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RESEARCH

In a two-stage context, Cerón-Rojas et al. (2019) described 
and evaluated the unconstrained optimum and decorrelated multi-

stage linear phenotypic selection indices (OMLPSI and DMLPSI, 
respectively) theory and concluded that OMLPSI efficiency when 
predicting the net genetic merit was higher than the DMLPSI 
efficiency and that breeders should use the OMLPSI when 
making phenotypic selection. The main difference between the 
two indices is that although the OMLPSI takes into consider-
ation the correlation values among stages when predicting the 
net genetic merit, the DMLPSI imposes the restriction that the 
correlation values among stages be null when it makes the predic-
tion. The main characteristic of the OMLPSI (DMLPSI) in a 
two-stage context is that at Stage 1, OMLPSI (DMLPSI) is a 
partial index, but at Stage 2, it is a complete index. This selec-
tion procedure is called the part and whole index selection method 
(Young, 1964; Saxton, 1983) and is valid for any number of stages. 
The OMLPSI (DMLPSI) is more efficient than the independent 
culling method because it uses all available information at each 
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Some authors have evaluated the unconstrained 
optimum and decorrelated multistage linear 
phenotypic selection indices (OMLPSI and 
DMLPSI, respectively) theory. We extended this 
index theory to the constrained multistage linear 
phenotypic selection index context, where we 
denoted OMLPSI and DMLPSI as OCMLPSI 
and DCMLPSI, respectively. The OCMLPSI 
(DCMLPSI) is the most general multistage index 
and includes the OMLPSI (DMLPSI) as a partic-
ular case. The OCMLPSI (DCMLPSI) predicts 
the individual net genetic merit at different indi-
vidual ages and allows imposing constraints on 
the genetic gains to make some traits change 
their mean values based on a predetermined 
level, while the rest of them remain without 
restrictions. The OCMLPSI takes into consider-
ation the index correlation values among stages, 
whereas the DCMLPSI imposes the restriction 
that the index correlation values among stages 
be null. The criteria to evaluate OCMLPSI effi-
ciency vs. DCMLPSI efficiency were that the 
total response of each index must be lower than 
or equal to the single-stage constrained linear 
phenotypic selection index response and that 
the expected genetic gain per trait values should 
be similar to the constraints imposed by the 
breeder. We used one real and one simulated 
dataset to validate the efficiency of the indices. 
The results indicated that OCMLPSI accuracy 
when predicting the selection response and 
expected genetic gain per trait was higher than 
DCMLPSI accuracy when predicting them. 
Thus, breeders should use the OCMLPSI when 
making a phenotypic selection.
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stage and incorporates the genetic correlations between 
traits in the prediction.

The OMLPSI (DMLPSI) combines the single-stage 
linear phenotypic selection index (LPSI) theory (Smith, 
1936; Hazel, 1943) with the independent culling selec-
tion method (Cochran, 1951; Young, 1964; Cunningham, 
1975; Xu and Muir, 1992) and is useful for selecting 
more than one trait in the multistage selection context. 
Breeders apply the OMLPSI (DMLPSI) mainly in animal 
and tree breeding where, due to early culling, OMLPSI 
(DMLPSI) is a cost-saving strategy for improving several 
traits because they do not need to measure all traits at each 
stage. The OMLPSI (DMLPSI) increases selection inten-
sity on traits measured at an earlier age, and, with fixed 
facilities, this index selects a greater number of individuals 
at an earlier age (Xu and Muir, 1991, 1992).

The OMLPSI values may have a non-normal distri-
bution after the first selection stage, and to derive selection 
intensities for more than two stages, this index requires 
numeric multiple integration techniques. To solve this 
problem, the DMLPSI minimizes the mean squared 
difference between the index and the net genetic merit 
at each stage under the restriction that the covariance 
between the DMLPSI values at different stages be zero, 
thus preventing the correlation between DMLPSI values 
at different stages. Under this restriction, truncation 
points and selection intensities can be determined for a 
fixed total proportion before the breeder carries out selec-
tion, and the selected individual index values after the first 
selection stage may be normally distributed (Xu and Muir, 
1992). Nevertheless, due to the indicated restriction, the 
DMLPSI selection response and accuracy after the first 
stage could be lower than the OMLPSI selection response.

One additional problem with the OMLPSI (DMLPSI) 
expected genetic gain per trait (or multitrait selection 
response) is that its values can increase or decrease in a 
positive or negative direction without control. In the 
single-stage context, Kempthorne and Nordskog (1959) 
developed the restricted LPSI that allows imposing 
restrictions equal to zero on the expected genetic gain of 
some traits. Other authors (Mallard, 1972; Harville, 1975; 
Tallis, 1985) extended the Kempthorne and Nordskog 
(1959) approach and developed a single-stage constrained 
LPSI (SCLPSI) that attempts to make some traits change 
their expected genetic gain values based on a predeter-
mined level while the rest of the traits remain without 
restrictions. Itoh and Yamada (1987) showed that in reality 
there is only one optimum SCLPSI; that is, the Mallard 
(1972), Harville (1975), and Tallis (1985) indices are the 
same. Xie and Xu (1997) and Cerón-Rojas and Crossa 
(2018, Chapter 9) extended the DMLPSI and OMLPSI 
to the constrained context, respectively. The Xie and Xu 
(1997) index, however, is not an optimum constrained 
multistage index because their approach is based on the 

single-stage Tallis (1962) constrained index theory, which 
is not an optimum index (see Cerón-Rojas and Crossa, 
2018, Chapter 3, for details).

Based on the Mallard (1972) constrained phenotypic 
single-stage index theory, which is an optimum single-
stage constrained index (see Cerón-Rojas and Crossa, 
2018, Chapter 3, for details), in this work, we extend the 
OMLPSI and DMLPSI to the constrained multistage selec-
tion context. We will denote the OMLPSI and DMLPSI 
as OCMLPSI (optimum constrained multistage LPSI) and 
DCMLPSI (decorrelated constrained multistage LPSI), 
respectively. The main difference between the OCMLPSI 
and the DCMLPSI is that the OCMLPSI imposes only one 
restriction when solving the OMLPSI equations to obtain 
its vector of coefficients, whereas the DCMLPSI imposes 
two restrictions. The OCMLPSI solves the OMLPSI 
equations subject to the restriction that the covariance 
between the OCMLPSI and some linear combinations of 
the genotypes involved be equal to a vector of predeter-
mined proportional gains (or constraints) imposed by the 
breeder, whereas the DCMLPSI imposes the additional 
restriction that the covariance between DCMLPSI values 
at different stages be zero. This additional restriction 
negatively affects the DCMLPSI selection response and 
expected genetic gain values per trait after the first stage.

One of the purposes of conducting a multistage 
selection is to reduce the cost and still obtain a reasonable 
gain. This means that the OCMLPSI and DCMLPSI 
could also be optimized with respect to aggregated 
economic gain and cost associated with obtain measures 
on each trait, but in this work, that problem was not 
considered. In a two-stage context, Namkoong (1970) 
has detailed how this last problem could be solved for the 
OMLPSI, whereas Xu and Muir (1992) have described 
that problem in the DMLPSI context.

We compared the relative efficiency of OCMLPSI 
and DCMLPSI under the assumption that the net genetic 
merit and the OCMLPSI and DCMLPSI values have joint 
multivariate normal distribution. We corroborated the 
normality assumption at Stage 2 using graphical methods 
and normality tests (Shapiro and Wilk, 1965; Mardia, 
1980). Under this assumption, the regression of the net 
genetic merit on any linear function of the phenotypic 
values is linear (Kempthorne and Nordskog, 1959) and the 
selection response and expected genetic gain per trait results 
for two or more stages can be summarized arithmetically 
(Cochran, 1951; Young, 1964). We used two criteria to 
compare the efficiency of both indices. The first criterion 
was that the total selection response of each index must 
be lower than or equal to the SCLPSI selection response 
(Young, 1964; Saxton, 1983; Cerón-Rojas et al., 2019). 
The second criterion was that the expected genetic gain per 
trait values should be similar to the predetermined gains 
or constraints imposed by the breeder. We used one real 
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(Xu and Muir, 1992; Cerón-Rojas et al., 2019). This last result 
indicates that until Stage N − 1, each index is partial, but at 
Stage N, IN = b¢1x1 + b¢2x2 + … +b¢NxN is a whole index.

Young (1964) called the foregoing procedure the part and 
whole index selection method. Xu and Muir (1992) called that 
selection procedure selection index updating because as traits 
become available, each subsequent index contains all traits 
available up to that stage. This method is more efficient than 
the independent culling selection method because it uses the 
genetic correlation among traits and all available information 
at each stage to predict the net genetic merit (Saxton, 1983). 
In addition, the independent culling selection method cannot 
impose constraints on the expected genetic gain of each trait, as 
the constrained index does.

Genotypic and Phenotypic Covariance Matrices
Let g ¢ = [g1   g2   …   gn], x¢i = [z1   z2   …   

inz ], and y¢ = 
[y1   y2   …   yn] be vectors, as defined in the above subsections. 
Thus, the genotypic covariance matrix of vectors xi and g for 
N stages is 
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whereas the phenotypic covariance matrix of vector y is Var(y) 
= {Pij} = P, where Cov(xi, g) = Gi is the ith submatrix of G, 
and Pij = Cov(xi, xj) is the ijth (i, j = 1, 2, …, N ) submatrix of P.

To obtain the OCMLPSI (DCMLPSI) parameters, we 
need the following matrices:


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which are submatrices of P and G, respectively. In Appendix A 
(Eq. [A1] to [A3]), we describe a method to estimate P and G.

Now suppose that the number of traits selected up to Stage 
i − 1 is ni – 1 and that at Stage i we select ni traits, such that ni £ 
ni − 1 (or ni – 1 < ni). Then, according to the part and whole index 
selection method, at Stage i, we shall have ni – 1 + ni traits. This 
means that the phenotypic covariance matrix [Q(i – 1)i] obtained 
with the ni – 1 traits selected at Stage i – 1 and the total ni – 1 + ni 
traits will be of size ni – 1(ni – 1 + ni) and can be written as

Q(i – 1)i = {sjc}	 [1b]

where sjc is the jcth phenotypic covariance value for j = 1, 2, 
…, ni – 1 and c = 1, 2, …, (ni – 1 + ni). In addition, ni – 1 and (ni – 1 

and one simulated dataset, each with four traits, to validate 
OCMLPSI efficiency vs. DCMLPSI efficiency. The results 
of both datasets indicated that the OCMLPSI is the most 
efficient index for predicting the net genetic merit, and 
its accuracy when predicting the selection response and 
estimating the expected genetic gain per trait was higher 
than the DCMLPSI accuracy when predicting the selec-
tion response and estimating the expected genetic gain per 
trait. Thus, breeders should use OCMLPSI when making a 
constrained phenotypic selection.

Results of this study are the first ones comparing 
(with real and simulated data) the relative efficiencies of 
the OCMLPSI vs. DCMLPSI using the total selection 
response and expected genetic gain pert trait as the main 
criteria to compare the efficiency of both indices.

MATERIALS AND METHODS
Methods
Objectives of the Constrained Multistage Linear 
Phenotypic Selection Indices
Let mj be the population mean of the jth trait before selection. 
One of the main OCMLPSI (DCMLPSI) objectives is to change 
mj to mj + dj, where dj is the jth ( j = 1, 2, …, r; r = the number 
of constrained traits) constrained trait or the jth predetermined 
proportional gain imposed by the breeder on the OCMLPSI 
(DCMLPSI) expected genetic gain per trait (Mallard, 1972; 
Cerón-Rojas and Crossa, 2018, Chapter 3). Additional 
OCMLPSI (DCMLPSI) objectives are (i) to maximize the selec-
tion response; (ii) to predict the net genetic merit (H = w¢g, 
where w¢ = [w1   w2   …   wn] and g¢ = [g1   g2   …   gn] are 1 ´ 
n vectors of economic weights and true unobservable breeding 
values, respectively); and (iii) to select individuals with the 
highest H values as parents of the next generation.

The Part and Whole Phenotypic Index 
Selection Method
Let y¢ = [y1   y2   …   yn] be a 1 ´ n vector of scores for n traits 
and assume that we can select only ni of them at Stage i (i = 1, 
2, …, N; N = number of stages) such that after N stages, n = 
n1 + n2 + … + nN, where ni < N < n. We can partition y into 
N subvectors as y¢ = [x1   x 2   …   xN], where x¢i = [y1   y2  
…  

iny ] is the subvector of y at Stage i (i = 1, 2, …, N ). This 
means that at this stage, the ith index is Ii = b i1yi1 + b i2yi2 + … 
+ 

iiin inyb  = b¢ixi, where b¢i = [b i1   b i2   …   
iinb ] is the index 

vector of coefficients, whereas xi was defined earlier. Let
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be a transforming matrix; then, for each stage, we can construct 
an index as 
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+ ni) are the numbers of rows and columns of matrix Q(i – 1)i, 
respectively. Equation [1b] indicates that Q(i – 1)i is a nonsquare 
and nonsymmetric matrix. Matrix Q(i – 1)i is useful for imposing 
the restrictions that make the DCMLPSI values independent 
among stages (see Cerón-Rojas et al., 2019, for details).

Selection Response at Stage i
At Stage i, the selection response (Ri) is the ith net genetic merit 
(H = w¢g) mean of the selected population and can be written as

ii i H HIR k s r= 	 [2]

where ki is the selection intensity (Xu and Muir, 1992; Cerón-
Rojas et al., 2019), sH = ′w Cw  is the standard deviation of 
H = w¢g, Var(g) = C is the covariance matrix of g, and 

iHIr  
is the correlation between H = w¢g and the index at Stage i (Ii 
= b¢ixi). For N stages, the total selection response is Rt = R1 
+ R2 + … + RN (Cochran, 1951; Young, 1964). Equation [2] 
indicates that the genetic gain that can be achieved in Ri by 
selecting for several traits simultaneously within a population of 
animals or plants is the product of ki, sH, and 

iHIr  (Kempthorne 
and Nordskog, 1959). Selection intensity is limited by the rate 
of reproduction of each species, whereas sH is beyond human 
control; hence, the greatest opportunity for increasing selection 
progress is by ensuring that 

iHIr  is as large as possible (Hazel 
1943). Equation [2] is a useful criterion for comparing the effi-
ciency of different types of indices to predict the net genetic 
merit (H = w¢g; e.g., OCMLPSI efficiency vs. DCMLPSI effi-
ciency). We would expect that the greater Eq. [2] is, the more 
effective OCMLPSI (DCMLPSI) is at predicting H = w¢g. 
In the multistage selection index context, however, one main 
restriction is that the whole OCMLPSI (DCMLPSI) selec-
tion response be lower than or equal to the SCLPSI response 
(Saxton, 1983; Cerón-Rojas et al., 2019).

Expected Genetic Gain per Trait at Stage i
The expected genetic gain per trait at Stage i (Ei, or multitrait 
selection response) is the covariance between the true breeding 
value vector (g) and the Ii = b¢ixi value weighted by its standard 
deviation (

iI i ii is ′= Qb b ) and multiplied by the selection 
intensity (ki), so that

i

i i
i i

I

k
s
′

=
A

E
b

 	 [3]

We defined all the parameters of Eq. [3] previously. In 
the univariate and single-stage breeding scheme, Eq. [3] is the 
same as the selection response. For N stages, the total expected 
genetic gain per trait is Et = E1 + E2 + … + EN (Cochran, 1951; 
Young, 1964).

In the OCMLPSI context, we will minimize the mean 
squared difference between the net genetic merit H = w¢g and 
the index Ii = b¢ixi {i.e., E(H – Ii)

2]} with respect to the vector 
of coefficients bi (i = 1, 2, …, N ) under the assumption that 
Eq. [3] values are equal to the dj ( j = 1, 2, …, r; r = number 
of constraints) values imposed by the breeder. The resulting 
vector of coefficients (bi) should maximize Eq. [2] and make the 
Eq. [3] values be near the dj value. In the DCMLPSI context, 
however, it is necessary to impose the additional restriction that 

the DCMLPSI values among stages are independent, as we shall 
see in the next two subsections.

The OCMLPSI Vector of Coefficients at Stage i
Let d¢ = [d1 d2 … dr] be a vector 1 ́  r of constraints or predeter-
mined proportional gains per trait imposed by the breeder, and 
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be a Mallard (1972) matrix of size (r – 1)r, where dj ( j = 1, 2, 
…, r) is the jth element of vector d¢. In addition, let U¢ be a 
Kempthorne and Nordskog (1959) matrix (n – r)n (n = number 
of traits and r = number of constraints) of 1s and 0s, where 1 
indicates that the trait is constrained and 0 indicates that the 
trait has no constraints (see Cerón-Rojas and Crossa, 2018, 
Chapter 3, for details). According to the single-stage Mallard 
(1972) constrained index theory, to obtain the OCMLPSI 
vector of coefficients at Stage i, we need to minimize the 
mean squared difference between the net genetic merit H 
= w ¢g and the index Ii = b ¢ixi {i.e., i.e., E(H – Ii)

2]} under 
the restrictions M¢ibI = 0, where M¢i = D¢U¢A¢i and A¢i was 
defined in Eq. [1a].

Suppose that matrices Qii, U, and A¢i, and vectors d and w are 
known at Stage i; then, it is necessary to minimize the function

( ), 2 2O i i ii i i i i if ′ ′ ′ ′= - +u Q wA u Mb b b b b 	 [4]

with respect to the vector of coefficients bi and the vector of 
Lagrange multipliers u¢ = [u1   u2   …   ur − 1]. The OCMLPSI 
vector of coefficients at Stage i is

bi = KOid i	 [5]

where d i = Qii
−1Aiw, Qii

−1 is the inverse of matrix Qii, and Ai 
and w were defined earlier. In addition, KOi = [Ii – FOi], FOi 
= Qii

−1Mi(M¢iQii
−1Mi)

−1M¢i, and Ii is an identity matrix of the 
same size as Qii. When D = U, the vector of coefficients of 
Eq. [5] imposes null restrictions, and when D = U and U is 
a null matrix, Eq. [5] is equal to d i = Qii

−1Aiw, the vector of 
coefficients of the OMLPSI (Cerón-Rojas et al., 2019). Thus, 
the OCMLPSI is more general and includes the multistage null 
phenotypic restricted index (Kempthorne and Nordskog, 1959; 
Xie and Xu, 1997) and the OMLPSI as particular cases (Cerón-
Rojas and Crossa, 2018, Chapter 9).

The DCMLPSI Vector of Coefficients at Stage i
Let IDi – 1 = b¢i – 1xi – 1 and IDi = b¢ixi be the DCMLPSIs at Stages 
i − 1 and i, respectively. We shall obtain the DCMLPSI vector 
of coefficients at Stage i with the additional restriction that the 
covariance between the DCMLPSI values until Stage i − 1 with 
the IDi = bi ¢xi values be null. Let J¢i − 1 = [ID1 ID2 … ID(i – 1)] be a 
vector of DCMLPSIs values until Stage i – 1 such that the cova-
riance between IDi and Ji − 1 will be null. Xu and Muir (1992) 
and Xie and Xu (1997) showed that the covariance between IDi 
and Ji − 1 is null when B¢D(i – 1) Q(i – 1)ibi = 0, where
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kOi value in a two-stage breeding scheme according to Eq. [A6] 
(Appendix B), whereas we obtained the kDi values according 
to the Xu and Muir (1992) method. We described a method to 
estimated Eq. [8a] and [8b] in Appendix B (Eq. [A1] to [A4b]).

The maximized total OCMLPSI and DCMLPSI selection 
responses for N stages can be written as tOR  = RO1 + RO2 + … 
+ RON and tDR  = RD1 + RD2 + … + RDN, respectively.

Maximized Expected Genetic Gain per Trait at 
Stage i
Using Eq. [5] and [7] in Eq. [3], the OCMLPSI and DMLPSI 
expected genetic gains per trait at Stage i can be written as

¢
=

¢
i i

Oi Oi
i ii i

k
A

E
Q

b

b b
	 [9a]

and

¢
=

¢
i i

Di Di
i ii i

k
A b

E
b Q b

	 [9b]

respectively. We defined all the parameters of Eq. [9a] and [9b] 
earlier. The maximized total OCMLPSI and DMLPSI expected 
genetic gains per trait for N stages can be written as tOE = EO1 
+ EO2 + … + EON and tDE  = ED1 + ED2 + … + EDN, respec-
tively. We described a method to estimated Eq. [9a] and [9b] in 
Appendix B (Eq. [A1] to [A3], and Eq. [A5a] and [A5b]).

Efficiency when Predicting the Net Genetic Merit
According to Lande and Thompson (1990) and Moreau et al. 
(1998), the efficiency of the indices when predicting the net 
genetic merit, in percentage terms, is

Ø = 100(T – 1)	 [10]

where T = ROi/RDi, ROi denotes the OCMLPSI selection 
response and RDi the DCMLPSI selection response. Therefore, 
when Ø is null, the efficiency of both indices is the same; when 
Ø > 0, the efficiency of the OCMLPSI is higher than that of the 
DCMLPSI, and when Ø < 0, DCMLPSI efficiency is higher 
than OCMLPSI efficiency for predicting the net genetic merit.

An additional criterion for comparing the indices’ effi-
ciency is that the total selection response Rt = R1 + R2 of 
each index should be lower than or equal to the single-stage 
constrained index selection response (R = ksI), i.e., Rt £ R (see 
Cerón-Rojas et al., 2019, for details).

Adjusting the OCMLPSI Covariance Matrices 
at Stage 2
At Stage 2, the phenotypic covariance matrix is
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These matrices are affected by prior selection on I1 = b¢x1. It 
is thus necessary to adjust them to take into consideration the 
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b¢i – 1 = [b(i – 1)1 b(i – 1)2 … ( ) ( )11 ii nb
-- ] is the DCMLPSI vector of 

coefficients at Stage i − 1, Q(i – 1)i was defined in Eq. [1b] and bi 
is the DCMLPSI vector of coefficients at Stage i. Thus, to obtain 
bi, we need to minimize the mean squared difference between H 
= w¢g and IDi = b¢ixi {i.e., E[(H – IDi)

2]}, under the joint restric-
tions M¢ibi = 0 and Cov(IDi, Ji – 1) = B¢D(i – 1) Q(i – 1)ibi = 0.

Let Si(i – 1) = Qi(i – 1)BD(i – 1) and S¢i(i – 1) = S(i – 1)i = B¢D(i – 1)Q(i – 1)i  
be the transpose of matrix Si(i – 1) and assume that matrices Qii, 
Qi(i – 1), U, and Ai and vectors d and w are known. To minimize 
E[(H – IDi)

2] under the restrictions M¢ibi = 0 and S(i – 1)ibi = 
B¢D(i – 1)Q(i – 1)ibi = 0, it is necessary to minimize the function

( )
( )1

, , 2 2

2
D i i ii i i i i i

ii i

f

-

′ ′ ′ ′= - +

′+

b u v b Q b wA b u M b

v S b
 	 [6]

with respect to the vector of coefficients bi and the vector of 
Lagrange multipliers u¢ = [u1   u2   …   ur − 1] and v¢ = [v1   v2   …  
vi − 1]. The only difference between Eq. [4] and Eq. [6] is the term 
2v¢S(i – 1)ibi. The DCMLPSI vector of coefficients at Stage i is

bi = KDid i	 [7]

where di = Qii
−1Aiw, Qii

−1, Ai, and w were defined in Eq. [5]. 
In addition, KDi = [Ii − FDi], FDi = Qii

−1Vi(V¢iQ11
−1Vi)

 −1, Vi =  
[Mi Si(i – 1)], V¢i = [M¢i S(i – 1)i], and Ii is an identity matrix of the 
same size as Qii. Thus, the only difference between Eq. [5] and 
[7] is matrix Si(i – 1). When matrix Si(i – 1) is null, Eq. [5] and [7] are 
the same, as we would expect. If D = U, Eq. [6] and [7] impose 
null restrictions; in such cases, we shall have a multistage index 
similar to the Kempthorne and Nordskog (1959) index.

According to Eq. [5] and [7] results, matrices KOi and KDi 
transform the OMLPSI vector of coefficients (d i = Qii

−1Aiw) 
into the OCMLPSI and the DCMLPSI vectors of coefficients, 
respectively.

Maximized Selection Response at Stage i
It can be shown (Cerón-Rojas and Crossa, 2018, Chapter 9) 
that when we use Eq. [5] and [7] in Eq. [2], we obtain

¢=Oi Oi i ii iR k Qb b 	 [8a]

and

¢=Di Di i ii iR k b Q b 	 [8b]

which are the maximized OCMLPSI and DCMLPSI selection 
responses at Stage i, respectively. Although in Eq. [2] the selec-
tion response can take any value, in Eq. [8a] and [8b], ROi and 
RDi give the maximum value of Eq. [2] for the OCMLPSI and 
DCMLPSI, respectively. In addition, in practice kOi and kDi are 
obtained with a different method; therefore, their values are 
generally different (i.e., kOi ¹ kDi). In this work, we obtained the 
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I1 = b¢1x1 effects on them. According to Cochran (1951) and 
Cunningham (1975), both matrices can be adjusted as follows:

[ ]1
1 1 1 21

21

1 1 1

a∗

 
′ 

 = -
′

P
P P

P
P P

P

b b

b b 	
[11a]

and

1 1 1 1

1 1 1

a∗ ′ ′
= -

′
G G

G G
P

b b
b b

	 [11b]

where P* and G* are the adjusted matrix, a = kO1(kO1 – u), kO1 is 
the selection intensity at Stage 1, u is the truncation point when 
I1 = b¢1x1 is applied, P1 = Var(x1) and G1 = Cov(x1, g). Thus, 
the maximized OCMLPSI selection response (Eq. [8a]) and 
expected genetic gains (Eq. [9a]) at Stage 2 can be written as RO2 
= kO2 2 2

∗′Pb b  and EO2 = kO2(G*b2/ 2 2
∗′Pb b ), respectively.

Test of the OCMLPSI (DCMLPSI) 
Normality Assumption
Several authors (Shapiro and Wilk 1965; Mardia 1980; Mohd-
Razali and Bee-Wah 2011; Rani Das and Rahmatullah Imon, 
2016) have given details of how to perform a normality test 
procedure on a dataset and many statistical packages provide 
graphs and normality tests.

We corroborated the OCMLPSI (DCMLPSI) normality 
assumption at Stage 2 with a simulated dataset using a graph-
ical method (histograms) and analytical test procedures (the 
Shapiro–Wilk and Kolmogorov–Smirnov normality test). 
The corroboration procedure was as follows. In a two-stage 
context, let p = q1q2 be the fixed total proportion retained, 
where q1 and q2 denote the proportion selected at Stage 1 and 
2, respectively, and let n be the size of the simulated dataset at 
Stage 1; then, nq1 will be the size of the selected individuals at 
Stage 1. We used the information of nq1 individuals at Stage 
2 to construct graphs and statistical tests to corroborate the 
OCMLPSI (DCMLPSI) normality assumption.

Materials
Real Dataset
The number of genotypes in this real data set was 3330 and the 
vector of economic weights (w) was w¢ = [19.54   −3.56   17.01  
−2.51]. This dataset comes from a commercial egg poultry line 
(Akbar et al., 1984) and we used it to illustrate the indices’ theo-
retical results obtained in this work. The estimated phenotypic 
( P̂ ) and genotypic ( Ĉ ) covariance matrices among the rate of 
lay (RL, number of eggs), age at sexual maturity (SM, d), egg 
weight (EW, kg), and body weight (BW, kg) were

240.57 95.62 2.06 54.40

95.62 167.20 4.58 15.36ˆ
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The total proportions (p) of retained values for this dataset were 
p = 0.05, 0.10, 0.20, and 0.30 for both indices.

For illustration purposes only, at Stage 1, we selected RL, 
SM, and EW, where RL and SM were constrained by the vector 
of predetermined restrictions d¢ = [3   −1] and matrices 

1 0 0 0

0 1 0 0

 ′ =  
 

U

and D¢ = [−1   −3] for both stages, whereas at Stage 2, we 
selected trait BW only. The vectors of records at Stages 1 and 
2 were x¢1 = [RL   SM   EW] and y¢ = [x¢1   x¢2], respectively, 
where x2 = BW. At Stage 1, the estimated phenotypic ( 11Q̂ ) 
and genotypic ( 1Â ) covariance matrices were 
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respectively, whereas the estimated covariance matrix of the 
traits at Stage 1 with traits at Stage 2 ( 12Q̂ ) was 

12

240.57 95.62 2.06 54.40
ˆ 95.62 167.20 4.58 15.36

2.06 4.58 22.88 37.20

- 
 = - 
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At Stage 2, 22
ˆ ˆ=Q P  and 2

ˆ ˆ=A C .

Simulated Datasets
These datasets are available in the Application of a Genomics Selec-
tion Index to Real and Simulated Data repository, at http://hdl.
handle.net/11529/10199. They were simulated by Ceron-Rojas 
et al. (2015) with QU-GENE software (Podlich and Cooper, 
1998) using 2500 molecular markers and 315 quantitative trait 
loci (QTLs) for eight phenotypic selection cycles (C0–C7), 
each with four traits (T1, T2, T3, and T4), 500 genotypes and 
four replicates for each genotype. The authors distributed 
the markers uniformly across 10 chromosomes and the QTLs 
randomly across the 10 chromosomes to simulate maize (Zea 
mays L.) populations. A different number of QTLs affected 
each of the four traits: 300, 100, 60, and 40, respectively. The 
common QTLs affecting the traits generated genotypic correla-
tions of −0.5, 0.4, 0.3, −0.3, −0.2, and 0.1 between T1 and T2, 
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T1, and T3, T1 and T4, T2, and T3, T2 and T4, T3 and T4, respec-
tively. The economic weights for T1, T2, T3, and T4 were 1, −1, 
1, and 1, respectively.

We used four phenotypic selection cycles (C1–C4) with p 
= 0.01, 0.10, and 0.30 in each cycle. At Stage 1 we selected T1, 
T2, and T3, where T1 and T2 were constrained with vector d¢ = 
[5 −2] and matrices 

1 0 0 0

0 1 0 0

 ′ =  
 

U

and D¢ = [−2   −5] for both stages. At Stage 2 we selected only 
trait T4; thus, the vector of observations at Stage 1 was x¢1 = [T1  
T2   T3] and at Stage 2, y¢ = [x¢1   x¢2], where x2 = T4.

RESULTS
Real Data
Truncation Points, Proportion Retained, and 
Selection Intensities for Two Stages
Figure 1 shows the relationship among the truncation 
points (u1 and u2), the total proportion retained (p = q1q2) 
and the heights of the ordinate of the normal curve: z(u1) 
= 

2
10.5 2ue p-  and z(u2) = 

2
20.5 2ue p- . We found the 

OCMLPSI selection intensity for Stages 1 [k1 = z(u1)/
q1] and 2 [k2 = z(u2)/q2] according to Eq. [A6] (Appendix 
B) as follows. For a fixed value of p = q1q2 (e.g., p = 
0.05), we used an iterative process with an R code. By 
successively changing the possible values of q1 (q2 = p/
q1), u1, and u2, we found the maximum value of the esti-
mated total OCMLPSI (DCMLPSI) selection response, 

t 1 2
ˆ ˆ ˆR R R= +  (Fig. 2). For example, for the real dataset 

and p = 0.05, the estimated total OCMLPSI selection 
response was t 1 2

ˆ ˆ ˆR R R= +  = 25.592k1 + 26.580k2 
= 69.75, where 

11 1
ˆ ˆ IR k s= = 33.265 and 

22 2
ˆ ˆ IR k s= = 

36.481 were the estimated selection responses at each 
stage (Table 1), whereas 

1
ˆ Is  = 25.592 and 

2
ˆ Is  = 26.579 

were the estimated standard deviations of the variance of 
1̂I  and 2Î  for Stages 1 and 2, respectively. Thus, for this 

dataset, the values of the truncation points (u1 = 0.710 
and u2 = 0.81), proportions retained (q1 = 0.24 and q2 = 
0.21) and selection intensity (k1 = 1.30 and k2 = 1.37), 
at both stages, were those associated with the maximum 
estimated total OCMLPSI selection response tR̂  = 69.75 
value. Table  1, presents additional truncation points, 
proportions retained, selection intensities for p = q1q2 = 
0.10, 0.20, and 0.30, associated to the OCMLPSI and 
DCMLPSI selection responses.

Estimated OCMLPSI Selection Response 
for Two Stages
In the one-stage case, the selection intensity for p = 0.05 
was k = 2.063, and the SCLPSI selection response was R̂  
= 71.66 (see Cerón-Rojas and Crossa, 2018, Chapter 3, for 
details). According to the results detailed in the paragraph 

above and to Young (1964) and Saxton (1983), the 
maximum estimated total OCMLPSI selection response 
( tR̂  = 69.75) value should be lower than or equal to the 
estimated SCLPSI response ( R̂  = 71.66). For this dataset, 

tR̂  = 69.75 explained 97.33% of the R̂  = 71.66 value. 
That is, tR̂  = 69.75 and R̂  = 71.66 were very similar.

In Table 1, we present additional maximum estimated 
OCMLPSI selection response values for p = q1q2 = 0.10, 
0.20, and 0.30. For each of the latter three p values, the 
maximum estimated total OCMLPSI selection responses 
explained 97.44, 97.68, and 97.96%, respectively, of the 
SCLPSI selection response values. Thus, for this real 
dataset, the estimated total OCMLPSI selection response 
and the estimated SCLPSI selection response were very 
similar, as we would expect.

Estimated DCMLPSI Selection Response 
for Two Stages
For both stages, the estimated DCMLPSI vectors of coef-
ficients (Eq. [7]) were 1

ˆ ′b  = [1.809   1.132   1.065] and 2
ˆ ′b  

= [0.349   −0.262   1.743  −1.076]. Because at Stage 1 the 
restriction matrix S(i – 1)i was null [S(i – 1)i = 0], the esti-
mated DCMLPSI vector of coefficients was the same as 
the OCMLPSI vector of coefficients (i.e., 1 1

ˆˆ ′=b b ; Eq. [5] 
and [7]); however, at Stage 2, S(i – 1)i ¹ 0 and 2b̂  ¹ 2

ˆ ′b .
For p = 0.05, the selection intensities obtained with 

the Xu and Muir (1992, Eq. [19]) method were k1 = 1.42 
and k2 = 1.25 at Stages 1 and 2, respectively, from where 
the estimated maximized selection responses for both 
stages were 1R̂  = 39.29 and 2R̂  = 29.40 (Appendix A, 
Eq. [A4b]), whereas t 1 2

ˆ ˆ ˆR R R= + = 65.69 was the total 
estimated selection response. This means that tR̂  = 65.69 
explained 91.67% of the estimated SCLPSI selection 
response ( R̂  = 71.66) value.

Table 1 presents additional maximum estimated 
DCMLPSI selection response values when p = q1q2 = 0.10, 
0.20, and 0.30. For 0.10, 0.20 and 0.30, the estimated total 

Fig. 1. Theoretical relationship between the truncation points (u), 
the proportion retained (p), and the density values [z(u)] of the 
truncation points (after Cerón-Rojas et al., 2019).
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selection response explained 90.72, 89.40, and 88.30%, 
respectively, of the estimated SCLPSI selection response.

The results of the last two subsections indicate that the 
average of the estimated total DCMLPSI and OCMLPSI 
selection responses explained 90 and 97.60%, respectively, 
of the average estimated SCLPSI selection response for all 
p values. This means that the average of the estimated total 
OCMLPSI selection response was 7.60% closer to the esti-
mated SCLPSI selection response than the average of the 
estimated total DCMLPSI selection response. We explain 
the loss of DCMLPSI efficiency by noting that when 
DCMLPSI obtained its vector of coefficients, it incorporated 

an additional restriction, which made the DCMLPSI values 
independent at different stages. Xu and Muir (1992) and Xie 
and Xu (1997) indicated that the loss of efficiency is justified 
because their method for obtaining the selection intensi-
ties and total responses gives the breeder the opportunity to 
implement an unlimited number of selection stages, which 
otherwise would be very difficult or impossible to do.

Estimated OCMLPSI Expected Genetic Gain per 
Trait for Two Stages
Let p = 0.05 (k1 = 1.30 and k2 = 1.37); then, the estimated 
OCMLPSI expected genetic gains per trait (Appendix A, 

Fig. 2. Distribution of the total estimated optimum and decorrelated constrained multistage linear phenotypic selection index (OCMLPSI 
and DCMLPSI, respectively) selection response values for a real dataset, and the fixed total proportion retained (p) = 0.05 and 0.10.

Table 1. Real data for total proportion (p) retained, estimated optimum and decorrelated constrained multistage linear 
phenotypic selection index (OCMLPSI and DCMLPSI, respectively) truncation points (u1 and u2), proportions retained (q1 
and q2), selection intensities (k1 and k2), and selection response ( 1R̂ , 2R̂ , and t 1 2

ˆ ˆ ˆR R R= + ) for Stages 1 and 2. Values of R̂  
correspond to the one-stage estimated constrained linear phenotypic selection index selection response.

Index p u1 u2 q1 q2 k1 k2 1R̂ 2R̂ tR̂ R̂
OCMLPSI 0.05 0.71 0.81 0.24 0.21 1.30 1.37 33.26 36.48 69.75 71.66

0.10 0.41 0.55 0.34 0.29 1.07 1.18 27.45 31.95 59.40 60.96

0.20 0.03 0.23 0.49 0.41 0.81 0.95 20.85 26.65 47.50 48.63

0.30 −0.25 0.00 0.60 0.50 0.64 0.80 16.48 22.96 39.44 40.26

DCMLPSI 0.05 0.86 0.65 0.19 0.26 1.42 1.25 36.29 29.40 65.69 71.66

0.10 0.58 0.37 0.28 0.35 1.20 1.05 30.65 24.66 55.30 60.96

0.20 0.23 0.03 0.41 0.49 0.95 0.82 24.23 19.24 43.47 48.63

0.30 −0.03 −0.22 0.51 0.59 0.78 0.67 19.91 15.64 35.55 40.26
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Eq.  [A5a]) for both stages were 1
ˆ ′E  = [1.49   −0.50  

0.21   0.46] and 2
ˆ ′E = [1.92  −0.64  0.01  −8.02], while 

t 1 2
ˆ ˆ ˆ′ ′ ′= +E E E  = [3.41   −1.14   0.21   −7.56] was the total 

estimated expected genetic gain per trait. Each t
ˆ ′E  value was 

associated with the mean of traits rate of lay (RL, number 
of eggs), age at sexual maturity (SM, days), egg weight (EW, 
kg) and body weight (BW, kg). We constrained traits RL 
and SM by vector [3 1]′ = -d  values. This means that the 

t
ˆ ′E  values associated with traits RL and SM (3.41 and −1.14, 

respectively) overestimated the d¢ = [3   −1] values by 10.33 
and 14%, respectively.

Table 2 presents additional estimated expected genetic 
gains per traits RL, SM, EW, and BW for both stages 
and p = 0.10, 0.20, and 0.30. For these last three p values, 
the estimated total OCMLPSI expected genetic gains 
per traits RL and SM explained 95, 74, and 59% of each 
d¢ = [3   −1] value, respectively. That is, the accuracy of 
the estimated OCMLPSI expected genetic gains per trait 
decreased when the p values increased from 0.10 to 0.30. 
For this real dataset, the optimum expected genetic gain 
per trait efficiency occurred when p = 0.10.

Estimated DCMLPSI Expected Genetic Gain per 
Trait for Two Stages
For p = 0.05 (k1 = 1.42 and k2 = 1.25), the estimated 
DCMLPSI expected genetic gains per trait for both stages 
were 1

ˆ ′E  = [1.63   −0.54   0.22   0.50] and 2
ˆ ′E  = [0.52  

−0.17   −0.19   −8.72], whereas t 1 2
ˆ ˆ ˆ′ ′ ′= +E E E  = [2.15  

−0.72   0.03   −8.22] was the total estimated expected 
genetic gain per trait. Each t

ˆ ′E  value is associated with 
traits RL (rate of lay, number of eggs), SM (age at sexual 
maturity, days), EW (egg weight, kg), and BW (body 
weight, kg), and traits RL and SM were constrained by 
vector d¢ = [3   −1] values. The t

ˆ ′E  values associated with 
RL and SM (2.15 and −0.72, respectively) explained only 
71.67 and 72% of each d¢ = [3   −1] value, respectively.

Table 2 presents additional estimated expected genetic 
gains per traits RL, SM, EW, and BW for both stages 
and p = 0.10, 0.20, and 0.30. For 0.10, 0.20, and 0.30, 
the estimated total expected genetic gains per traits RL 

and SM explained 60.33, 47.67, and 39% of each d¢ = 
[3   −1] value, respectively. Thus, for this dataset, the esti-
mated expected genetic gains per trait underestimated the 
d¢ = [3   −1] values. We explained the loss of DCMLPSI 
accuracy, noting that when the DCMLPSI obtained its 
vector of coefficients, it incorporated an additional restric-
tion to make the DCMLPSI values independent among 
stages. The average estimated DCMLPSI expected genetic 
gain per trait efficiency was 54.67%, whereas the average 
estimated OCMLPSI expected genetic gain per trait effi-
ciency was 85% for all p values. Thus, the average of the 
estimated OCMLPSI accuracy associated with d¢ = [3  
−1] values was 35% higher than the average of the esti-
mated DCMLPSI accuracy associated with d¢ = [3   −1] 
for the real dataset.

The results of the above four subsections indicate 
that the accuracy of both indices was higher when they 
predicted the selection response than when they estimated 
the expected genetic gain per trait. However, for the real 
data, the efficiency of the OCMLPSI when predicting the 
selection response and estimating the expected genetic 
gain per trait was higher than the DMLPSI efficiency 
when predicting the selection response and estimating the 
expected genetic gain per trait.

OCMLPSI Efficiency vs. DCMLPSI Efficiency to 
Predict the Net Genetic Merit
Equation [10] is a tool for determining OCMLPSI effi-
ciency vs. DCMLPSI efficiency when predicting the net 
genetic merit in percentage terms. The estimated average 
OCMLPSI efficiency to predict the net genetic merit in 
percentage terms is 100(97.604/90.019 – 1) = 8.426%, where 
97.604 and 90.019 are the average of the estimated total 
OCMLPSI and DCMLPSI selection responses (Table 1) 
for all p values, respectively, and 8.426% is OCMLPSI effi-
ciency with respect to DCMLPSI efficiency, in percentage 
terms, to predict the net genetic merit. Thus, for the Akbar 
et al. (1984) real dataset, the estimated average OCMLPSI 
efficiency was 8.426% higher than the estimated average 
DCMLPSI efficiency for predicting the net genetic merit.

Table 2. Total proportion (p) retained; estimated optimum and decorrelated constrained multistage linear phenotypic selec-
tion index (OCMLPSI and DCMLPSI, respectively) expected genetic gains per trait for four real traits: rate of lay (RL), age at 
sexual maturity (SM), egg weight (EW), and body weight (BW). Traits RL and SM were constrained with vector d¢ (a vector of 
constraints or predetermined proportional gains per trait imposed by the breeder) = [3   −1] values.

Stage 1 Stage 2 Total
Index p RL SM EW BW RL SM EW BW RL SM EW BW

no. eggs d ————  kg ———— no. eggs d ————  kg ———— no. eggs d ————  kg ————

OCMLPSI 0.05 1.49 −0.50 0.21 0.46 1.92 −0.64 0.01 −8.02 3.41 −1.14 0.21 −7.56

0.10 1.23 −0.41 0.17 0.38 1.62 −0.54 0.01 −6.72 2.85 −0.95 0.18 −6.34

0.20 0.93 −0.31 0.13 0.29 1.27 −0.42 0.01 −5.26 2.21 −0.74 0.14 −4.97

0.30 0.74 −0.25 0.10 0.23 1.04 −0.35 0.01 −4.30 1.78 −0.59 0.11 −4.07

DCMLPSI 0.05 1.63 −0.54 0.22 0.50 0.52 −0.17 −0.19 −8.72 2.15 −0.72 0.03 −8.22

0.10 1.37 −0.46 0.19 0.42 0.44 −0.15 −0.16 −7.32 1.81 −0.60 0.03 −6.89

0.20 1.09 −0.36 0.15 0.34 0.34 −0.11 −0.13 −5.71 1.43 −0.48 0.02 −5.37

0.30 0.89 −0.30 0.12 0.28 0.28 −0.09 −0.10 −4.64 1.17 −0.39 0.02 −4.36

https://www.crops.org


2594	 www.crops.org	 crop science, vol. 59, november–december 2019

Simulated Data
Estimated OCMLPSI and DCMLPSI 
Selection Response
For p = q1q2 = 0.01, 0.10, and 0.30, Table 3 presents the 
estimated OCMLPSI and DCMLPSI responses ( 1R̂ , 2R̂ , 

t 1 2
ˆ ˆ ˆR R R= + ) and SCLPSI responses ( 0.01R̂ , 0.10R̂ , 0.30R̂ ) 

for four simulated selection cycles in a two-stage breeding 
selection scheme. For p = 0.01, the average of the estimated 
total OCMLPSI selection responses (22.79) explained 
99.80% of the average of the SCLPSI selection responses 
(22.84), whereas for p = 0.10 and 0.30, the average of the 
estimated total OCMLPSI selection responses (15.13 and 
10.11, respectively) explained 100.60 and 101.81% of the 
average of the SCMLPSI selection response (15.04 and 
9.93, respectively). Thus, for this dataset, the OCMLPSI 
and SCLPSI results were equivalent for all p values.

For p = 0.01, the average of the estimated total 
DCMLPSI selection responses (21.84) explained 95.62% of 
the average of the SCMLPSI selection responses (22.84), 
whereas for p = 0.10 and 0.30, the average of the estimated 
total DCMLPSI selection responses (14.43 and 9.49, respec-
tively) explained 95.94 and 95.57% of the average of the 
SCMLPSI selection responses (15.04 and 9.93, respectively).

The results in this section indicate that although the 
average of the total OCMLPSI selection response, for all p 
values, overestimated the average of the SCLPSI by 0.73%, 
the average of the total DCMLPSI selection response, for 
all p values, underestimated the average of the SCLPSI by 
4.30%. Thus, for this simulated dataset, the OCMLPSI was 
the best predictor of the net genetic merit, and its accuracy 
when predicting the selection response was higher than the 
DMLPSI accuracy for predicting the selection response.

Estimated OMLPSI and DMLPSI Expected 
Genetic Gains per Trait
Table 4 presents the estimated OCMLPSI and DCMLPSI 
expected genetic gains per trait ( 1

ˆ ′E , 2
ˆ ′E , and t 1 2

ˆ ˆ ˆ′ ′ ′= +E E E ) 

for four simulated selection cycles and p = q1q2 = 0.30 in 
a two-stage context. Each t

ˆ ′E  value was associated with 
the mean values of traits T1, T2, T3, and T4. In addition, in 
both indices, traits T1 and T2 were constrained by vector 
d¢ = [5   −2] values. The average of the estimated total 
OCMLPSI t

ˆ ′E  values associated with traits T1 and T2 (5.76 
and −2.30, respectively) overestimated the d¢ = [5   −2] 
values by 15.20%. However, the average of the estimated 
total DCMLPSI t

ˆ ′E  values associated with traits T1 and T2 
(5.05 and −2.02, respectively) overestimated the d¢ = [5  
−2] values by only 1.0%. Nevertheless, note that at Stage 
2, the averages of the estimated total DCMLPSI expected 
genetic gains per trait associated with traits T1, T2, and T3 
(0.02, −0.01, and 0.0, respectively) were practically null. 
This means that DCMLPSI efficiency occurred at Stage 1, 
when restriction matrix S(i – 1)i was null [S(i – 1)i = 0] and 

1 1
ˆˆ ′=b b . Thus, for this dataset, the average of the esti-

mated total DCMLPSI expected genetic gains per trait 
was more efficient for predicting the d¢ = [5   −2] values 
than the OCMLPSI, but the highest DCMLPSI efficiency 
occurred at Stage 1, when 1 1

ˆˆ ′=b b  and the estimated 
standard deviations of OCMLPSI and DCMLPSI values 
were the same.

We also estimated the total expected genetic gains per 
trait of both indices for p = 0.01, 0.10, and 0.20 (data not 
shown); however, in all cases, those values were higher 
than the d¢ = [5   −2] values. For example, for p = 0.10, the 
averages of the estimated total OCMLPSI and DCMLPSI 
expected genetic gains per trait associated with d¢ = [5  
−2] were 8.78 and −3.51, and 7.58 and −3.03, respectively.

The difference between the OCMLPSI and DCMLPSI 
expected genetic gains per trait is due to the different 
number of genotypes used to estimate the parameters. That 
is, in the real dataset, the number of genotypes was 3330, 
but in the simulated data, the number of genotypes was only 
500, which represents only 15% of the size of the genotypes 
used in the real dataset to estimate the parameters of the 

Table 3. Simulated data for total proportion retained (p) = q1q2 = 0.01, 0.10, and 0.30, and estimated optimum and decorrelated 
constrained multistage linear phenotypic selection indices (OCMLPSI and DCMLPSI, respectively) responses ( 1R̂ , 2R̂ , and 

t 1 2
ˆ ˆ ˆR R R= + ) and single-stage constrained linear phenotypic selection index (SCLPSI) responses ( 0.01R̂ , 0.10R̂ , and 0.30R̂ ) for 

four simulated selection cycles in a two-stage breeding scheme.

OCMLPSI
p = 0.01 p = 0.10 p = 0.30 SCLPSI

Index Cycle 1R̂ 2R̂ tR̂ 1R̂ 2R̂ tR̂ 1R̂ 2R̂ tR̂
0.01R̂ 0.10R̂ 0.30R̂

OCMLPSI 1 21.59 3.16 24.75 13.87 2.57 16.44 8.75 2.24 10.99 24.77 16.31 10.77

2 20.39 3.09 23.47 12.99 2.6 15.59 8.18 2.24 10.42 23.54 15.50 10.24

3 17.75 3.48 21.23 11.28 2.81 14.09 7.09 2.32 9.41 21.39 14.08 9.30

4 18.95 2.73 21.68 12.21 2.19 14.4 7.70 1.93 9.63 21.68 14.28 9.43

Avg. 19.67 3.12 22.79 12.59 2.54 15.13 7.93 2.18 10.11 22.84 15.04 9.93

DCMLPSI 1 21.59 2.08 23.68 15.25 0.47 15.72 10.15 0.20 10.35 24.77 16.31 10.77

2 20.39 2.12 22.51 14.40 0.48 14.88 9.58 0.20 9.78 23.54 15.50 10.24

3 18.17 2.27 20.44 12.57 0.80 13.36 8.43 0.33 8.76 21.39 14.08 9.30

4 18.95 1.77 20.72 13.38 0.40 13.78 8.91 0.17 9.07 21.68 14.28 9.43

Avg. 19.78 2.06 21.84 13.90 0.54 14.43 9.27 0.22 9.49 22.84 15.04 9.93
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indices. This means that the number of genotypes used to 
estimate the indices’ parameters was an important factor for 
both indices in the real and simulated data.

The results of the real and simulated datasets indi-
cated that the OCMLPSI is the most efficient index for 
predicting the net genetic merit, and its accuracy when 
predicting the selection response and estimating the 
expected genetic gain per trait was higher than DCMLPSI 
accuracy when predicting the selection response and esti-
mating the expected genetic gain per trait.

Normality Test for the Estimated OCMLPSI 
and DCMLPSI Values at Stage 2
We used the simulated dataset in Cycle 2 to test the 
normality assumption of the estimated OCMLPSI and 
DCMLPSI values at Sage 2. In Cycle 1, the number of 
genotypes was 500. For p = q1q2 = 0.05 and 0.30, the q1 
values for OCMLPSI were 0.22 and 0.55, whereas those 
values for DCMLPSI were 0.06 and 0.31, respectively. 
Then, at Stage 2, (0.2)(500) = 110 and (0.55)(500) = 270 
were the number of genotypes for OCMLPSI, whereas 
for DCMLPSI, the number of genotypes were (0.06)(500) 
= 30 and (0.31)(500) = 155. We used these last numbers 
of genotypes to construct histograms (Fig. 3) of the esti-
mated OCMLPSI and DCMLPSI values at Stage 2.

According to the histograms constructed for the esti-
mated OCMLPSI values, when the number of genotypes 
changed from 110 (Fig. 3a) to 270 (Fig. 3b), the estimated 
OCMLPSI values were closer to the normal distribution. 
The same was true for the estimated DCMLPSI values 
(Fig. 3c and 3d).

We describe now the Shapiro–Wilk and Kolmogorov–
Smirnov normality test results of the estimated OCMLPSI 
and DCMLPSI values at Stage 2 (Cycle 2) when the 
number of genotypes was 110 and 270 for OCMLPSI, and 
30 and 155 for DCMLPSI. With the simulated dataset, we 
tested the null hypothesis that the estimated OCMLPSI 
and DCMLPSI values at Stage 2 have normal distribution. 

The statistical value of the Shapiro–Wilk test should be 
close to 1.0 to accept the null hypothesis, whereas the 
statistic value of the Kolmogorov–Smirnov test should 
be close to 0.0 to accept the null hypothesis (Rani Das 
and Rahmatullah Imon, 2016). In the present case, for 
the values associated with OCMLPSI (110 and 270), the 
statistic values of the Shapiro–Wilk were 0.958 and 0.989, 
whereas the statistic values of the Kolmogorov–Smirnov 
were 0.080 and 0.044, respectively. Thus, we believe that 
for the estimated OCMLPSI values, the null hypothesis 
was true. In a similar manner, for the values associated 
with DCMLGSI (30 and 155), the statistic values of the 
Shapiro–Wilk were 0.967 and 0.991, whereas the statistic 
values of the Kolmogorov–Smirnov were 0.094 and 
0.029, respectively. We again accept that the estimated 
DCMLPSI values approach the normal distribution.

DISCUSSION
Criteria Used to Evaluate the Relative 
Efficiency of the Indices
A criterion used to evaluate OCMLPSI efficiency vs. 
DCMLPSI efficiency when predicting the net genetic 
merit was that the estimated total OCMLPSI and 
DCMLPSI selection response must be lower than or equal 
to the single-stage estimated OCLPSI selection response. 
Additional criteria were the ratio of the OCMLPSI selec-
tion response over the DCMLPSI selection response and 
the estimated expected genetic gain per trait or multitrait 
selection response. The estimated total selection response 
of both indices predicted the mean value of the net genetic 
merit in the progeny population, whereas the estimated 
expected genetic gain values indicated how close the esti-
mated mean values of the traits are to the predetermined 
proportional gains (or constraints) imposed by the breeder 
in each selection cycle. Both parameters are good criteria 
for comparing the efficiency of the indices, depending on 
the method used to estimate the vector of coefficients of 
each index.

Table 4. Estimated optimum and decorrelated constrained multistage linear phenotypic selection indices (OCMLPSI and 
DCMLPSI, respectively) expected genetic gains per trait ( 1

ˆ ′E , 2
ˆ ′E , and t 1 2

ˆ ˆ ˆ′ ′ ′= +E E E ) for Stages 1 and 2 in four simulated selec-
tion cycles with total proportion retained (p) = q1q2 = 0.30. Traits T1 and T2 were constrained with vector d¢ (a vector of con-
straints or predetermined proportional gains per trait imposed by the breeder) = [5   −2] values on the two indices.

Stage 1 (
1

ˆ ′E ) Stage 2 (
2

ˆ ′E )
t 1 2

ˆ ˆ ˆ′ ′ ′= +E E E

Index Cycle T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

OCMLPSI 1 4.55 −1.82 2.08 0.31 1.49 −0.59 0.66 0.54 6.03 −2.41 2.73 0.85

2 4.30 −1.72 1.87 0.29 1.39 −0.56 0.60 0.59 5.69 −2.28 2.47 0.88

3 3.87 −1.55 1.58 0.09 1.48 −0.59 0.57 0.64 5.36 −2.14 2.15 0.73

4 4.50 −1.80 1.26 0.14 1.44 −0.58 0.40 0.43 5.94 −2.38 1.67 0.56

Avg. 4.31 −1.72 1.70 0.21 1.45 −0.58 0.56 0.55 5.76 −2.30 2.25 0.76

DCMLPSI 1 5.28 −2.11 2.41 0.35 0.01 −0.01 0.00 0.18 5.29 −2.12 2.41 0.53

2 5.04 −2.02 2.19 0.34 0.01 0.00 0.00 0.18 5.05 −2.02 2.20 0.52

3 4.60 −1.84 1.87 0.11 0.04 −0.01 0.00 0.28 4.64 −1.86 1.87 0.39

4 5.21 −2.08 1.46 0.16 0.00 0.00 0.00 0.16 5.21 −2.08 1.46 0.32

Avg. 5.03 −2.01 1.98 0.24 0.02 −0.01 0.00 0.20 5.05 −2.02 1.98 0.44
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Selection Intensities
The selection intensities (k1 and k2) of both indices had 
three main parts: the proportions retained (q1 and q2), 
the truncation points (u1 and u2) and the height of the 
ordinate of the normal curve [z(u1) = 

2
10.5 2ue p-  and z(u2) 

= 
2
20.5 2ue p- ] (Fig. 1). We obtained the k1 and k2 values 

for OCMLPSI with Eq. [A6] (Appendix B) method and 
with the Xu and Muir (1992) method for DCMLPSI. Both 
approaches were associated with the maximum total selec-
tion response (

1 21 2
ˆ ˆ ˆt I IR k ks s= + ) value, and the values of 

k1 and k2 were affected by the method used to obtain their 
values at Stages 1 and 2. When the p values changed from 
0.05 to 0.30, the u1 and u2 values decreased, the q1 and q2 
values increased and the k1 and k2 values decreased in both 
indices, as we would expect.

Equation [A6] (Appendix B) to obtain the OCMLPSI 
selection intensities in a two-stage context was proposed 
by Cerón-Rojas et al. (2019). These authors compared 
their results with the results of Saxton (1983), who used 
a numerical integration method to obtain truncation 
points, proportion retained, and selection intensities in 
a two-stage context. Saxton (1983) applied a two-stage 
selection scheme in two ways: first, by selecting three 

traits and then two traits; and second, by first selecting 
the last two traits and later the first three traits. Under 
the first scheme, Saxton (1983) found that the estimated 
total selection response overestimated the single-stage 
LPSI response by 3.8%, but under the second, he found 
that the estimated total selection response overestimated 
the single-stage LPSI response by only 1.5%. These results 
were very similar to the results obtained by Cerón-Rojas 
et al. (2019) when they used real data. This mains that, 
at least in a two-stage context, Equation [A6] was a good 
method to obtain the truncation points, proportion 
retained, and selection intensities.

Number of Restrictions Imposed on 
the Indices
The OCMLPSI solved the OMLPSI equations subject to 
the restriction that the covariance between the OCMLPSI 
and some linear combinations of the genotypes involved be 
equal to a vector of predetermined proportional gains (or 
constraints) imposed by the breeder. However, in addition to 
the latter restriction, the DCMLPSI imposed the restriction 
that the covariance between DCMLPSI values at different 
stages be zero. The latter restriction decreased DCMLPSI 

Fig. 3. Histograms of the estimated optimum and decorrelated constrained multistage linear phenotypic selection index (OCMLPSI and 
DCMLPSI, respectively) values at Stage 2 for simulated dataset in Cycle 2, and the fixed total proportion retained (p) = q1q2 = 0.05 and 
0.30 when the number of genotypes was 110 (Fig. 3a) and 270 (Fig. 3b) for OCMLPSI, and 30 (Fig. 3c) and 155 (Fig. 3d) for DCMLPSI.
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efficiency after Stage 1, and as a result, its selection response 
and expected genetic gain were lower than the OCMLPSI 
selection response and expected genetic gain for the real 
and simulated datasets at Stage 2. Xu and Muir (1991, 1992) 
and Xie and Xu (1997) indicated that the loss of DCMLPSI 
efficiency after Stage 1 is justified because their method for 
obtaining the selection intensities and total responses gives the 
breeder the opportunity to implement an unlimited number 
of selection stages, which would otherwise be very difficult or 
impossible to do. At Stage 1, when the additional DCMLPSI 
restriction was null, the DCMLPSI and OCMLPSI vectors 
of coefficients were the same, as we would expect. Inciden-
tally, this corroborated that both indices were applications of 
the SCLPSI to the multistage context.

According to Xu and Muir (1991,1992), the restric-
tion that made the covariance between DCMLPSI values 
at different stages be zero is similar to the Kempthorne 
and Nordskog (1959) restriction imposed on the expected 
genetic gain per trait, which makes some traits not change 
their mean values while the rest of the trait means remain 
without restrictions. In effect, the DCMLPSI used a 
projector matrix (e.g., KDi) to project the OMLPSI vector 
of coefficients (di) into a space smaller than the original 
space of di, whereas Kempthorne and Nordskog (1959) used 
a projector matrix to project the single-stage LPSI vector of 
coefficients into a space smaller than the original space of 
the LPSI vector of coefficients. The reduction of the space 
into which the Kempthorne and Nordskog (1959) matrix 
projects the LPSI vector of coefficients is equal to the 
number of zeros that appears in the expected genetic gain 
per trait, and the selection response and accuracy decrease 
as the number of restrictions increases (Cerón-Rojas and 
Crossa, 2018, Chapter 3). Nevertheless, it is not clear 
whether under the Xu and Muir (1992) restrictions the 
expected genetic gain per trait, the selection response, and 
the accuracy decrease as the number of stages increases. If 
this is true, the Xu and Muir (1992) method could not give 
the breeder the opportunity to implement an unlimited 
number of stages, because the expected genetic gain per 
trait, the selection response, and the accuracy will decrease 
as the number of stages increases and soon would be null.

In the DMLPSI context, Xie et al. (1997) compared 
the estimated single-stage LPSI selection response with 
the estimated DMLPSI selection response for two and 
three stages and found that at Stages 2 and 3, the esti-
mated total DMLPSI selection response explained only 
92 and 87%, respectively, of the estimated LPSI selection 
response. That is, at Stage 3, the estimated total DMLPSI 
selection response was lower (5%) than at Stage 2.

Another Way of Writing the OCMLPSI and 
DCMLPSI Vectors of Coefficients
We wrote the OCMLPSI and DCMLPSI vectors of 
coefficients (bi = KOidi and bi = KOidi, respectively) as 

a projection of the OMLPSI vector of coefficients (di = 
Qii

−1Aiw) into a space that is perpendicular to the space 
generated by the columns of matrix Mi(Vi) made by the 
projector matrices KOi and KDi which are idempotent 
(KOi = KOi

2 and KDi = KDi
2). This is the simplest way of 

writing the OCMLPSI and DCMLPSI vectors of coef-
ficients. However, there is another way of writing the 
OCMLPSI and DCMLPSI vectors of coefficients based 
on the Tallis (1985) approach.

The Tallis (1985) approach requires a proportionality 
constant which, according to Itoh and Yamada (1987), 
represents the regression coefficient of the net genetic 
merit (H = w¢g) on Qii

−1Vi(V¢iP
−1Vi)

−1d0, where d0 is the 
DCMLPSI vector of predetermined restrictions. There 
are some problems associated with the proportionality 
constant. For example, if the proportionality constant is 
positive, it is appropriate for the DCMLPSI (OCMLPSI) 
vector of coefficients, and there is no problem; however, 
if the proportionality constant is negative, the indices will 
move the population means in the opposite direction to 
the predetermined desired direction.

Another Constrained Multistage Index
Xie and Xu (1997) developed a constrained multistage 
selection index as an extension of the DMLPSI developed 
by Xu and Muir (1992) based on the Tallis (1962) index. 
Using the Akbar et al. (1984) real data, we found that the 
Xie and Xu (1997) index was not optimum. The average 
of the estimated Xie and Xu (1997) selection response for p 
= 0.05, 0.10, 0.20, and 0.30 explained only 68.55% of the 
one-stage SCLPSI, whereas the average of the estimated 
total OCMLPSI and DCMLPSI index selection responses 
explained 97.60 and 90%, respectively, of the estimated 
SCLPSI. Similarly, the estimated total Xie and Xu (1997) 
expected genetic gain values per trait explained only 10.17% 
of the vector d¢ = [3   −1] values for both stages. These 
results indicated that, in effect, the Xie and Xu (1997) index 
is not optimum and breeders should not use it.

Cerón-Rojas and Crossa (2018) applied the OCMLPSI 
to the Hicks et al. (1998) dataset, but they used the Young 
(1964) method to obtain the selection intensities for two 
stages; thus, their results were approximations because the 
Young (1964) method overestimated the selection intensi-
ties (see Cerón-Rojas et al., 2019, for details).

The Multivariate Normality Assumption 
of Both Indices
The multivariate normality assumption of the estimated 
OCMLPSI (DCMLPSI) values was the basis for developing 
the OCMLPSI (DCMLPSI) theory. Under this assump-
tion, the total OCMLPSI selection response and expected 
genetic gain per trait for two or more stages, is the sum of 
each response and expected genetic gain per trait obtained 
at each stage. We corroborated the normality assumption 
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at Stage 2 using histograms and normality tests. When at 
Stage 1 the number of genotypes was 500 and the total 
proportion retained was 5 or 30%, at Stage 2 the esti-
mated OCMLPSI values approach the normal distribution 
in a similar manner as the estimated DCMLPSI values. 
These results indicate that the correlations between the 
estimated OCMLPSI values do not affect the normality 
distribution of the estimated OCMLPSI values, at least 
for the simulated dataset. This means that when the size 
of the population at Stage 1 is high (e.g., 500 or more), 
the correlations between the estimated OCMLPSI values 
cannot affect the normality distribution of the estimated 
OCMLPSI values in a two-stage context.

CONCLUSIONS
We described the OCMLPSI and DCMLPSI theory and 
evaluated it in a two-stage context. Based on the estimated 
total selection response and the total expected genetic gain 
per trait of each index, we determined their efficiency 
using a real and a simulated dataset. We found that the 
OCMLPSI is the most efficient index for predicting the 
net genetic merit, and its accuracy for predicting the selec-
tion response and estimating the expected genetic gain per 
trait was higher than DCMLPSI accuracy for predicting 
the selection response and estimating the expected genetic 
gain per trait. Thus, breeders should use the OCMLPSI 
when making a selection, not the DCMLPSI.
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APPENDIX A
The Phenotypic Model to Estimate the 
Variance Components
In this work, we estimated matrices P and G (Eq. [1a]) 
using restricted maximum likelihood (REML) because 
this estimation method does not require a specific design 
or balanced data and can be used to estimate genetic 
and residual variance and covariance in any arbitrary 
pedigree of individuals. In addition, the expectation and 
maximization algorithm allows computing the REML 
for the variance components (Lynch and Walsh, 1998, 
Chapter 27; Cerón-Rojas and Crossa, 2018, Chapter 2).

Let

q q q qm= + +y 1 Zg e

be the phenotypic model where yq is a g ́  1 (g = the number 
of genotypes in the population) vector of phenotypic 
averages, which has multivariate normal distribution 
(NMV) with mean 1mq and covariance matrix Vq; 1 is a 
g ´ 1 vector of ones, mq is the mean of the qth trait, Z is 
an identity matrix g ´ g; gq ? NMV(0, 2

qgsA ) is a vector 
of true breeding values, and eq ? NMV(0, 2

qe
sI ) is a g ´ 

1 vector of residuals. Matrix A denotes the numerical 
relationship matrix between individuals (Lynch and 
Walsh, 1998), and Vq = 2 2

q qg es s+A I . We estimated 2
gq

s  
and 2

eq
s in the absence of dominance and epistatic effects.

Estimating Matrices G and P using the 
Expectation and Maximization Algorithm
The expectation and maximization algorithm allows 
computing the REML for the variance components 2

gq
s  

and 2
qe

s  by iterating the following equations:
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and
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[A2]

where, after n iterations, ( )
g

2 1

q

ns +  and ( )2 1

q

n
es

+  are the estimated 
variance components of 2

qg
s  and 2

qe
s , respectively. In Eq. 

[A1] and [A2], tr(.) denotes the trace of the matrices 
within parentheses; T = Vq

−1 − Vq
−11(1¢Vq

−11)1¢Vq
−1 and 

Vq
−1 is the inverse of matrix Vq = 2 2

q qg es s+A I . In T(n), Vq
−1(n) 

is the inverse of matrix ( ) 2( ) 2( )
q q

n n n
q egs s= +V I .

The additive genetic and residual covariances between 
the observations of the qth and ith traits, yq and yi ( ,q igs  
and 

,q ies , q, i = 1, 2, …, t), can be estimated with REML 
by adapting Eq. [A1] and [A2] as follows. The variance 
of the sum of yq and yi can be written as Var(yi + yq) = 
Vi + Vq + 2Ciq, where 2 2

gi ii es s= +V A I  is the variance of 
yi and 2 2

gq qq es s= +V A I  is the variance of yq; in addition, 
2Ciq = 2Asgiq + 2Iseiq = 2Cov(yi, yq) is the covariance of 
yq and yi, and sgiq and seiq are the additive and residual 
covariances, respectively, associated with the covariance 
of yq and yi. Thus, one way of estimating sgiq and seiq is 
using the following equation:

( ) ( ) ( )0.5Var 0.5Var 0.5Vari q i q+ - -y y y y 	 [A3]

for which Eq. [A1] and [A2] can be used.

Estimating the OCMLPSI and DCMLPSI 
Selection Response and Expected Genetic 
Gain per Trait at Stage i
By Eq. [A1] to [A3], the estimates of matrices P and G can 
be denoted as P̂  and Ĝ , and the estimated OCMLPSI 
and DCMLPSI selection responses (Eq. [8a] and [8b]) at 
Stage i are

ˆ ˆˆˆ
Oi Oi i ii iR k ′= Qb b 	 [A4a]

and

ˆ ˆˆˆ
Di Di i ii iR k ′= b Q b 	 [A4b]

whereas the estimated OCMLPSI and DCMLPSI expected 
genetic gains per trait (Eq. [9a] and [9b]) at Stage i are

ˆˆ
ˆ

ˆ ˆˆ
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respectively.

APPENDIX B
The OCMLPSI Selection Intensity 
for Two Stages
We describe a method to obtain the OCMLPSI selection 
intensity for fixed total proportion p = q1q2, where q1 and 
q2 are the proportions of individuals selected at Stage 1 
and 2, respectively. This is because Cerón-Rojas et al. 
(2019) found that the Cochran (1951) and Young (1964) 
method overestimates the selection intensity. We obtained 
the DCMLPSI selection intensity according to the Xu and 
Muir (1992) method.

Let I1 = b¢1x1 and I2 = b¢2y be the OCMLPSI at Stages 
1 and 2, respectively, and assume that the indices have 
bivariate normal distribution. Let I1 and I2 be transformed 
as ( )

1 11 1 I Iu I m s= -  and ( )
2 22 2 I Iu I m s= -  with mean 

zero and variance 1.0, where 
1I

m  and 
2Im  are the means, 

whereas
1I

s  and 
2Is  are the standard deviations of I1 and 

I2, respectively. The selected population has bivariate left 
truncated normal distribution with probability density 
function h(u1, u2) = f(u1, u2)/p, where p = q1q2,
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2(1 )2 1
f u u u u u ur

rp r

 
= - + - 

--  
 

and r12 is the correlation between u1 and u2 (Young, 1964; 
Cerón-Rojas and Crossa 2018, Chapters 2 and 9).

Consider the transformations (Springer, 1979) v1 = u1 
and v2 = (u2 − r12u1)/

2
121 r- , with Jacobian j, where
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where |o| denotes the determinant function and ¶ 
denotes the partial derivatives of v1 and v2 with respect to 
u1 and u2. Thus, 
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The transformations indicate that variables v1 and v2 are 
independent, each with a standard normal distribution.

Variables v1 and v2 are associated with the truncation 
points as u1 = v1 and u2 = 1

2
2 12121v vrr- + . This means 

that u1 and u2 values should be obtained in two steps. First, 
we obtained the values of v1 and v2 from two independent 
standard normal distributions; then, we obtained the 
values of v1 = u1, u2 = 1

2
2 12121v vrr- + , q1, and q2; finally, 

we obtained the OCMLPSI selection intensity at Stages 
1 and 2 as

1
1

1

( )z u
k

q
=  and 2

2
2

( )z u
k

q
= 	 [A6]

respectively, where z(u1) = 
2
10.5 2ue p-  and z(u2) = 

2
20.5 2ue p-  were the height of the ordinate of the normal 

curve at the lowest values of u1 and u2 retained, whereas q1 
and q2 are the proportions of the population of animals or 
plants selected at each stage (Fig. 2). Equation [A6] values 
should be associated with the maximum Rt = R1 + R2 value 
(Fig. 2), where 

11 1 IR k s=  and 
22 2 IR k s=  are the selection 

responses, whereas 
1I

s  and 
2Is  are the standard deviations 

of the variance of I1 and I2 at Stages 1 and 2, respectively.
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