lines (+checks) in α−lattice

●
●

●

●

●

●

●

●

●

●●
●

●
●●

●●●

●

●

●

●●

●●

●●

●
●

●●
●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ● ●

●

●

●
●

●●

●
●

●●

●●

●

●

●
●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●



Genetic Progress (gains)

Crespo-Herrera et al (2017) doi: 10.2135/cropsci2016.06.0553



Genomic Selection

D Biparental QTL has low power for marker–trait

D Conventional pedigree does not account for Mendelian
Sampling

D Complications:
D size and diversity of training populations;

D heritability of the target trait;

D dimensionality of data (p � n); and

D multicolinearity among markers

R = i × h × σA
t

Crossa et al (2017) doi: 10.1016/j.tplants.2017.08.011



Accessing Accuracy

D Four basic scenarios:
D Tested and Untested Lines (observed/unobserved)

D Tested and Untested Environments (observed/unobserved)

D Predict lines in environments where they were not tested (CV1)

D Predict lines in some environments but not in others (CV2)

D Predict lines in untested environments (CV0)

D Try to mimic sparse testing

Burgueño et al (2012) doi: 10.2135/cropsci2011.06.0299



Rapid Cycling

Pop (F2:3)

GSC0

GSC1

GSC2

GSC3

PedC0

PedF3:4

PedF4:5

PedF5:6

Testcrosses

D GS 13.4% of gains against checks

D GS higher gains than pedigree (7.3%)

D GS (drought) 2x higher gains than others

D Alternative considering:

D cost markers vs phenotyping

D difficulties to phenotype stress

D opportunity to study inheritance

Beyene et al (2014) doi: 10.2135/cropsci2014.07.0460



“Genomic” by Environment Interaction I
all marker’s ECs interactions becomes infeasible to manage

y ∼ µ+ wij + g + wg + ε with wg i .i .d .∼ N(0,ZgGZ ′g ◦ Ωgw )

D With interactions (wg):
D Accuracy: 35/21% better predictions (CV1/CV2)

D Agreement: 29/45% on top 20% (CV1/CV2)

D Variances: reduces error of about 33%

the proposed model can be useful for breeding as well
as for providing agronomic recommendations tailored to
conditions

Jarquin et al (2014) doi: 10.1007/s00122-013-2243-1



“Genomic” by Environment Interaction II
marker effects: stratified, across or interaction ?

y ∼ µ+ x(β0 + βi ) + ε

Environment Stratified Across Interaction Change (%)

1 0.471 0.234 0.438 -7 88
2 0.425 0.356 0.413 -3 16
3 0.509 0.386 0.489 -4 27
4 0.451 0.396 0.442 -2 12

Lopez-Cruz et al (2015) doi: 10.1534/g3.114.016097



Genomic Selection I
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Crossa et al (2016) doi: 10.1534/g3.116.029637



Genomic Selection II (~46,000 lines from 2013 to 18)
D 1st year yield trials average accuracies (r):

D within Yield (0.67) and Stem rust (0.60)
D across Yield (0.42) and Stem rust (0.50)

D 2nd year yield trials accuracies (r):

Yield Others

within across within across
Bed 5IR 0.59 0.15 Flour yield 0.61 0.43
Flat 5IR 0.60 0.05 Loaf volume 0.72 0.50
Bed 2IR 0.59 0.14 Septoria 0.57 0.17
Flat drip 0.59 0.09 Spot blotch 0.55 0.24
Late heat 0.60 0.17 Stem rust 0.79 0.60



Fine tunning . . . cost (density) × Accuracy

D high-coverage (less missing) an average increase of 0.02

D another filter pairwise correlation
D ρ = 0.5 decreases of 0.05

D ρ = 0.3 decreases of 0.23



Loss Functions

D Usually, selection is by truncation. . .

D Minimize risk & Maximize gains

D Proposition: assess the cost of decision (loss function)
D better performance in long-term selection for single-trait
D gains for all traits in multi-trait (even with - correlations)
D no differences among loss functions w.r.t variance components

Villar-Hernández et al (2018) doi: 10.1534/g3.118.200430



Multi-trait

three way interaction (genotype x trait x environment)

D Results vary according to the type of prediction (CV1/CV2)

D When traits are highly correlated → high prediction accuracy
D Unstructured � Diagonal � Identity

D Realistically mimic the data in plant breeding programs

D Work under development e.g., include other structures (FA)

Montesino-Lopez et al (2016) doi: 10.1534/g3.116.032359



Generalized Linear Models

appropriate genomic models for data rather than gaussian

D Able to analyse scales, binary and ordinal, counts and β data

D Transformations/Approximations → bias with low power

D Account the nonlinear relationship between responses

D Specificities: discreteness, non-negativity, and overdispersion

D Superior performance in terms of prediction accuracy

Montesino-Lopez et al (2016) doi: 10.1534/g3.116.028118
Montesino-Lopez et al (2017) doi: 10.1534/g3.117.039974



Artificial Intelligence

“All models are wrong, but some are useful” (Box)

D Neural Networks: parallel chain of GLMs

D Only aims to predict new data as accurately as possible

D One layer is close to penalized regression

D AI will be better than parametric whenever the model is wrong

D Possibility to merge non-standard phenotypes e.g., images

D Easily acessible keras/TensorFlow

Montesino-Lopez et al (2019) doi: 10.1534/g3.119.300585
Pérez-Enciso & Zingaretti (2019) doi: 10.3390/genes10070553



Genomic Association (Inheritance ?)

D 44% of the identified QTLs coincided with previous reports

D Some regions were consistents across environments (stability?)

D Selection stronger than drift in driving frequencies (not shown)

D Additional results for quality and diseases resistance



High Throughput Phenotyping I

NDVI = NIR − Red
NIR + Red

Kumar et al (2016) doi: 10.1007/s11032-016-0515-6



High Throughput Phenotyping II

Data: Model:

yi ∼
∫

xi (t)β(t)dt + εi

Prediction of yield and other traits by means of FRA using
hyperspectral images can provide similar and even better
accuracies than conventional techniques

Montesino-Lopez et al (2016) doi: 10.1186/s13007-016-0154-2
Montesino-Lopez et al (2017) doi: 10.1186/s13007-017-0212-4
Montesino-Lopez et al (2018) doi: 10.1186/s13007-018-0314-7



In Silico Quantitative Genetics

D Much of the learning process is try & error

D Usually we need to analyse real data under clear scenarios

D Maybe, new methods apply to new scenarios

D Several of what was shown was tested by simulations
D Capacity to efficiently represent full genomes

D Integrates simulation & analysis (R environment)

D low- and high-level interfaces → great flexibility

Toledo et al (2019) doi: 10.1534/g3.119.400373



Data and Software Availability

D CIMMYT institutional repository of datasets and software:

https://data.cimmyt.org

D Almost all mentioned data and software can be found there
D allowed to use for research, teaching and publications

D Collection of softwares for common analysis in breeding
D Multi-environment Trial analysis;

D Genotype by Environment Interaction analysis

D . . .



Success & Technology Adoption

D “international” performance of genotypes guide new crossings
D giant recurrent selection scheme

Release CGIAR % Area Yield Quality

China 226 121 54 28 78 17
Europe 2,205 1,225 56 82 49 46
Former URSS 318 154 48 25 45 20
Latin American 630 455 72 78 50 50
South Asia 320 293 92 98 30 21
Sub-Saharan 291 211 73 97 47 15
W. Asia & N. Africa 614 434 71 98 47 30
World 4,604 2,893 63 71 48 35

Lantican et al (2016) isbn: 978-607-8263-55-4



Final Remarks

D Biometry findings are changing breeding operations daily

D Proper analysis increase genetic gains and understanding

D REPL read-eval-print loop for new tools and methods

D Importance of wide evaluations under target environment

D Impactful international collaboration:

Without this unprecedented cooperation none of this work
would have been possible.

D Interdisciplinary research: computer science, mathematics,
statistics, quantitative genetics and bioinformatics
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