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Abstract

Purpose — Productivity and production risks affect the use of agricultural production practices and inputs,
particularly in developing countries. This paper aims to investigate the effects of adopting drought-tolerant
maize varieties (DTMVs) on farm productivity, yield variance and downside risk exposure of maize growing
households of Zambia.

Design/methodology/approach — The study uses household survey data collected from 11 maize
producing districts of Eastern, Southern and Copperbelt provinces of Zambia using a structured
questionnaire. The Antle’s flexible moment-based approach was used in specifying, estimating and testing a
stochastic production function. The study further applied an endogenous switching regression model to
control for both observable and unobservable sources of bias.

Findings — The study revealed that DTMV adoption increases maize yield by 15 per cent and reduces the risk
of crop failure: reducing yield variance by 38 per cent and exposure to downside risk by 36 per cent.
Originality/value — This study establishes the benefits of DTMV adoption in Zambia with regards to
productivity, yield stability and downside risk in the face of climate change. Results from this study
underscore the need for more concerted efforts to scale-out DTMVSs for both maize productivity enhancement
and for risk mitigation against weather shocks.
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1. Introduction

Farm households in Sub-Saharan Africa (SSA) typically rely on rain-fed agriculture which
exposes them to the risks of low productivity and crop failure resulting from weather
shocks. Besides, low level of input use, lack of finances and infrastructure, lack of adequate
knowledge on best management practices and the frequent incidence of pests and diseases,
exacerbate the impacts of climate change in developing countries (Yohe and Tol, 2002;
Mirza, 2003; McSweeney ef al., 2010). These constraints have serious implications not only
on farm productivity but also on food security and other welfare indicators at both
household and national levels. The impacts of climate change on agriculture thereby notably
affect the rural poor who are least able to adapt, and this adds significantly to the
development challenges of ensuring food security and reducing poverty (Jones and
Thornton, 2003).

Drought risk, in particular, is a major concern since it has serious and complex economic,
social and environmental implications for rural communities [Food and Agricultural
Organizations of the United Nations (FAO), 2015a, 2015b; Monacelli ef al, 2005]. In SSA,
droughts and floods alone are estimated to account for 80 per cent of the loss of life and 70
per cent of the economic losses (Bhavnani et al., 2008; Shiferaw et al, 2014; Hlalele ef al.,
2016). Drought vulnerability and impacts in SSA are further aggravated by population
growth, poverty and inadequate policies (Tadesse, 1998; Shiferaw et al., 2014).

At the center of the drought challenge in SSA is maize: the continent’s most important
staple food crop, consumed by 50 per cent of the population, yet susceptible to drought (CRP
MAIZE[1]; Sangoi and Salvador, 1998; Aslam et al., 2015). In Zambia, maize occupies a
central position in its agricultural political economy as both the national staple food and
primary smallholder crop (Chapoto ef al, 2015). While the country ranked 13th among the 51
maize producing African countries with a total production of 0.865 million tons of maize in
2006 [Japan Association for International Collaboration of Agriculture and Forestry
(JAICAF), 2008], a tremendous increase in maize production has been observed since with an
estimated 3.607 million tons in 2016 (Chapoto et al., 2017). The increase is largely due to area
expansion and increased government spending in the maize sector (Chamberlin et al., 2014).
Nearly a third of the total arable land was under maize production in 2011/2012. Zambia
spends 50-80 per cent of its agriculture budget on input and output subsidies through its
Farmer Input Support Program (FISP) and Food Reserve Agency in the quest to achieve
national maize security objective (Chapoto et al., 2015; Kuteya et al., 2017).

Despite the importance of maize and the concerted efforts by government in the maize
sector in Zambia, the country continues to battle with low and variable maize productivity
(oscillating around 2 tons per hectare as affected by drought, Figure 1; as compared to the
worldwide average of 5.5 tons) and high rates of rural poverty 77 per cent (Republic of
Zambia — Central Statistical Office, 2016; Chamberlin et al, 2014). Among the ten Zambian
provinces, the Eastern province is the largest maize producer, followed by the Southern and
Central provinces (JAICAF, 2008; Chamberlin ef al, 2014). Zambian communities are
vulnerable to weather hazards, as they rely solely on rain-fed agriculture and lack the
capacity, resources and financial assistance to adapt to and overcome worsening climatic
conditions [Government of Zambia and United Nations Development Program (GRZ and
UNDP), 2010]. Prolonged dry spells and shorter rainfall seasons over the past 20 years have
been associated with reduced maize yields to 40 per cent of the long-term average
[Government of Zambia and United Nations Development Program (GRZ and UNDP), 2010].
Ngoma (2008) reports rapidly increasing temperatures in Zambia (0.6 degrees Celsius per
decade), at rates higher than those of Southern Africa (0.5°C). A projected change in Africa’s
annual mean temperature above 2°C in the mid-twenty-first century as compared to late
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twentieth century levels will adversely affect maize yields and food security in future
[Intergovernmental Panel on Climate Change (IPCC), 2014].

African maize farming households deploy different coping strategies to cope with weather
risks and adapt to climate change (Dercon, 2004; Fisher et al., 2015). Nonetheless, some of
these methods are insufficient for protecting livelihoods in drought-prone regions of SSA
(Shiferaw et al., 2014; Fisher et al., 2015). One effective, innovative adaptation strategy is the
use of drought-tolerant maize varieties (DTMVs). These varieties have been developed since
2006 and deployed to over 13 countries in Eastern, West and Southern Africa and beyond, by
the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with
other CGIAR centers, National Research Institutions and seed producers (Shiferaw et al., 2014;
Fisher et al., 2015; Wossen et al., 2017). DTMVs are well-adapted to SSA and include hybrids
and open-pollinated varieties. DTMVs are expected to increase farmers’ maize yields by at
least one ton per hectare under moderate drought and increase farmers’ yields by 20-30 per
cent, reduce yield variability and reduce production risk (CIMMY T-DTMA[2]; Shiferaw et al.,
2014; Wossen et al., 2017). The DTMVs are not only tolerant to drought but some also possess
desirable traits such as resistance to major diseases, superior milling or cooking quality and/
or better nitrogen use efficiency (CIMMYT-DTMA][2]; Fisher et al., 2015; Wossen et al, 2017).

This paper contributes to the emerging body of literature by documenting the productivity
and production risks effects of adopting DTMVs in Zambia using the Antle’s moment-based
approach (mean yield, variance and skewness). Despite several previous studies on adoption,
productivity, production risk and welfare impacts of different agricultural technologies, to-date
there is no study assessing the impacts of DTMVs in Zambia. Previous studies focused on
determinants of DTMV adoption (Fisher et al, 2015) and ex-ante assessment of the potential
impacts in investing in DTMVs in Africa (La Rovere ef al,, 2014; Kostandini ef al, 2013). Our
analysis uses an endogenous switching regression approach to control for both observed and
unobserved sources of heterogeneity. The rest of the paper is organized as follows. In Section 2,
a brief review of the literature on farm technology adoption and impact is presented. Materials
and methods are outlined in Section 3. Section 4 presents and discusses the descriptive and
econometric results. Conclusion and policy implications are presented in Section 5.

2. Literature review
Production and consumption risks play a critical role in the choice and use of agricultural
production practices and inputs in countries where insurance and credit markets are thin or
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missing (Yesuf et al., 2009; Juma et al., 2009). Production risks play a key role in agricultural
production decisions and can worsen social welfare in the absence of mechanisms that serve
to minimize its downside effects (Antle, 1983, 1987; Dercon, 2004; and Kassie et al., 2008).
Productivity and risk implications vary by technology, and this plays a non-trivial role in
the farmer’s adoption decision, especially in low-income, rain-fed agriculture (Yesuf ef al,
2009; Kassie et al., 2008; Juma et al., 2009). Apart from increasing productivity and welfare,
the adoption of new farm technology could increase production risk either by increasing
yield variability or by increasing the probability of crop failure, or vice versa (Yesuf et al,
2009). Some of the past studies on the impacts of different technologies on productivity,
production risk and welfare are detailed below.

Juma et al. (2009) assessed the production risks and farm technology adoption among
smallholder farmers in Kenya and noted that, among others, yield variability and the risk of
crop failures indeed affect technology adoption decisions in low-income, rain-fed agriculture
though the direction and the magnitude of the effects depends on the farm technology under
consideration. Their results indicated that the first moment had a highly significant positive
effect on fertilizer adoption and manure application while yield variability had a negative
impact on manure application, intensity of manure and fertilizer application. Results on
downside risk showed that a higher probability of crop failure increases the farmers’ chance
of adopting terracing and reduces the possibility of fertilizer adoption. Their study
concluded that productivity gains are necessary, but not sufficient, conditions to attract
farmers to adopt new technologies and agricultural innovations. Poor farm households in
rain-fed and risky production environments are often reluctant to adopt new farm
technologies with potential production gain because, at the same time, they may increase
downside risks (Juma et al., 2009).

A study by Kassie et al. (2008) applied a moment-based approach to assess the role of
production risk on the adoption of sustainable land-management technology in Ethiopia.
They found that while expected return had a positive and significant impact on both
chemical fertilizer (adoption and intensity) and conservation adoption, production risks had
a significant impact on only fertilizer adoption and the extent of adoption and, no statistical
significance impact on the adoption of the conservation technology. On the other hand,
Yesuf et al. (2009) report that chemical fertilizer adoption reduced yield variability, but
increased the risk of crop failure while the adoption of soil and water conservation
technology had no impact on yield variability, but reduced the downside risk of crop failure.
The implications from these studies is that the impact of production risk varies by
technology type and call for the combined assessment of implications for variance of return
and exposure to downside risk, productivity and food production.

DTMV adoption in SSA is expected to generate substantial benefits to both producers
and consumers, and DTMVs may be an effective tool for reducing household risk, especially
for the poor who face high drought risk and are highly dependent on cereal production
(Kostandini et al.,, 2013; La Rovere et al., 2014). DTMV adoption could generate cumulative
benefits of US$362-590m to both producers and consumers across SSA by 2016 (Kostandini
et al.,, 2013). They further observed that the role of DTMVSs in variance reduction accounts
for a significant share of total benefits and translate into poverty reductions. Specifically,
yield variance reduction accounted for 10 per cent of the total benefits, and it was noted that
the risk benefits (variance reduction) appear to be more important in more drought-prone
areas. These ex-ante studies suggested that policies and investments that set up the right
infrastructure for the production and dissemination of DTMVs may prove to be very
beneficial in both the short and long term.



A recent study by Wossen et al. (2017) explored the impacts of DTMVs on productivity,
welfare and risk exposure in Nigeria. They found out that the adoption of DTMVs indeed
increased maize yields by 13 per cent and reduced the level of variance by 53 per cent and
downside risk exposure by 81 per cent among adopters. As a result, there was a reduction of
13 per cent in poverty incidence and 84 per cent in the probability of food scarcity among
adopters. From this study, it is inferred that, interventions against drought stress through
genetic improvements and the subsequent adoption of these improved technologies will
have a critical role to play in terms of enhancing food security and reducing farmers’
exposure to drought risk (Wossen et al., 2017).

Khonje et al. (2015) conducted a study of 810 households from eastern Zambia in 2012
and documented the welfare impacts of improved maize varieties (IMVs). Analysis
revealed that adoption of IMVs generates significant benefits in crop incomes,
consumption expenditure and food security. An average increase in crop income per
hectare that ranged from (US$15) using the endogenous switching regression (ESR)
technique to US$455 of the propensity score matching (PSM) was evident. PSM showed
an average consumption expenditure per capita of US$52-59 and a reduction in the
probability of poverty by 11 per cent points. While ESR results showed a higher impact
on consumption expenditure per capita of US$62 and reduction in the probability of
poverty by 21 per cent points for adopters. A further study by Manda et al. (2016) on the
impact of three sustainable agricultural practices (SAPs) including IMVs on the same
data set revealed that SAPs adopted in combination had a strong and positive impact on
maize yields and household income compared to those adopted in isolation, except for the
adoption of IMVs. Adoption of IMVs alone had greater impacts on maize yields (90 per
cent) while adoption of a more comprehensive package consisting of the three SAPs
resulted in the yield effect of 80 per cent and an increase in income per capita of 43-75
per cent.

3. Materials and methods

3.1 Conceptual framework

Decision-making process under risk and uncertainty is usually a challenging task to the
farmer. Nevertheless, this process is an integral part of planning, and sound decisions need
to be made for optimum farm production. A good production technology in combination
with other complementary inputs is needed for a farm producing output y under risk so as to
enable a farmer maximize the expected utility of net returns from the production. The
flexible moment-based approach proposed by Antle (1983) was used in specifying,
estimating and testing stochastic production function. Specifically, the approach was used
to not only estimate mean output as a function of inputs but also second and third moments
as functions of inputs. The moment-based approach provides a useful framework for testing
the stochastic structure of production because it imposes relatively fewer restrictions (Antle,
1983).

The stochastic maize production function of a farmer producing maize output using
several inputs under risk is specified as y = g (m, x, w), where y is maize output, m
represents DTMV seed, x is a vector of other inputs other than maize seed and w is a
vector of random variables representing uncontrollable factors affecting maize output
such as rainfall whose insufficient amounts results into drought shock — this is the source
of production risk and g (m, x, w) represents the equivalent production technology, given
m, x and w.

Further to the above specifications, it is also assumed that a typical farmer acquires
DTMVs seed (m) with a unit cost ¢ and other inputs (x) with a unit cost (t). The prices p and
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cost of production ¢ and t are assumed to be non-random as farmers are price takers in both
input and output markets (Wossen et al., 2017). To capture the risk factors of production, we
considered the variance and skewness of the maize yield by applying the moment-based
approach where the higher moments of g (2, x, w) are given by:

E[g(WL:xa w) 7fl(max7 w))ki| :fk(m7x7 w, Bk)Vk >2 (1)

where f1() = E(y) = Elg(mn, x, w)) represents the mean of output. Usually, it is expected that
the mean output to be increasing and concave in inputs — .z, x (Di Falco and Chavas, 2009).
Based on the above equation, the first moment (mean) of production function is therefore
defined as:

w1 = E[g(m,x,w)] = fi(m,x,w, B1) —cm — Ix @)

Variance of the production represented by the second central moment w. is defined as:
2
The production function third central moment (measuring skewness) is specified as:
3
wy = E| (g(m.x,0) — E(gm, x,w))" | )

Di Falco and Chavas (2009) denote that the third central moment which considers the effects
of skewness and downside risk exposure provides a flexible representation of the impacts of
inputs on the distribution of output under production uncertainty.

Unlike in mean output, which is always expected to be on an increasing trend and
concave to inputs, the effects of inputs (m, x) on variance and skewness of output is
predominantly an empirical issue. The 2 input could be variance increasing, variance
neutral or variance decreasing or could be decreasing or increasing downside risk exposure
(Di Falco and Chavas, 2009). In our setting, the effect of DTMVs on variance and skewness
is of special interest, and as a risk mitigation strategy, DTMVSs are expected to reduce both
variance and downside risk.

For risk-averse farmers whose aim is to maximize the expected utility of net returns from
maize production, he will adopt improved technology if the expected utility with adoption E[u«
(7Y)]is greater than the expected utility without adoption Flu(")] (Kassie et al., 2008):

Elu(7")] = Elu(#°)] > 0 5)

The risk premium depends on all pertinent moments of the profit distribution, and there is
usually a close relationship between the moments of income 7r and the corresponding
moments of production g (1, x, w). Therefore, the equation for maximization of the expected
utility of net returns from maize production for a risk-averse farmer is specified as:

Emax Elu(m)] =u(pmy, po. m3) ©)

Taking into consideration Taylor series of approximation of the risk premium the optimum
condition of adopting DTMVSs in elasticity form is given by:



. om 1 [u(m) . 1 fu"(m) .
(#-5) -2 (Fime) v+ (u’(w) s U =0
where ,u,; - % represents the marginal net return of choosing DTMVs (m*) and the

two additive parts reflecting effect of variance (ms) and skewness (m3)
{— ! (",(—:)) mz) U, +1 (M 1443) U;} represents the marginal risk premium of adopting

u ( ' (m)

DTMVs (Wossen ef al., 2017; Di Falco and Chavas, 2009).

3.2 Empirical framework

The study applied the ESR model that not only accounts for observed sources of
heterogeneity but also accounts for unobserved sources of bias. This is due to the
assumption that there might be some unobservable farm or household variables that could
possibly influence both adoption and outcome variables (Ahmed et al.,, 2017). With regards
to the aforementioned conceptual framework, further assumption is that a specific farmer
adopts DTMVs if the benefits expected from adoption (productivity gain and risk exposure
reduction) are positive (benefit from adoption is greater than that of non-adoption). This
means that a farmer will choose to adopt (A; = 1) if A* > 0, 0 otherwise, where A* represents
the expected benefits of adopting with respect to not adopting. The selection equation for the
latent variable (A;*) can thus be specified as follows:

A7 = f(m,x,0,w,2, ) + py withA = 1{A] >0 ®)

where m refers to adoption of DTMVs seed, x represents other inputs other than DTMV
seed, v refers to a vector of variables of socio-economic, farm and social capital, w is a vector
of random variables representing uncontrollable factors affecting maize output such as
rainfall, z is instrument variables (variables that affect the decision to adopt DTMV's but not
the outcome indicators) and y represents a vector of parameters to be estimated.

To account for selection bias, the ESR outcome equation conditional to DTMVs adoption —
two regimes faced by the farmer are specified as follows:

Regime 1: Yy =f(m,x,0,w,B:)+ eifA; =1 ()]
Regime 2: Yo =f(m,x,0,w, Bs) + £91fA; =0 (10)

where Y7; and Y5; are the dependent variables in the two continuous equations representing
the yield of DTMVs adopters and non-adopters respectively. £1; and e, are error terms of
the outcome variables, and 81 and B are vectors of parameters to be estimated.

The error terms (w1, £1; and £5;) in both the selection equation (8) and outcome equations (9)
and (10) are assumed to have a trivariate normal distribution, with zero mean and covariance
matrix (Q) as specified in the below equation:

2
A VA

— 2
Q= 0'1'“ 0'1

2
T2 . o,
where 0? is a variance of the error term (wq) in the selection equation, a? and a% are

variances of the error terms (g7; and &5;) the continuous outcome equations, oy, is the
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covariance of (w1, £1), while o9, is the covariance of (w1, £2). The covariance’s e1; and go;
are not defined as Y7; and Y5, are not observed simultaneously, and it is further assumed
that and ai is equal to 1 (Lokshin and Sajaia, 2011). If estimated covariance terms o, and
o5, are statistical significant, endogenous switching is evident and thus rejection of the null
hypothesis of absence of sample selection bias (Di Falco et al, 2010; Wossen et al., 2017).
Further estimation of inverse mill’s ratios (A 1; and A »;) computed from the selection equation
(8) are included as auxiliary repressors in in equations (9) and (10) to correct for selection
bias in the ESR, two-step estimation procedure.

3.2.1 Conditional expectations, treatment and heterogeneity effects. In view of the above-
mentioned ESR model, estimates of the average treatment effect on the treated households
(ATT) and average treatment effect on the untreated households (ATU) are derived. These
estimates allows comparison of the expected productivity gain and risk exposure reduction
of the farm households that adopted DTMVs with respect to the farm households that did
not adopt DTMVs and further investigate the expected productivity gain and risk exposure
reduction in the counterfactual hypothetical cases that the adopted households did not adopt
and that the non-adopted households adopted DTMVs. These four cases of conditional
expectations for productivity in the four cases are specified as follows:

E(YylAi=1)=f(m,x,0,e,w, B1) + X101, 11)
E(Yy|A; = 0) = f(m,x,v,e,w, By) + Agjoz, 12)
E(Yy|A; =1) = f(m,x,v,e,w, By) + A1;02, 13)
E(Y1i]A; =0) =f(m,x,0,e,w, B1) + X201, (14)

ATT and ATU of maize yield are therefore expressed as follows:

ATT = E(YiilA; = 1) — E(Yz[Ai =1) (15)

ATU = E(Yy|A; = 0) — E(Yy|A; = 0) (16)

Heterogeneity effects were further estimated from the expected outcome equations. Effect of
base heterogeneity for the sample group of farm households that decided to adopt DTMVs
(BH;) was computed as the difference between equations (11) and (14), while effect of base
heterogeneity for the sample group of farm households that decided not-to-adopt DTMVs
(BH,) was computed as the difference between equations (13) and (12). Similarly, the
transitional heterogeneity (7H) which evaluates whether the effect of adopting DTMVs is
smaller or larger for the households that actually adopted DTMVS or the counterfactual case
that they did not adopt was calculated as the difference between ATT and ATU (TableI).

In respect to our other objective of evaluating the effects of adopting DTMVs on risk
exposure, the above equation specifications on ATT, ATU and heterogeneity effects were
customized to reflect the effect on variance and skewness of maize yield as a measure of
variability and downside risk (crop failure) as explained earlier in our moment-based
approach. ATT and ATU for the second moment of maize yield (variance) were defined as
follows:



ATT =E(u3] 4 =1) — E(u3] 4 =1) a7

ATU = E(u3] 4;=0) — E(u}) 4;=0) (19
Finally, ATU and ATT estimates for the third moment of maize yield were defined as:

ATT = E(uf| Ai=1) — E(u}| 4:=1) (19

ATU = E(u) 4 =0) = E(u] 4 =0) 20

3.3 Data sources and sampling

This study uses household survey data collected by a team led by the International Maize
and Wheat Improvement Center (CIMMYT) from November to December 2015 in three
maize producing provinces (Eastern, Southern, and Copperbelt) of rural Zambia (Figure 2).
The survey covered a representative sample of 1100 households randomly selected in 11
districts using a three-stage sampling procedure. The sampling strategy ensured selection of
equal number of households in each district (100 households in each) sampled as presented
in Table II. The districts covered include; Masaiti in Copperbelt province, Chadiza, Chipata,
Katete, Lundazi and Petauke in Eastern province, Choma, Kalomo, Monze, Siavonga and
Sinazongwe in Southern province. The stages involved: identification of camps, selection of
villages and subsequent sampling and selection of households for survey interviews. First,
two agricultural camps in each district were purposively selected. Second, out of the 30-40
villages that are located in these camps, five villages were selected using a simple random
sampling. Third, using the village headmen and Camp Agricultural Committee
chairpersons, about ten households were systematically sampled from each village. Three
households were later dropped during data analysis. Our sample design implies Copperbelt
only makes up 8.9 per cent of the total sample, with the remainder (45.5 per cent each) split
between Eastern and Southern.

To successfully implement this survey, the Zambia Agricultural Research Institute
(ZARI), Ministry of Agriculture and Livestock (MAL) and village headmen and camp
agricultural committee chairpersons provided support to identify areas, camps and
households for the survey. A structured household questionnaire was used to collect data
using face-to-face interviews technique, administered by well-trained enumerators after the
pre-test exercise. The survey instrument was well designed — consisted of 14 modules that

Decision stage
Sub-groups To adopt Not to adopt Treatment effects
Farm households that adopted DTMVs EY;1A;=1) E(Y5A;=1) ATT
Farm households that did not adopt DTMVs E(Yy;14;=0) E(Yy|A;=0) ATU
Heterogeneity effects BH, BH, TH
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Figure 2.
Location of surveyed
households, Zambia

Table II.

Number of
households sampled
in each province,
Zambia
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Name of province No. of districts No. of households

Copperbelt 1 98
Eastern 5 500
Southern 5 499
Total 11 1,097

captured detailed information on a range of variables at both household and plot level.
However, only few modules relevant to the objectives of this study were used in this study.

4. Results and discussions

4.1 Descriptive statistics

The major outcome indicator was maize yield. The distribution of maize yield between
adopters of DTMVs and non-adopters using kernel estimates in Figure 3(a) and (b) reveals
that the average maize yield was slightly higher among DTMVs adopters in both cases,
followed by improved non-DTMVs seed adopters and finally those planting local seed.
Besides, a more left-skewed (negative) distribution on non-adopters of DTMVs and
improved seed adopters as compared to DTMVs adopters is evident in Figure 3(b)
signifying that the skewness of maize yield was lower among adopters. The Kolmogorov—
Smirnov test for equality of distribution functions demonstrated that the two distributions
between DTMV's adopters and non-adopters are different.
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Tables IIT and IV present the descriptive statistics for all sampled households by DTMVs
adoption status. Results indicate that 20 per cent of households had adopted at least one
DTMYV in 2015 with relative adoption being highest in Copperbelt province (37 per cent),
about average in Eastern province (21 per cent) and relatively lowest in Southern province
(16 per cent). The share of maize plots with DTMVs was slightly lower (13.5 per cent).

Only 19 per cent of households were headed by women. The mean age of household
heads was 47 years. Households consisted of an average of 7 members with adopters having
somewhat larger households. The average farm size was 4 ha, where maize (1.8 ha) occupied
approximately 45 per cent of the average farm land and with adopters cultivating more
maize area. Livestock keeping was also a key economic activity with households having an
average of five tropical livestock units (TLU).

Nearly 77 per cent of households reported to have experienced drought in 2015.
Concerning social capital, the majority of households (88 per cent) were members in at
least one informal association, being more common for adopters, which may entail
diverse benefits, notably access to information and influence. On information access,
most households (70 per cent) obtained information on weather and rainfall. However,
only few households (44 per cent) had access to information regarding new maize
varieties. This underscores the need for a more concerted effort for DTMV awareness
creation in the farming communities.

Male-headed households owned the majority of plots (73 per cent), and about 80 per cent
of households reported using in-organic fertilizers at least in one of their plots. DTMV
adopters used a significantly higher amount of fertilizers as compared to non-adopters. The
mean average amount of basal dressing fertilizer (D-compound) used by a household was
162 kgs, while the topdressing fertilizer (urea) was 158 kgs.

Provinces Percentage of households (within study region) Percentage of plots (within study region)
Copperbelt 37 30

Eastern 21 17

Southern 16 8

Total 20 135

Source: Survey, 2015
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Figure 3.
Distribution of maize
yields

Table III.
Percentage of
households growing
at least one DTMV
and per cent of plots
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by DTMV adoption

Descriptive statistics
status, Zambia

Table IV.
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The relatively high fertilizer application rates in Zambia (compared to SSA) are likely
associated with the government fertilizer subsidy programs (FISP). Yet, while fertilizer use
is expected to have a positive yield impact, the average yields registered by interviewed
households are still low (1.3 tons per ha). This result suggests that although fertilizer use is
important in soil fertility management and crop production, fertilizer use efficiency in
Zambia is low. Consistent with this notion, Xu et al. (2009) and FAO (2015a, 2015b) suggest
that farmers’ ability to acquire fertilizer on time has a strong positive effect on maize yield
response to fertilizer and decreases the probability of low yields. However, it is noted that in
Zambia subsidized fertilizers under government programs have often been distributed late
Xu et al., 2009). Furthermore, Burke et al. (2017) indicate that most of the soils in Zambia are
naturally acidic (low PH), thus considerably limiting Zambian maize yields. Soil acidity and
basal fertilizer application have significant interactions suggesting that productivity of
phosphoric fertilizer is seriously limited by soil acidity and top dressing fertilizer is more
effective than basal on Zambian soils (Burke et al., 2017; Burke, 2012).

Generally, labor use and hired labor was high among adopters (102 person-days and 70
per cent, respectively). Intercropping was a common practice by 67 per cent of households
while pesticide use and cover crops were uncommon (by 11 and 16 per cent of households,
respectively). Even though the DTMV adopters in this study had a higher level of input use,
past studies suggest DTMVs varieties to have similar agronomic, labor requirements and
seed costs as other (non-DTMVs) commercial varieties, whereas some are also nitrogen-use
efficient (Fisher et al, 2015). Kostandini et al. (2013) further express that DTMVs have
superior maize yields and yield stability performance than other improved non-DTMVs
even with little or no fertilizer use[3].

4.2 Ordinary least squares (OLS) results

In first instance, a generalized linear model (OLS) was used to determine the effect of DTMV
adoption on mean yield, variance and skewness. OLS is the simplest approach to investigate
the effect of adoption on food production that includes a dummy variable equal to 1 if the farm
household adopted and 0 otherwise (Di Falco et al, 2010). Control variables used in the OLS
model for our study include household and farm characteristics that were assumed to affect
farmer’s adoption decision and also productivity, risk, food security and poverty (Table V).

OLS results (Table V) suggest that DTMV adoption had a positive statistically
significant effect on maize productivity and skewness, with DTMV adoption increasing
maize yields by 23 per cent and reducing yield variance by 21 per cent and exposure to
downside risk by 18 per cent. These results illustrate that DTMV adoption can serve as
productivity-enhancing as well as serve as insurance for farmers by reducing yield
variability and minimizing the risk of crop failure.

Although the OLS results show that there was an increase in maize yield and reduction
in risk for DTMV adoption, these results are not reliable because the OLS model yields
biased and inconsistent estimates. In this case, the approach assumes that DTMV adoption
is exogenously determined while it is a potentially endogenous variable. Moreover, as
expressed by Di Falco et al. (2010), the OLS estimates do not explicitly account for potential
structural differences between the production function of farmers who adapted to climate
change and the production function of farmers that did not adapt.

4.3 Endogenous switching regression results

To address the limitations identified with OLS model above and to test the robustness of the
results, we also used the ESR model that accounts for both observable and unobserved
sources of heterogeneity between adopters and non-adopters.
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Table V.

OLS estimates of the

effects of DTMV

adoption on mean,

variance and

skewness of maize

yields, Zambia

Variable Maize yield Variance Skewness
DTMVs adoption 0.227#% (0.071) —0.209(0.147) 0.182** (0.083)
Household size —0.015*(0.008) 0.002(0.017) —0.018%(0.009)
Gender 0.056 (0.101) —0.043 (0.209) 0.039(0.119)
Age in years —0.002 (0.002) 0.004 (0.004) —0.001 (0.002)
Received information on new maize varieties —0.055 (0.056) 0.269%*(0.117) 0.009 (0.066)
Other farmers as source of new information

on new maize 0.064 (0.067) —0.204 (0.139) 0.021 (0.079)
Hired labor use 0.138%*** (0.048) 0.109 (0.100) 0.142°*%* (0.057)
Pesticide use 0.199%%* (0.066) 0.045(0.138) 0.206** (0.078)
Membership in groups 0.173%* (0.088) —0.079(0.182) 0.184*(0.103)
Obtained information on rainfall 0.027(0.052)  —0.219%*(0.110) 0.000 (0.062)
Good soil fertility 0.150** (0.063) 0.106 (0.131) 0.140% (0.074)
Fair soil fertility 0.152%%* (0.058) 0.049(0.120) 0.158%* (0.068)
Plot managed by male 0.051(0.094) —0.019(0.195) 0.026 (0.110)
Occurrence of dry spell in 2015 —0.232%** ((,058) —0.035(0.121)  —0.209*** (0.068)
Intercropping —0.059 (0.046) 0.098 (0.096) —0.034 (0.054)
No erosion on plots 0.067 (0.083) —0.075(0.172) 0.025(0.097)
Flat plot slope —0.046 (0.063) —0.015(0.130) —0.017(0.074)
Moderate plot erosion 0.091 (0.070) —0.197(0.144) 0.049 (0.081)
Labor (log) —0.039(0.024)* 0.099** (0.049) —0.032(0.028)
Inorganic fertilizer (log) 0.109%* (0.010) —0.008(0.021) 0.102%#*(0.012)
Eastern province —0.024 (0.098) 0.255(0.204) —0.036(0.116)
Southern province —0.186* (0.096) 0.328*(0.199) —0.172(0.112)
Observations (plots) 1876 1876 1876

Notes: Parenthesis figures indicate the standard errors; **#*p < 0.01, **p < 0.05, *p < 0.1

4.3.1 Determinants of adoption and maize yields. Results of the determinants of DTMV
adoption and maize yield for both adopters and non-adopters are presented in Table VL.
Seed and fertilizer subsidies were used as instrumental variables as shown in the selection
equation. The results confirm that indeed the instrument (seed subsidy) was relevant, as it
had a positive and statistically significant effect on the probability of adopting DTMVs.
Other significant factors favoring adoption in the selection equation include fertilizer and
labor use, hired labor use and flatter plots with moderate erosion. In contrast, reliance on
informal sources of information on new maize varieties reduced the probability of adoption.
Maize yield for both adopters and non-adopters was strongly influenced by fertilizer use
in line with expectations. But whereas household size had a favorable effect on maize yields
for adopters, the reverse was true for non-adopters, for whom hired labor use favorably
affected yields. Age had a negative effect for adopters, whereas other factors influenced
yields for non-adopters (Table VI). Perhaps most interestingly, the occurrence of a dry spell
in 2015 reduced yields only for non-adopters, whereas having no yield effect for adopters.
4.3.2 Effect of adoption of drought-tolerant maize varieties on mean yield, variance and
skewness. We used ESR to compare the distribution of maize mean yield, variance and
skewness with and without DTMV adoption (Table VII).We adopted one of the most
efficient estimation method (the movestay command) recommended by Lokshin and Sajaia
(2011) due to the fact that it enables the implementation of the full information ML method to
simultaneously estimate binary and continuous parts of the model to yield consistent
standard errors. This counterfactual analysis method enabled comparisons of the expected
outcome indicators under the actual and counterfactual cases that the farm household



Productivity
and production
risk effects

Table VI.
Zambia

DTMV adoption and
maize yields

determinants,

10> G ‘GO0 > Guese ‘TO°0 > Frgsese “SIOLID PIRPUR)S Y} 23LIIPUL SIsayjuaIed ut SamS1] :9J0N

981 (s101d jo "ou) N
s [ LS S PIlEM
99°0— (260°0) 190°0— Apisqns 19z1[1119,]
#91°C (960°0) 9070 Aprsqns pasg
1 (690°0) 980°0 i) (881°0) G80°0 *EL'1 (F1T°0) L61°0 015019 J0[d )eIBPOA]
o (780°0) L£0°0 810 (622°0) 700 #x+8L°C (L2T'0) €5€°0 adors jord Jer
69T (690°0) 90T°0 €90—  (¥ST0)L60°0— €0~ (F0T°0) ¥20°0— a[ew Aq pageuet J0[ ]
8V'1— (L200) 00— 990 (€80°0) G500 #30:L8'C (0v0°0) 9ST'0 (8op) 10qeT
8T0—  (120°0) €100~ 8L0 (891°0) 0ST'0 Eiat (90T°0) SST'0 s10]d Uo UOIS019 ON
#0661 (€20°0) 9¥T°0 LVl (€91°0) 720 Ge0— (@11°0) 600~ IS 9pIoNSsaq
#:5:69°C (€50°0) 6ET°0 L850 (L¥1°0) ¥80°0 #x36'T (#80°0) 99T1°0 9SN I0qe[ PaIH
980 (190°0) £50°0 090 (E€T°0) 6200 850 (Z60°0) ¥50°0 ANy [10S PooD)
#6566 8 (Z10°0) 660°0 #xxG7'€ (670°0) LT°0 ey (20°0) £80°0 (Soy) 19z1I9y druUESI0U]
300 € (€90°0) ¥z 0— wi— (ST0) €TZ0— €0'T (T0T'0) 70T°0 GT0Z Ut [[2dS AIp JO 20USIMOO0
120 (€90°0) 7700 €1—  (6LT°0) 6120~ #4800 (@01°0) v€20— 9ZIBUWL MIU UO UOHEULIOZUI JO 30INOS B SB SIOULIEY 1030
#xG1C (760°0) 202°0 Zro—  (S€2°0) £200— 50— (LST'0) 180°0— sdnoi3 ur digsAuIBIy
#6690 (6000) €200~ #tST'E (€20°0) 1200 110 (#00°0) 200°0 9ZIS P[OYaSNOH
50— (200°0) T00'0— x68T—  (500°0) 600°0— 080— (€00°0) £00°0— s1e94 urasy
0T'T (800°0) 600°0 860—  (810°0) 8100~ €90 (Z10°0) 800°0 uonesnpy
an[eA 7 JUIIIJJ20)) an[eA JUSIDIJJR0)) an[eA 7 JUIIIJJ20)) J[qeLIBA
s191dope-uoN s1dopy (uonyenbs uonodsas) uondope ANLA

SJUBUIULIAIOP PIOIA SZIB[A]




10°0 > s 990N

100G Lye— 76T 10930 £}19UR5010)9]
18— sk 9L T— Aa! SIET NLv (3[S11 9pISumop)
§se #5xG8°C 7801 6971 LLV SSOUMIYS ITRIDAY
L= VL. €00 109JJ0 £310U95019)0H
81— V60— 10€T LLel NLV
8E— #3x86°L— SL0g 08CL RAAY OUBLIEA dFRIDAY
€T 85°0— 970 10059 £}19U9301939
91— sk [10— SL9 99 (QLy) sw1dope-uoN
ST #566°0 LT9 0T (LLV) smdopy P[RIA 9z1ewl 9SRIDAY
(9) 98uey) uondope uo 1995J5] 1dope 01 JoN 1dopy o], 109JJ9 Jusurjear) pue 3dA) pjoyssnoy SO[BLIBA SWON()

931)S UOISIA(]

<5}
s L g
5.8 3
2z 8 §
EMm g.9
.ﬁTn.m.Mb
= HES8ECE
2 EERD
Q LR ESE g
S g aseg
Q SR ESELT
= IR e RS




adopted DTMVs Estimations of treatment and heterogeneity effects enabled the
understanding of the differences in maize productivity and risk reduction between farm
households that adopted DTMVs (ATT) and those that did not adopt (ATU) DTMVs.

Table VII reveals that DTMV adoption increased average yield significantly by 15
per cent. This implies that maize yield among DTMVs adopters would have declined by 15
per cent if they had not adopted. Besides, the positive transitional heterogeneity effect
reveals that the effect is larger for the farm household that actually did adopt compared to
those that did not adopt DTMVs. These strong positive impacts of DTMVs on maize yields
among the adopters implies that the ongoing continuous concerted efforts on awareness and
dissemination of DTMVs by private and public institutions can greatly contribute to
increased food security and resilience of households to drought in Zambia.

With regard to variance and skewness of maize yield, ATT and ATU results indicate
that the DTMV adoption significantly reduced yield variability and exposure to downside
risk. Particularly, DTMV adoption reduced the variability of maize yield by 38 per cent,
suggesting that the yield variance encountered by DTMVs adopters would have increased
by 38 per cent if they had not adopted DTMVS. Similarly, DTMV adoption reduced the risk
of crop failure by 36 per cent. The transitional heterogeneity effects on variance and
skewness were negative and positive, respectively, indicating that adopters in both cases
were better off than non-adopters.

ESR results on maize productivity and production risk factors (both yield variance and
downside risk), suggest that, DTMVs have a win-win outcome because they do not only
increase yields but also are risk reducing. Our results on DTMV effects on maize productivity
and risk in Zambia were consistent with those reported in Nigeria by Wossen et al. (2017). This
is an important characteristic of DTMV as risk and risk aversion influences management
decisions of farmers. Other agricultural technologies often have mixed results on productivity
and production risks. Abro (2018) did find that increased tillage intensity had complementary
benefits on both productivity and risk exposure for wheat farmers in Ethiopia. On the other
hand, Zhu (2018) observed that fertilizer use increased both yield and variances; intercropping
decreased yield variance but did not increase expected returns, whereas combined adoption of
the two led to higher expected returns albeit with variations by subgroups of farmers. Due to
the risk-averse nature of smallholder farmers, one may find high rates of adoption of relatively
unprofitable technologies with low risk, whereas profitable technologies with high risk may
only show limited adoption. Hardaker et al (2015) indeed affirm that risk-averse people may be
willing to forgo some expected output for a reduction in risk, the rate of acceptable trade-off
depending on how risk-averse that person is. Mukasa (2018) considering four moments of
production (mean, variance, skewness and kurtosis) and the probability of adopting several
modern inputs (including, improved seeds, chemical fertilizer and pesticides) revealed that most
modern inputs are risk reducing though sometimes at great cost to farmers.

Taking into account different adaptation strategies, Di Falco and Veronesi (2018) noted
that even though past climate change adaptation decreased current downside risk exposure,
households that did not adapt in the past would benefit the most from adaptation in terms of
reduction in downside risk exposure. Similarly, Kassie et al. (2015) revealed that adoption of
sustainable intensification practices in Malawi had complementary benefits in increasing
food security (in terms of maize yields) and reducing both probability of crop failure and risk
cost. They particularly pointed out that adoption of crop diversification in combination with
minimum tillage resulted in greater increases in food security and reduction in downside risk.

From the above discussion, it can be deduced that adaptation is one of the successful risk
management strategies that make farmers resilient to changing climatic conditions. DTMVs
are particularly promising given there win-win outcome and potential use as a risk

Productivity
and production
risk effects




[JCCSM

management strategy. Still, given the multiple overlapping production challenges that
farmers face, adoption of multiple agricultural innovations (including DTMVs, alongside
better agronomic practices) may well provide further complementary benefits in production,
food security and risk mitigation (Manda et al., 2016; Kassie et al., 2015; Gebremariam, 2018).
Therefore, institutions involved in agricultural technology dissemination should consider
including DTMVs in their input packages and be on the forefront to help farmers in building
resilience to drought as well as improve food security and poverty reduction.

5. Conclusions and implications

A central question in most adoption studies is why different farmers in a specific locality adopt
a specific type of technology(s) at different moments and magnitudes. Most SSA smallholders
aim to improve their food security status and sustain their livelihoods. Therefore, any given
new agricultural technology should be effective in terms of either productivity, profitability,
risk reduction, welfare, food security or poverty reduction. In view of this, the effects of
adopting DTMVs on productivity and production risks were analyzed in this study using
household and farm level data from rural Zambia. The results from the ESR model revealed
significant yield gains and production risk reduction among DTMVs adopters. Specifically,
DTMV adoption increased maize yields by 15 per cent. Furthermore, DTMVs reduced the level
of yield variability by 38 per cent and reduced exposure to downside risk by 36 per cent.

These findings have some policy implications. First, given the myriad of challenges faced by
smallholder farmers in SSA including climate change, the role of risk in technological options is
integral for effective agricultural policies and should never be overlooked. Research and
implementing institutions should take into consideration multiple and higher-order moments of
production distribution beyond the mean when designing intensification and innovation policies
so as to meet farmers’ different preferences. In particular, design and promotion of effective
drought adaptation strategies that address both yield gains (and profitability) and risk reduction
in terms of yield variability and downside risk are critical for improved food security and
livelihoods in the face of an already highly variable and changing climate. Most of the farmers
are risk averse and at the same time conscious about the expected returns. Therefore, when such
win-win technologies are actually available and promoted effectively, farmers will most likely be
motivated to embrace them potentially stimulating adoption and impacts.

In the end, the adoption rates of improved technologies and their enhanced productivity and
risk reduction impacts largely depend on how the farmers access relevant information about the
technology. Imperfect information about the new technology as a result of lack of information,
misinformation or ineffective knowledge sharing pathways can be a severe limitation slowing
the adoption and diffusion process. Therefore, intensified awareness efforts on seed availability,
favorable climatic and agronomic requirements, performance characteristics and other special
attributes are essential for any seed-based technology. Information can be effectively
disseminated through a combination of different pathways. Pathways can be “effective change
agents” and can greatly influence the probability of adoption especially if they entail “seeing is
believing” within the local context and are participatory in nature. Such methods include on-
farm demonstration plots, farmer field days, exhibitions and agricultural shows distribution of
sample seed packs, regular extension-farmer visits, print and electronic media among others.

Finally, awareness raising efforts should ensure seed availability so that when farmers
are made aware and want the seed, it can be adequately, easily and timely accessed. Public—
private partnership efforts need to provide synergistic and complementary support to
effectively deploy both market and non-market-based approaches to further scale out
drought-tolerant maize varieties in Zambia by addressing issues related to seed demand,
accessibility and availability.



Notes
1. http://maize.org/why-maize/
2. Available at: http://dtma.cimmyt.org/index.php/about/background
3. More information on DTMVS are available at: http://dtma.cimmyt.org/index.php/about/background
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