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Abstract

Drought Tolerant Maize Varieties (DTMV) and Rainfall Index Insurance (RII)
are potential complements, though with limited empirical basis. We employ a mul-
tivariate spatial framework to investigate the potential for bundling DTMV with a
simulated multi-site and multi-environment RII, designed to insure against mild,
moderate and severe drought risk. We use yield data from on-farm trials conducted
by the International Maize and Wheat Improvement Center (CIMMYT) and
partners over 49 locations in Eastern and Southern Africa spanning 8 countries
and 5 mega-environments (dry lowland, dry mid altitude, wet lower mid altitude,
low wetland and wet upper mid altitude) in which 19 different improved maize vari-
eties including DTMV were tested at each location. Spatially correlated daily rain-
fall data are generated from a first-order two-state Markov chain process and used
to calibrate the index and predict yields with a hierarchical Bayes multivariate spa-
tial model. Results show high variation in the performance and benefits of different
bundles which depend on the maize variety, the risk layer insured, and the type of
environment, with high chances of selecting a sub-optimal and unattractive
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contract. We find that complementing RII with a specific DTMV produces con-
tracts with lower premiums and higher guaranteed returns especially in dry lowland
increasing the chances of scaling up RII within this environment.

Keywords: Africa; drought tolerant maize varieties; mega-environment; multi-site
index insurance; multivariate hierarchical Bayes.

JEL classifications: C11, D80, O33, Q12.

1. Introduction

Rural households in most developing countries experience severe income and food
consumption fluctuations due to drought. This vulnerability has the potential to fur-
ther escalate given projections of more severe and frequent adverse weather conditions
due to climate change, and threatens to roll back achievements in global poverty levels
(FAO, 2007). The effect of drought is compounded by costly decisions made by farm-
ers who often trade off considerable future gains (from adopting new technology) for
reduced drought related losses (Eswaran and Kotwal, 1990; Rosenzweig and Wolpin,
1993; Jacoby and Skoufias, 1997).

Over the last two decades significant resources have been allocated by donors and
governments in developing countries to develop drought tolerant maize varieties
(DTMV) and weather index insurance (WII) for farmers to manage drought risk.2

However, the demand for most WII has been very low with little potential for scalabil-
ity and sustainability (Barnett et al., 2008; Binswanger-Mikhize, 2012). The low
demand has been attributed to credit and cash constraints, competition from informal
risk-sharing networks (Hess and Syroka, 2006; Barnett et al., 2008; Molini et al.,
2008; Binswanger-Mikhize, 2012), as well as the complex nature of the technology
and the uninsured basis risk it creates (Hess and Syroka, 2006; Molini et al., 2008;
Clarke, 2011) from poor correlation between yield losses predicted by the index (e.g.
based on rainfall recorded at the local meteorological station) and that actually expe-
rienced on individual farms.

2For example, Drought Tolerant Maize for Africa (DTMA) Project funded by the Bill and
Melinda Gates Foundation, the Howard G. Buffett Foundation, the US Agency for Interna-

tional Development, and the UK Department for International Development is jointly imple-
mented by the International Maize and Wheat Improvement Center (CIMMYT) and the
International Institute for Tropical Agriculture (IITA), in close collaboration with national

agricultural research systems in 13 participating nations. Since 2001, at least 15 developing
countries have introduced index insurance at the individual level and 20 at the institutional.
Examples include AgroBrasil in Brazil; HARITA, Millenium Village and AXA Re in Ethiopia;

BASIX, Pepsico, AIC and ICICI Lombard in India; Rockefeller and Kilimo Salama in Kenya;
MicroEnsure, Opportunity International and World Bank in Malawi; Caribbean Catastrophe
Risk Insurance Facility in 16 countries in the Caribbean; and the African Risk Capacity in
Africa. See Carter et al. (2014) and Barnett et al. (2008) for details on the insurance pro-

grammes. The surge in interest in developing crop insurance markets in developing countries is
driven by the need for more cost-effective ex-post disaster risk management strategy than post
disaster recovery aid, and the lack of interest by commercial insurers for crop production risk

due to systemic risk inherent in agriculture. This requires governments to play the role of an
insurer and reinsurer at least in the initial phase of the programme. Index-based insurance is
popular and highly preferred than farm-level contracts because it costs less to administer and is

not susceptible to moral hazard or adverse selection.
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On the other hand, significantly higher adoption rates of improved (and drought
tolerant) maize varieties by farmers are being reported (Cooper et al., 2013; Diiro,
2013; Fisher et al., 2015) whose development requires high upfront cost but a near
zero marginal cost of producing DTMV seeds. These seeds provide farmers with some
protection against mild to moderate drought. However, as drought severity increases
beyond a certain point, the yield advantage of DTMV over less/non-DTMV begins to
erode, and at severe drought conditions the yield advantage is zero. On the contrary,
WII requires a meager upfront development cost and has the potential to insure
households against mild, moderate and severe drought. However, the actuarially fair
premiums are costly to farmers and could be perceived as unfair for cash constrained
individuals.3 Designing WII to cover (more severe) drought risk beyond the point
where DTMV is losing its yield advantage is expected to significantly reduce premi-
ums and offer better benefits to farm households as drought severity increases, thus
making contracts more attractive. This might spur demand for WII, reduce underin-
surance, and improve the pool and mix of the insured making scalability and sustain-
ability more feasible.

In fact, R4 Rural Resilience Initiative (R4) and ACRE Africa, both insurance pro-
grammes in Africa with growing demand, credit their success to a holistic approach of
risk management which complements WII with quality farm inputs, credits, savings
or disaster risk reduction programmes to help vulnerable communities better manage
risk.4 However, while there are apparent gains in bundling risk management technolo-
gies in a systematic approach, research which examines this approach is limited.

Drought tolerant maize varieties have a seemingly complementary relationship with
rainfall index insurance (RII). However, this relationship is generally assumed in
designing crop insurance contracts without any theoretical or empirical basis. In addi-
tion, very little is known about the exact nature of the relationship, including how it
varies across space, drought severity levels, and their potential benefits and limita-
tions. To the best of our knowledge, only one study, Lybbert and Carter (2014), has
made this connection using a systematic approach. The authors conceptually demon-
strated the complementarity between the two technologies using yield data for a single
maize variety from a community in Ecuador, a hypothetical drought tolerant maize
variety, and a hypothetical rainfall index in a non-spatial framework. Even though
they found evidence that supports the complementarity between the two technologies
and improved benefits, their findings are limited by the hypothetical assumptions
made in their analysis.

Other studies have taken a different approach in investigating interactions between
insurance and other risk management technologies. Carriquiry and Osgood (2012)
examined the relationship between climate forecasts, insurance and production deci-
sions using a theoretical model of decision-making under risk and uncertainty in the
absence of moral hazard, and found that forecast information, even though risk-

3We note that the insurance ratemaking process used in most pilot programmes allows for the

premium estimates to be generated from a constrained optimization, and the final premium
paid is reached through further negotiation between the insurer and the farmers (Osgood et al.,
2007).
4R4 is a partnership between Oxfam America and the United Nations World Food Programme
that integrates crop insurance, credits, savings and disaster risk reduction. ACRE Africa is a
commercial company launched in 2014 that offers customised insurance products bundled with

agricultural forecast, quality inputs and credit.
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reducing can induce farmers to use more risk-increasing inputs as well as increase
their demand for insurance. Using a randomised control trial involving Indian farm-
ers, Cole et al. (2016) also found that in the presence of insurance, educated farmers
shift production toward higher returns using higher-risk cash crops. Exploiting the
interaction between members of a group and the covariate risk they face, Traerup
(2011), Dercon et al. (2014) and de Janvry et al. (2014) conceptually argued that the
demand for WII can be improved by selling insurance to informal risk-sharing groups
instead of individual farmers. Skees and Barnett (2006) and Skees et al. (2007) investi-
gated bundling WII with micro loans to facilitate farmers’ access to credit with posi-
tive results. However, access to credit does not necessarily ensure acquisition of a
drought tolerant variety that highly complements the risks insured by a specific WII,
and except Lybbert and Carter (2014), no other study has considered the potential
benefits and limitations offered by complementing DTMV and WII jointly in a sys-
tematic approach.

In this study, we investigate the potential for bundling DTMV with a simulated
multi-site and multi-environment rainfall index insurance (RII) to better insure house-
holds against drought risk and to facilitate scaling up and sustainability of farm risk
management programmes. Specifically, using daily rainfall and yield data from unique
on-farm trials conducted by the International Maize and Wheat Improvement Center
(CIMMYT) and partners over 49 locations in Eastern and Southern Africa spanning
8 countries (Ethiopia, Kenya, Malawi, Mozambique, Tanzania, Uganda, Zambia and
Zimbabwe) and 5 maize mega-environments (dry lowland, dry mid altitude, wet lower
mid altitude, low wetland and wet upper mid altitude), we extend the framework pro-
posed by Lybbert and Carter (2014) to a multivariate spatial framework and investi-
gate the potential relationships and benefits from complementing 19 improved maize
varieties with a simulated multi-site and multi-environment RII, designed to insure
against mild to severe drought risk layers (quantiles). Thus, bundling in this study
entails choosing the optimal combination of a drought tolerant maize variety and RII
to offer in each mega-environment given its drought risk quantiles (that is, the index
point beyond which the contract begins to pay out).

The remainder of the paper is structured as follows. In the next section, we discuss
the motivation behind our model framework. In section 3, we summarise the multi-
variate spatial hierarchical Bayes model used in predicting yields over different
drought severity conditions. This section also summarises the rainfall simulator. We
discuss and summarise data use in section 4, and present and discuss the results in sec-
tion 5. Finally, we conclude with major findings, policy implications and potential for
future research.

2. Motivation for Model Framework

Maize is a major food crop in most countries in Eastern, Southern and West Africa
and accounts for about 53% of all cereals (FAO et al., 2012) and 70% of total caloric
intake (Langyintuo et al., 2010). Maize production in these regions is mostly rainfed
and highly vulnerable to adverse weather conditions. Yield losses associated with
drought range between 10% and 50% on average. Losses are remarkably higher in
environments with low soil fertility and other biotic stresses (FAO et al., 2012). Under
likely climate change scenarios, more frequent adverse weather conditions have been
predicted making these regions increasingly vulnerable to food insecurity and
poverty.
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From an agronomic standpoint, DTMV have the ability to significantly reduce
yield losses under specific water stress levels, but their potential varies across agro-eco-
logical regions. Breeding drought tolerant maize traits adapted to specific regions
requires extensive on-farm trials posing both financial and systemic constraints. The
specific stress of interest in the trial (drought) may not be observed at the location dur-
ing the season in which the trial was conducted. When this occurs, genotype perfor-
mance and stability across environments cannot be properly evaluated using data
from such trials. While incorporating conventional maize breeding with managed
stress screening has been shown to be viable, on-farm trials remain essential in evalu-
ating the performance and stability of genotypes in actual environments. In addition,
data from such trials in which several DTMV are consistently tested over space and
time are rarely available, posing estimation problems.

The data used in this study are taken from on-farm trials that were conducted in
2011 and involved 19 different improved maize varieties including hybrids, and open
pollinated maize varieties. During the trials, 13 locations actually experienced water
stress levels, creating data limitations. In addition, there is a general absence of long
time series for weather data in most developing countries including the regions in this
study, which adds to the data constraints. Commercial property and casualty insurers
require at least 30 years of time series data to properly quantify the probability of dry
spell and loss.

We address the data limitations by developing a model that allows us to effectively
predict yields across space and time.5 Specifically, we use a hierarchical Bayes multi-
variate spatial model that also allows for spatial correlation and cross correlation
among trial sites and agro-mega environments. We simulate correlated space-time
growing seasonal rainfall over the 49 locations using a multi-site rainfall simulator
(Wilks, 1998), and use it in the posterior predictive distribution to generate yields for
the 19 maize varieties under different severity levels of water stress. In the next step,
following Lybbert and Carter (2014), we calibrate RII with five different trigger points
(reflecting mild to severe drought levels at which DTMV is a potential complement)
that correspond to the 50%, 45%, 35%, 25% and 10% rainfall index and yield quan-
tiles by agro-mega environment.

To investigate the potential complementarity of DTMV with RII, we examine sta-
bility of yields, yield differentials, fair premium rates, certainty equivalent and changes
in certainty equivalent revenue afforded by each maize variety across trial locations,
agro-mega environments at all five drought severity quantiles corresponding to rain-
fall trigger levels for the index insurance. In the final part of our analysis, we estimate
and compare the correlation between the indices and the yield and yield differential by
location and agro-mega environment.

In practice, bundling DTMV and RII requires the index to be strongly correlated
with yield loss, and proper knowledge of the net yield profile for the drought tolerant
variety compared to a competing alternative variety. Maize varieties have different
tolerance to drought and potentially high variation in yield losses from one variety to
another. Moreover, these losses likely vary from one agro-climatic environment to
another, making it difficult to find a good index over a large area. This serves as a

5Data availability is the most fundamental problem encountered in pricing microinsurance con-
tracts in developing countries (Biener, 2013), requiring a combination of innovative methods
(e.g. Bayesian estimation, credibility theory and use of expert knowledge) for insurance rate-

making.
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limitation to scale up and sustain index insurance programmes. However, a key posi-
tive feature is that, a multi-site index can take advantage of negative correlation in
losses between sites caused by weather patterns to create an index with lower premi-
ums (IRI, 2009). Such patterns have been reported between Eastern and Southern
African regions. In order to accurately develop a multi-site index of this nature one
needs to correctly account for spatial and temporal variation in rainfall and yields of
specific DTMV.

3. Model Framework

For completeness, we present a summary of the multivariate spatial hierarchical Bayes
model employed to simulate maize yields, and refer to Finley et al. (2007, pp. 3–8) for
detailed derivation of the model. For simplicity, we first introduce a bivariate yield
spatial model involving two locations before generalising to an m-variate model over
n locations. A simple bivariate spatial model involving two maize varieties and a sin-
gle predictor over two locations follows:

y11

y12

y21

y22

2
6664

3
7775 ¼

1 x1 0

1 0 x1

1 x2 0

1 0 x2

2
6664

3
7775

b0
b1
b2

2
64

3
75þ
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3
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�22

2
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3
7775

Y ¼ XbþWþ �

; ð1Þ

where Y is a 4 9 1 vector of yields; y11 is the yield of variety 1 in location 1, y12 is the
yield of variety 2 in location 1, and so on; X is a 4 9 3 matrix with x1 and x2 as cumu-
lative rainfall during maize growing season in locations 1 and 2, respectively; b is
3 9 1 vector of parameters with b1 and b2 representing the effect of rainfall on variety
1 and 2, respectively; w11 and w21 are spatial covariance of maize variety 1 while w12

and w22 are spatial covariance of variety 2. W is a 4 9 1 vector of the spatial covari-
ance of yields (Y) between site 1 (i) and site 2 (j) assumed to come from a multivariate
normal distribution with mean zero (4 9 1 vector) and covariance (4 9 4 vector)
Kði; j; hÞ; that is W� MVNð0;Kði; j; hÞÞ, h is the parameter in the spatial correlation
function that controls the correlation decay process between two locations as distance
between the location changes. Similarly, ��MVNð0; I2 �WÞ with a 4 9 1 vector of
mean zero, I2 is a 2 9 2 identity matrix, Ψ a 2 9 2 diagonal matrix with ½s21; s22� on
the diagonal, s21 and s22 is the variance of variety 1 and 2, respectively.6

For m maize varieties over n sites, Y is an mn 9 1 vector and X
T is a mn 9 q matrix

such that q ¼ 1þPm
i¼1 pi, where pi is the number of predictors for maize variety i; an

mn 9 1 vector W�MVNð0;RW hð ÞÞ with an mn 9 1 vector of means zero and an
mn 9 mn cross-covariance matrix RW hð Þ ¼ ½Kði; j; hÞ�ni;j¼1 where Kði; j; hÞ represents the
(i, j)th block with m 9 m dimension. The error, ��MVNð0; In �WÞ where In is a
n 9 n identity matrix, ⊗ is the Kronecker product, Ψ an m 9 m diagonal matrix with
½s21; s22; . . .; s2m� on the diagonal. Thus, implying the covariance, In ⊗ Ψ, is an

6An alternative, and theoretically preferable, model that captures different effects of predictors

for the same varieties across sites is not feasible to simulate with our current data (see below).
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mn 9 mn block diagonal matrix. Therefore, the covariance matrix of the observed
yields, Y ¼ RW hð Þ þ In �W.

Estimation is only feasible when RW hð Þ is positive and semi-definite. Following
Wackernagel (2003), we obtain feasible choices of RW hð Þ using coregionalisation
whereby is linearly transformed using an mxm non-singular spatial varying matrix
(A), thus allowing more flexible forms of spatial correlation structures (e.g. Mat0ern,
spherical, exponential, Gaussian) to be estimated. Following Finley et al. (2007), A is
identified as the Cholesky square root of K ¼ ði; j; hÞ which we take as its lower trian-
gular matrix. For m maize varieties across n sites, the transformation of the cross-cov-
ariance matrix is R ~W ¼ JEWJ

T where J ¼ In� A is an mn 9 mn matrix.

3.1. Hierarchical Bayes model

Following Gelman et al. (2003) and Finley et al. (2007, 2008), we employ a hierarchi-
cal Bayes approach with a generalised specification that allows the fitting of different
classes of spatial dependence processes using Gibbs sampler with Metropolis updates.
To induce such flexibility while ensuring that RW hð Þ is symmetric and positive definite,
we use its linear transformation, R ~W, where A ¼ K

1
2ði; j; hÞ is the Cholesky square-root

of Kði; j; hÞ taken as its lower triangular-matrix. The generic model is specified as:

Y ¼ Xbþ JWþ �; ��MVN 0; In �Wð Þ: ð2Þ
Equation (2) implies that Y�MVN Xb; JRWJ

T þ In �W
� �

. We assume
b�MVN lb;Rb

� �
, and the errors across locations are independent and follow an

inverse gamma distribution, that is s2i � IG ai; bið Þ for all s2i in the diagonal of Ψ. The
posterior distribution is then given as:

P HjDatað Þ / P bð ÞP Jð ÞP hð ÞP Wð ÞP Yjb; J; h;Wð Þ; ð3Þ
where H ¼ b; J; h;Wð Þ. To simulate the joint posterior, the b parameters are given a
diffuse prior, while the dispersion parameters (s2i ) takes on inverse gamma diffuse pri-
ors. The structure of J depends on A since J ¼ In � A, and we assign an inverse-
Wishart prior on AAT. An informative prior on the correlation decay parameter (h) is
set so that the prior means imply a spatial range of ¼ of the maximum distance
between two locations in the sample (Finley et al., 2008). Smoothness parameters (l)
for the Mat0ern model are assumed to be uniformly distributed between 0 and 2. The
Markov Chain Monte Carlo (MCMC) algorithm draws and updates b from its full
conditional using Gibbs sampling, while J; h; W are updated using Metropolis-Hast-
ings steps. We simulated L(10,000) samples of the joint posterior distribution and dis-
carded the first 7,500. Then, the posterior distribution of W is recovered from the
following predictive distribution:

P WjDatað Þ /
Z

P WjH;Datað ÞP HjDatað ÞdH: ð4Þ

First, we draw L samples of Θ from P HjDatað Þ, and then use them in
P WjH;Datað Þ to draw L samples of the spatial random field (W). To predict yields in
n∗ locations using the 500 simulated rainfall samples over the growing season, we use
the predictive distribution:

P Y
�jDatað Þ /

Z
P Y

�jH;Datað ÞP HjDatað ÞdH: ð5Þ
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To identify the best model, we estimate 28 separate models made up of different
combinations of predictors and spatial correlation functions (exponential, Gaussian
spherical and Mat0ern), and compare their deviance information criterion (DIC),
effective number of parameters (pD), sum of squared error (G), deviance criterion (D)
(Gneiting and Raftery, 2007) and a predictive loss function (Gelfand and Ghosh,
1998). The latter criterion (D = G + P) minimises the loss function using both a good-
ness-of-fit term (G = sum of squared error) and a penalty criterion (P) for adding
more predictors in the model. The results for the selection process are presented in
Table A1 in the online Appendix. Based on these criteria, we selected the hierarchical
Bayes model with a Mat0ern spatial correlation structure and X6 as the matrix of pre-
dictors. The matrix of predictors (X6) includes cumulative rainfall (PRCP) over the
growing season and four indicator (dummy) variables for agro-mega environments
taking dry lowland as the base group. Therefore, Kði; j; hÞ is now:

q i; j; h; lð Þ ¼ 1

2l�1C lð Þ si � sj
�� ���� ��h� �l

�hl si � sj
�� ���� ��h� �

; h[ 0; l[ 0 ð6Þ

where h controls the decay in spatial correlation and l is a smoothness parameter with
higher values yielding smoother process realisations; Γ is the gamma function and ℏl
is a Bessel function of order l; and ||si � sj|| is the Euclidean distance between site i
and j.7

We cross validate the final model by randomly selecting and excluding data from 6
(of 49) locations and estimate the model with 43 observations. Predictions were then
made for the excluded locations and the results compared with the actual yields. Plots
of predicted yields versus actual yields, shown in Figure S1 in the online Appendix,
overall show good prediction of the observed yields indicating strong potential for
predicting out of sample, and thus in evaluating the performance of DTMV under
water stress conditions that have not been observed.

We recognise that an alternative model with different effects on the same varieties
across different locations would be preferable. However, estimating a spatial model
with this specification proves to be much more cumbersome with little hope of con-
verging. The rejection sampling stage within the Metropolis Hastings algorithm is very
inefficient, with improvements in the parameters made at an extremely low rate
(<0.005%). We successfully simulated 10,000 draws, which took over 25 times longer
than our current specification. A summary of the parameters revealed little spatial cor-
relation; the 95% credible intervals for most of the spatial correlation parameters indi-
cate they are not different from zero. Additionally, the majority of the 980 additional
parameters, to capture differing effects, were not statistically different from zero.

3.2. Multi-site rainfall simulator

Synthetic daily rainfall samples for 500 years were generated over the 49 locations
using a first-order two-state Markov chain (Wilks, 1998). The approach uses serially
independent and spatially correlated random numbers, which are then employed indi-
vidually to generate daily precipitation occurrences and amounts equivalent to time
series at each site. Satellite daily rainfall data from 1983 to 2013 at a 10 km by 10 km

7Covariance functions that depend only on the distance metric to model spatial correlation

between points are referred to as isotropic.
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spatial resolution from the National Oceanic and Atmospheric Administration
(NOAA) are used in the simulation. A precipitation threshold of 0.01 inches is used to
calibrate the observed daily rainfall occurrences into dry or wet state, and the Markov
transition probabilities are derived from direct frequency estimates of the four states
(dry-wet, dry-dry, wet-wet and wet-dry). To model the rainfall amounts, we use a
two-parameter gamma distribution instead of a mixed exponential distribution as in
Wilks (1998). The former has been found to fit rainfall data in Africa and Middle
Eastern regions better (Mhanna and Bauwens, 2012).8 Next, we use the synthetic rain-
fall generated to calibrate the rainfall index in each mega-environment. We calibrate
the rainfall indices for five (10%, 25%, 35%, 45% and 50%) drought risk quantiles
based on a single-phase maize growing season.9 The resulting index (Ish) for drought
risk quantile (trigger) h in mega-environment s is given by:

Ish ¼ 1� Rs

Rsh

� �
; ð7Þ

where Rst ¼
PHd

t¼Pd rst is the cumulative rainfall amount over the maize growing sea-
son in time t, that is from the planting date (Pd) to harvesting date (Hd) predicted at
environment s for the tth time period, Rsh is the hth quantile of cumulative rainfall
that serves as a trigger in environment s below which indemnities are paid.10 By using
observed planting dates for each farm field, the index directly allows for shifting ‘sow-
ing windows’ across space making the contracts more reliable. Each quantile determi-
nes a layer of drought risk covered, thus allowing for five separate potential risk
layers that can complement the drought tolerant traits in a given maize variety. Differ-
ent RII policies are obtained by varying the guaranteed quantile level. The higher the
trigger (quantile) the more risk layers are covered including the catastrophic layer,
while lower trigger levels will leave out mild to moderate risk layers which occur more
frequently. Therefore, complementing DTMV with RII is equivalent to finding
the rainfall trigger (quantile) such that the excluded upper risk layer(s) are covered by
the drought tolerant traits in a maize variety while the lower ones are insured with the
RII. However, to evaluate the performance of the bundle for an index insurance based
on a specific drought tolerant maize variety requires comparing the outcome of a simi-
lar index when applied to a non/less drought tolerant maize variety (baseline).

In this study, we take a general approach to investigate the potential complementar-
ity between DTMV and the rainfall index. Specifically, we explore five rainfall quan-
tile (triggers) levels selected to disaggregate drought risk in mega-environments into
mild, moderate, and severe risk layers allowing a non-drought tolerant, moderately
drought tolerant, and a highly drought tolerant maize to complement a RII design to
insure mild, moderate, and severe drought risk, respectively.11 The five cumulative

8For more details about the step-by-step approach, see Wilks (1998) and Mhanna and Bauwens

(2012). We updated and use R source codes from Mhanna and Bauwens (2012) available online
to conduct our simulations.
9Multi-phase weather indexes designed to capture the different crop growth stages and their

water requirements are expected to better correlate with yields than a single-phase index.
10Alternatively, rainfall shortfall and thus losses can be capped at a maximum by setting an exit
rainfall amount. We also investigated a standardised index but it did not perform better.
11An optimum trigger for each maize variety can be obtained by minimising the variance of
yield losses (Osgood et al., 2007). This can easily be obtained in this study by grid search since

very few parameters are involved in the objective function.
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rainfall quantiles (triggers) are 50%, 45%, 35%, 25% and 10%. The index insurance
based on the 50% and 45% quantiles seeks to insure against mild drought, that based
on the 35% quantile insures against moderate drought, and the 25% and 10% quan-
tile seeks to insure against severe drought risk. We expect DTMV to perform rela-
tively well compared to the baseline variety under mild to moderate drought
conditions, thus complementing an index insurance with a lower rainfall trigger to
insure households against all drought risk layers at an affordable rate. The yield loss
for maize variety i ( ~Lish) based on the hth quantile in a mega-environment s is esti-
mated using:

~Lish ¼ Max ~Ish � ~Yish; 0
� �

; ð8Þ
where ~Yish is the hth yield quantile of maize variety i in environment s. The corre-
sponding actuarially fair premium rate is derived as12 :

~Pish ¼ ~Lish

�
~Yish: ð9Þ

The revenue (Rish) obtained from growing variety i in environment s covered with
insurance that triggers at the hth quantile is derived as:

Rish ¼ �Pðyis � ~Pish þ ~LishÞ; ð10Þ
where yis is the predicted yield and �P is market price or cost per unit of production.
To facilitate the comparison of results across countries (with different currencies), we
set �P to 1. To estimate certainty equivalent (CEish) revenue of maize variety i in envi-
ronment s under a contract that triggers at the hth quantile, we used a constant rela-
tive risk aversion utility function U Rishð Þ ¼ R1�k

ish = 1� kð Þ with a risk aversion
parameter (k) of 2 based on estimates found in the literature:

CEish ¼ U�1

Z
U Rishð Þf yisð Þd yisð Þ

� 	

¼ ð1� kÞ 1

k
Rk
f¼1U R

ðfÞ
ish


 �� 	� 
 1
ð1�kÞ

;

ð11Þ

where k (= 500), is the number of draws. The yield differential (D ~Yish) in each environ-
ment s based on an insurance with trigger h is derived as the difference in predicted
yield between variety i and a baseline variety j; D ~Yish ¼ ~Yish � ~Yjsh. In an attempt to
capture the possible range of variation in the yield differential and benefits of each
bundle between varieties with different degrees of tolerance to drought in each envi-
ronment, we consider all 18 remaining varieties as a potential baseline variety for any
given variety i. Finally, we estimate and compare correlations between the indices,
yield, and yield differentials. For illustrative purposes, we present results involving
selected maize varieties based on a single baseline maize variety across all
environments.

12Following past literature, we ignore the cost of administering the programmes. This assump-

tion is also reasonable because the cost of administering an index-based insurance programme
is minimal, as losses are not indemnified on individual farms. In practice, the cost can be priced
into the gross premiums by adding it as a loading factor. Also, note that adding the cost of

administering the programme will not change our main results.
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From a practical standpoint, these analyses are comparable to using all the rainfall
data collected from a network of meteorological stations within the mega-environ-
ments to calibrate a single index for the environment. Bundling entails choosing the
optimal combination of drought tolerant maize variety and RII to offer in each mega-
environment given a drought risk quantile.

4. Data

Data for this study come from on-farm trials conducted by CIMMYT and partners in
2011 in 49 farmers’ fields under famer management across 8 countries in Eastern and
Southeastern African countries. The 49 farm fields were associated with five different
agro-mega environments: dry lowland, dry-mid altitude, wet-lower-mid altitude, low
wetland and wet-upper-mid altitude. Nineteen different improved maize varieties
including hybrids, open-pollinated varieties, commercial varieties and local varieties
(simply referred to here as DT1 to DT19) plus one local maize variety were tested on
a farm plot at each location. Each farm represented a block in a randomised com-
plete-block design.

During the year that the trials were conducted only 13 locations actually experi-
enced water stress levels in 2011, making it difficult to properly evaluate genotype per-
formance and stability under various drought severity levels. In addition, the local
variety, which varies by location, makes it difficult to model in a multivariate frame-
work with the other 19 varieties. The results presented below are based on 19 varieties
excluding the local variety.

Satellite daily rainfall data from 1983 to 2013, used to simulate rainfall samples for
500 years, over the locations and mega-environments are obtained from the National
Oceanic and Atmospheric Administration (NOAA). The rainfall estimates are
obtained from a high gridded spatial resolution (10 km 9 10 km) by blending gauge
and satellite information. Using the planting and harvesting dates and geographical
coordinates for each location, we calculate cumulative rainfall (PRCP) over the grow-
ing season. Summary results for the data and simulated rainfall across the 49 loca-
tions are presented in Tables 1 and 2, respectively.

Maize yields range from 0 t/ha for DT16 to 14.38 t/ha for DT7 while mean yields
range from 3.12 t/ha for DT2 to 4.57 t/ha in DT11 with relatively high variation
ranging from 1.78 t/ha to 2.62 t/ha. Cumulative precipitation over the growing season
over all sites range from 176 mm to 1,174 mm with a mean of 590 mm. On the other
hand, the 500 simulated rainfall samples at each location range from 20 mm in
Bomangombe to 1,307 mm in Malava with expected value ranging from 109 mm in
Bomangombe to 825 mm in Malava. Similarly, standard deviations for the expected
rainfall range from 40 mm in Bomangombe to 137 mm in Matsinnho-Gond.

5. Results and Discussions

Summary of the posterior distribution of model parameters is presented in
Table A2 in the online Appendix. The 95% credible interval for cumulative rainfall
(bPRCP) (and several mega-environments) indicates a high probability that the
parameters are different from zero. Similarly, credible intervals for l, h and Ψ show
high probability of the estimates being greater than zero. In the case of h and l, it
shows high spatial correlation in yields across the locations. These results indicate
that our restricted spatial model captures most of the systemic variation in maize
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varieties across different locations. Credible interval estimates for h show four dis-
tinct spatial trends for the DTMV ranging between 4.12 and 12. Those with wide
range tend to have the least smooth spatial distribution based on estimates of l.
Estimates of non-spatial variance (Ψ) for each variety range from 0.24 to 2.28.
Overall, cumulative rainfall, mega-environment type and spatial correlation are
good predictors for DTMV yields.

5.1. Stability of DTMV yields, net yields and Index performance

For illustrative purposes, we present results involving four representative maize vari-
eties (DT3, DT6, DT11 and DT17) with DT11 representing the baseline maize variety
in each environment. We also focus our analysis on median and lower quantiles since
insurance is typically designed for these risk layers.

A summary of the simulated yields is reported in Table A3 in the online
Appendix while Table 3 summarizes the yield differential between each of the three
varieties (DT3, DT6, DT17) and DT11 (our base).

Results in Table A3 show substantial variation in yield performance amongst the
maize varieties both within and across mega-environments, thus presenting a need for

Table 1

Summary of yields (t/ha) and rainfall

Maize variety
Mean
(SE) Min Max Variable

Mean
(SE) Min Max

DT1 3.2 0.47 8.96 DT14 3.6 0.19 11.07
(1.8) (2.0)

DT2 3.1 0.27 8.29 DT15 3.6 0.25 7.90
(1.8) (1.9)

DT3 3.6 0.58 11.46 DT16 3.5 0.00 8.68

(2.0) (2.1)
DT4 3.4 0.26 9.51 DT17 3.7 0.29 12.13

(1.9) (2.2)
DT5 3.6 0.37 11.56 DT18 3.4 0.54 10.35

(2.2) (2.0)
DT6 3.3 0.20 9.16 DT19 3.8 0.47 11.21

(1.8) (2.4)

DT7 3.9 0.47 14.38
(2.6)

DT8 3.8 0.68 10.88 PRCP 590.3 176.43 1,173.9

(2.3) (178.5)
DT9 4.0 0.42 12.52 Dry lowland 0.08 0 1

(2.4)
DT10 4.2 0.62 11.90 Dry-mid alt. 0.08 0 1

(2.3)
DT11 4.6 0.51 12.36 Wet-lower-mid-alt. 0.41 0 1

(2.6)

DT12 3.7 0.16 8.96 Wet lowland 0.41 0 1
(1.8)

DT13 4.0 0.31 11.95 Wet-Upper-mid alt. 0.39 0 1

(2.5)
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Table 2

Summary of simulated cumulative rainfall over maize growing season by location

Location
PRCP
(SE) Min Max Location

PRCP
(SE) Min Max

Bikita 389.6 193.5 764.1 ChipokaEPASal. 533.1 296.5 915.4
(84.4) (90.0)

Bikita 354.7 129.8 680.6 PhalulaBalaka 487.4 267.3 726.0
(92.2) (84.2)

Bikita 359.6 146.0 662.1 ChipokaEPASal2. 573.8 338.6 970.1

(89.6) (94.6)
Bikita 350.8 94.2 668.3 Chisamba 551.6 299.8 866.8

(96.9) (99.1)
Bikita 330.6 107.4 621.2 LusakaWest 599.2 303.5 987.2

(89.0) (104.5)
Bikita 351.2 116.3 640.3 MonzeEast 592.2 314.6 928.9

(90.6) (103.5)

Zaka 369.0 170.0 647.1 Monze 506.1 217.5 782.1
(80.2) (101.0)

Zaka 317.4 95.3 648.4 Matsinnho-Gond. 604.7 315.6 981.6

(86.0) (137.0)
Gokwe 584.1 277.6 856.4 VanduziManica 546.7 220.0 1,011.6

(98.1) (122.2)
Gokwe 584.1 288.0 836.0 Gondola-Caf. 529.8 170.4 919.0

(100.2) (127.8)
Gokwe 603.6 347.0 882.9 Iganga 571.0 368.0 795.8

(103.2) (77.4)

Gokwe 571.0 301.0 889.8 Gulu 685.6 421.9 966.1
(105.8) (97.6)

Mtoko 572.0 260.0 954.1 Masindi 579.3 336.9 816.0

(110.4) (88.5)
Mtoko 574.5 313.9 898.4 Kipini 225.3 40.4 601.8

(110.2) (83.6)
Mtoko 586.3 330.5 1,006.6 Wakiso 464.5 283.7 670.0

(115.2) (70.7)
Mtoko 587.6 320.6 899.1 Malava 824.7 530.2 1,306.5

(107.2) (99.1)

Mrewa 665.6 330.4 1,073.1 Bungoma 705.9 487.5 990.3
(128.1) (87.2)

Mrewa 616.4 282.6 951.8 Alupe 668.7 451.5 913.8

(115.2) (82.5)
Mrewa 628.1 354.6 1,020.0 KibosPrison 505.5 307.2 715.7

(123.3) (70.5)
Mrewa 612.89 273.6 992.5 Ethiopia1 268.3 124.6 482.9

(116.0) (64.7)
UlongaEPA 623.1 387.7 963.0 Ethiopia2 295.4 99.8 527.9

(96.1) (71.3)

RiviriviEPA 622.3 283.6 974.6 Bofa 266.8 130.7 513.4
(110.6) (65.0)

Golomoti 589.2 316.7 948.3 Bomangombe 109.3 19.8 262.6

(98.9) (39.0)
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market insurance. Overall, the reported results across all mega-environments indicate
that DT11 (our base) is the least drought tolerant maize variety while DT6 is the most
drought tolerant variety.

Results reported in Table 3 show that the yield differential between DT6 and DT11
in dry lowland and wet-lower mid-altitude increases from the 50% up to the 25%
quantile, and decreases thereafter. In the dry mid-altitude and low wetland, the yield
differential increases up to the 10% quantile before decreasing. Overall, the yield dif-
ferential tapers to zero after the 10% quantile, indicating that DT6 loses its potential
drought tolerant yield advantage over DT11 beyond this point. These results suggest
that insuring the 50% up to the 25% or 10% yield quantile of DT6 in dry environ-
ments with a RII would complement the drought tolerant traits in DT6 to produce
optimal benefits. This is feasible if there is a strong correlation between the rainfall
index and the yield (differential) in each environment.

Table A4 in the online Appendix reports the correlation between the rainfall index
and maize yields while Table 4 reports the correlation between the index and yield dif-
ferential. Results in both tables show high variation in the degree of correlations
amongst the varieties both within and across mega-environment. The strongest and
statistically significant correlation (at the 5% level) is recorded in dry lowland and dry
mid-altitudes while the least is recorded in wet lowland and wet-lower mid-altitude,

Table 2
(Continued)

Location
PRCP
(SE) Min Max Location

PRCP
(SE) Min Max

GolomotiEPA 632.9 309.1 977.8 Ethiopia3 324.6 84.2 612.5

(99.9) (78.6)
Chipoka 587.2 351.6 999.4

(94.5)

Table 3

Summary of yield differential between DT11 and DT3, DT6, DT17

Environment Variety 2.50% 10% 25% 35% 45% 50%

Dry lowland DT3 0 0.17 0.93 0.84 0.7 0.62
Dry lowland DT6 0.87 1.93 2.49 2.25 1.91 1.71

Dry lowland DT17 0 1.15 2.01 2 1.98 1.97
Dry-mid alt. DT3 0 0.38 0.15 �0.32 �0.82 �1.07
Dry-mid alt. DT6 0.66 1.49 1.16 0.7 0.31 0.14

Dry-mid alt. DT17 0 0.16 �0.04 �0.5 �0.98 �1.22
Wet-lower-mid alt. DT3 0.29 0.49 0.28 0.12 �0.07 �0.19
Wet-lower-mid alt. DT6 0.04 0.19 0.64 0.64 0.43 0.29

Wet-lower-mid alt. DT17 0 �0.43 �0.04 �0.15 �0.32 �0.4
Low wetland DT3 0.72 1.66 1.36 1.13 0.79 0.61
Low wetland DT6 1.65 2.42 2.03 1.78 1.47 1.32
Low wetland DT17 0 0.26 0 �0.22 �0.54 �0.7

Wet-upper-mid alt. DT3 0.14 0.54 0.74 0.82 0.88 0.88
Wet-upper-mid alt. DT6 0.15 0.37 0.05 �0.07 �0.1 �0.11
Wet-upper-mid alt. DT17 0 0.3 0.48 0.41 0.37 0.36
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suggesting that dry lowland and dry mid-altitudes environments offer the greatest
potentials for bundling DTMVs and RII.

More specifically, in dry mega-environments, the correlation between the rainfall
index and yields range from �0.26 (P = 0.000) at the 10% quantile to �0.71
(P = 0.000) at the 50% quantile, and in wet environments, it ranges from 0.00
(P = 0.93) at the 10% quantile in the low wetland to �0.30 (P = 0.00) at the same
quantile. Similarly, in the dry environments, correlation between the index and yield
differential range from 0.13 (P = 0.000) to 0.68 (P = 0.000) and range from 0.02
(P = 0.63) to 0.26 (P = 0.00) in wet environments. Generally, the correlation between
the yields and index is negative while that between the index and yield differential is
mostly positive across mega-environments and quantile levels. Thus, revealing that an
increase in the index value, which represents the proportion of cumulative rainfall
shortfall over the growing season, leads to a decrease in the yields while an increase in
the index value, overall, leads to an increase in the yield differential.

These results suggest a quadratic relationship between yield differentials and rain-
fall index as indicated in the stylised conceptual framework in Lybbert and Carter
(2014) for bundling a drought tolerant maize variety and rainfall index insurance. In
this relationship, net yields between a more drought tolerant variety and a less
drought tolerant one approaches zero under (near) normal rainfall conditions. As
rainfall decreases, drought tolerant variety yields become increasingly better than the
base. Beyond a certain point, yields for the more drought tolerant variety also start to
decrease and so thus the net yields. Under extremely severe drought conditions, yields
from both varieties (and thus net yields) tend to zero.

Table 5 reports expected losses (in t/ha) by maize variety and insured risk quantile
within each mega-environment while Table 6 reports corresponding actuarially fair
premium rates. Results show significant heterogeneity in the expected loss and rate
amongst the maize varieties both within and across mega-environments.

Overall, expected loss and premium rate decreases with decrease in insured risk
layer (quantile). Results reported in both tables reveal distinct patterns in expected
loss as we move from high to low risk quantiles; Table 6 shows relatively little or
no change in fair premium rates in the mild to moderate (50%, 45% and 35%) risk
quantile and a substantial decrease in rates from the moderate to severe risk quan-
tiles. Comparing rates amongst varieties reveals DT6 has the lowest rates in dry
lowlands and dry mid-altitudes while DT11 (and DT17) have the highest rates.
Additionally, the magnitude of the differences in rates is remarkably higher in dry
lowlands compared to wet mega-environments, and the differences in rates
increases with decreases in the insured risk quantile. For example, the premium
rate differential between DT6 and DT11 reveals that rates for DT6 are 44% to
500% lower in the dry lowland and only 9% to 83% lower in the dry mid-altitude,
and except at the severe risk quantile, the rate differentials are minimal in the low
wetland and wet-upper mid-altitude.

5.2. Potential welfare changes from bundling DTMV and index insurance

Table 7 presents certainty equivalent (CE) revenue and percentage change in CE rev-
enue between DT11 and each maize variety. Akin to fair premium rates and yield (differ-
entials), results show high variability in benefits of bundling DTMVs and RII amongst
maize varieties within and across mega-environments. In dry environments, where it is
most feasible to bundle DTMWs with RII, DT6 offers the highest CE revenue (1.6 to
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3.54 currency units) and highest percentage increase in CE revenue (18.41% to
4,356.6%). In comparison, CE and percentage change in CE for DT6 are much lower
(and negative in some risk layers) in low wetlands and wet-upper mid-altitude.

Overall, DT6 offers the most benefits of bundling with a RII designed to insure the
50%, 45% and 35% drought risk quantiles in dry lowlands and dry mid-altitude.

Our results also show DT6 to be the most beneficial bundle in low wetlands based
on similar drought risk layers while DT3 is the most beneficial in wet-lower mid-alti-
tude. However, these results are less reliable compared to those obtained in dry low-
lands and dry mid-altitude due to the weaker correlation between the index and yield
(differential) in wet mega-environments.

In a nutshell, these results underscore the need to systematically bundle a specific
variety and drought risk layer to insure in a given mega-environment in order to spur
demand and facilitate scaling up and sustainability of crop insurance programmes.
Failure to do so increases the chances of designing a contract that is far less beneficial
and highly unattractive to farmers, thus leading to low demand for these policies.

Table 4

Correlation between yield differential and rainfall index (P-value in parentheses)

Environment Variety 10% 25% 35% 45% 50%

Dry lowland DT3 0.0 0.31 0.30 0.29 0.29
(0.00) (0.00) (0.00) (0.00) (0.00)

Dry lowland DT6 0.48 0.46 0.45 0.44 0.43

(0.00) (0.00) (0.00) (0.00) (0.00)
Dry lowland DT17 0.19 0.19 0.20 0.20 0.20

(0.00) (0.00) (0.00) (0.00) (0.00)

Dry-mid alt. DT3 0.38 0.38 0.38 0.37 0.37
(0.00) (0.00) (0.00) (0.00) (0.00)

Dry-mid alt. DT6 0.69 0.68 0.68 0.68 0.68
(0.00) (0.00) (0.00) (0.00) (0.00)

Dry-mid alt. DT17 0.18 0.16 0.15 0.13 0.13
(0.00) (0.00) (0.00) (0.00) (0.00)

Wet-lower-mid alt. DT3 0.07 0.07 0.07 0.06 0.06

(0.00) (0.00) (0.00) (0.00) (0.00)
Wet-lower-mid alt. DT6 0.03 0.02 0.02 0.01 0.01

(0.06) (0.19) (0.30) (0.43) (0.50)

Wet-lower-mid alt. DT17 �0.28 �0.29 �0.30 �0.30 �0.30
(0.00) (0.00) (0.00) (0.00) (0.00)

Low wetland DT3 0.05 0.05 0.05 0.05 0.05
(0.29) (0.29) (0.36) (0.36) (0.37)

Low wetland DT6 0.03 0.03 0.02 0.02 0.02
(0.55) (0.62) (0.63) (0.68) (0.68)

Low wetland DT17 0.04 0.03 0.02 0.02 0.02

(0.48) (0.62) (0.64) (0.63) (0.64)
Wet-upper-mid alt. DT3 0.19 0.20 0.21 0.21 0.21

(0.00) (0.00) (0.00) (0.00) (0.00)

Wet-upper-mid alt. DT6 0.24 0.25 0.25 0.25 0.25
(0.00) (0.00) (0.00) (0.00) (0.00)

Wet-upper-mid alt. DT17 0.26 0.26 0.26 0.26 0.26
(0.00) (0.00) (0.00) (0.00) (0.00)
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Table 5

Expected yield loss (t/ha)

Environment Variety 10% 25% 35% 45% 50%

Dry lowland DT3 0.03 0.23 0.36 0.47 0.54
Dry lowland DT6 0.06 0.33 0.49 0.61 0.68
Dry lowland DT11 0.04 0.25 0.39 0.5 0.57

Dry lowland DT17 0.07 0.36 0.54 0.67 0.75
Dry-mid alt. DT3 0.02 0.11 0.19 0.3 0.37
Dry-mid alt. DT6 0.03 0.13 0.23 0.34 0.42

Dry-mid alt. DT11 0.03 0.13 0.24 0.36 0.45
Dry-mid alt. DT17 0.02 0.1 0.19 0.31 0.38
Wet-lower-mid alt. DT3 0.1 0.24 0.34 0.45 0.51
Wet-lower-mid alt. DT6 0.11 0.27 0.38 0.5 0.56

Wet-lower-mid alt. DT11 0.12 0.28 0.41 0.54 0.61
Wet-lower-mid alt. DT17 0.1 0.25 0.36 0.47 0.53
Low wetland DT3 0.03 0.1 0.17 0.28 0.33

Low wetland DT6 0.04 0.13 0.22 0.34 0.41
Low wetland DT11 0.02 0.08 0.14 0.23 0.28
Low wetland DT17 0.01 0.05 0.1 0.18 0.22

Wet-upper-mid alt. DT3 0.05 0.2 0.29 0.41 0.48
Wet-upper-mid alt. DT6 0.04 0.16 0.25 0.35 0.4
Wet-upper-mid alt. DT11 0.04 0.17 0.25 0.35 0.41
Wet-upper-mid alt. DT17 0.05 0.2 0.29 0.41 0.48

Table 6

Actuarially fair premium rates

Environment Variety 10% 25% 35% 45% 50%

Dry lowland DT3 0.2 0.18 0.19 0.19 0.19
Dry lowland DT6 0.03 0.12 0.15 0.17 0.18

Dry lowland DT11 NaN 0.72 0.38 0.28 0.26
Dry lowland DT17 0.06 0.15 0.18 0.18 0.18
Dry-mid alt. DT3 0.06 0.08 0.1 0.12 0.14

Dry-mid alt. DT6 0.02 0.06 0.08 0.1 0.11
Dry-mid alt. DT11 NaN 0.11 0.11 0.11 0.12
Dry-mid alt. DT17 0.13 0.09 0.11 0.14 0.15
Wet-lower-mid alt. DT3 0.08 0.11 0.13 0.14 0.15

Wet-lower-mid alt. DT6 0.12 0.11 0.12 0.13 0.14
Wet-lower-mid alt. DT11 0.15 0.15 0.16 0.16 0.17
Wet-lower-mid alt. DT17 0.28 0.13 0.15 0.16 0.16

Low wetland DT3 0.01 0.03 0.05 0.07 0.08
Low wetland DT6 0.01 0.04 0.05 0.08 0.09
Low wetland DT11 0.09 0.05 0.06 0.08 0.08

Low wetland DT17 0.01 0.03 0.05 0.07 0.08
Wet-upper-mid alt. DT3 0.04 0.08 0.1 0.11 0.12
Wet-upper-mid alt. DT6 0.04 0.09 0.11 0.13 0.14
Wet-upper-mid alt. DT11 0.07 0.1 0.11 0.13 0.14

Wet-upper-mid alt. DT17 0.05 0.09 0.11 0.13 0.14
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6. Conclusion

Poor demand for index insurance with little potential for scalability and sustainability
combined with higher vulnerability of rural households to drought has prompted
research for improved risk management tools. We investigate the potential for bund-
ling drought tolerant maize varieties with a simulated multi-site rainfall index insur-
ance to better insure households against drought risk and facilitate scaling up and
sustainability of farm risk management programmes. We use on-farm trial data con-
ducted by CIMMYT and partners over 49 locations in Eastern and Southern Africa
spanning 8 countries and 5 agro-mega environments with daily rainfall data to investi-
gate the feasibility of such a bundle.

We find very high variation in the benefits of bundling a drought tolerant maize
variety with a rainfall index insurance. The performance of the bundle depends on the
maize tolerance to drought, the drought risk layer (trigger level) chosen, type of envi-
ronment in which it is grown and the baseline maize variety to which it is compared.
This implies that there are benefits to some combinations of DTMV and RII in a
given environment based on the yield and premium cost at different trigger thresholds.
The ultimate benefits of the bundle are realised by selecting an optimum trigger level
conditional on the environment and the (baseline) maize variety.

We find a well-defined relationship between net yields and certainty equivalent esti-
mates when comparing benefits of a drought tolerant maize and a baseline variety,
making it feasible to select the best variety and an optimum insurance. As would be
expected, the opportunities for defining an efficient bundle are greatest in dry mega-
environments, and thus offer the best potential for scaling up programmes in these
environments. In addition, the welfare benefits of bundling DTMV and RII are signif-
icantly higher in dry lowlands than low wetlands. Overall, we find high correlation
between the index, yields and net yields at both high, medium and low trigger levels in
dry lowlands, making basis risk less of a concern.

The policy implications of these results are significant, given that demand can
be increased by systematically bundling the two technologies to produce con-
tracts with lower premiums, and by increasing the area of coverage with a design
that aims to insure all farmers within a dry lowland. In addition, our model
framework can be used to recommend specific maize varieties that offer the most
benefits in a given mega-environment with or without RII, thus facilitating deci-
sion-making under risk and multiple uncertainties to both farmers and policy-
makers.

Additional research is needed to validate and convert the index developed in this
study into a more dependable, practical product. For example, more accurate yield
predictions could be obtained by using yield data for several years from the same farm
fields, including other major input variables, such as those used in a crop growth
model, as covariates in our model. Developing a model that allows for the joint simu-
lation of space-time rainfall and other variables such as evapotranspiration will be
very useful future research and will lay the groundwork for possible improvements to
this study. Additional benefits of bundling DTMV with a multi-site index could also
be obtained by comparing results derived using a multi-site rainfall index with those
separately derived using a single index in each environment. In addition, selecting the
insurance triggers in an optimisation process as opposed to taking a general approach
(as done in this study) can produce more insightful results on the variation of the ben-
efits and performance of the bundle across space. Finally, with the availability of
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sufficient data in the future, models that allow for site-specific effects of cumulative
rainfall to be directly estimated are worth pursuing.

Supporting Information

Additional supporting information may be found online in the Supporting Informa-
tion section at the end of the article.

Table A1. Model selection
Table A2. Posterior summary
Table A3. Summary of simulated yields (t/ha)
Table A4. Correlation between yields and rainfall index (P-value in parentheses)
Figure S1. Observed vs. Predicted yield at 8 locations within the wet lower mid-alti-

tude environment.
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