

CIMMYT Wheat Breeding: Continuing genetic gains through the development of high yielding and nutritious varieties

Suchismita Mondal

Bread Wheat Improvement Team

Wheat breeding priorities

Enhanced Zn & Fe for Nutrition

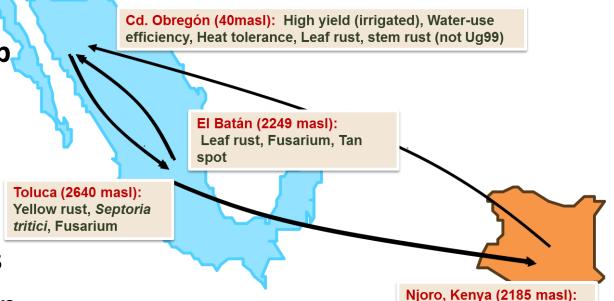
High and Stable Yield Potential

End-use Quality Heat Tolerance

Drought

Tolerance/

Improved


WUE

#CIMMYTsw18

Up-scaled breeding and testing to deliver genetic gain (5 years breeding cycle)

- Parental diversity
- ~1500 Simple, 600 top and 600 BC1
- Targeted utilization of new genes, traits and germplasm
- Large population sizes
- Selected-bulk selection scheme

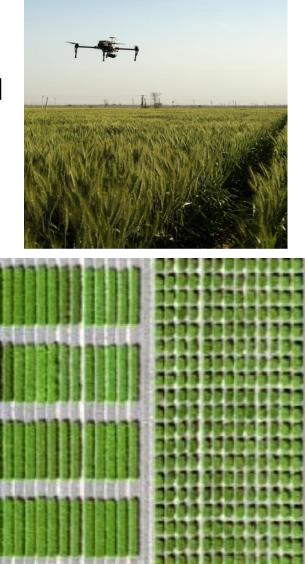
Stem rust, Yellow rust

Each selection in field adds to genetic gain for more than one trait

Grain yield evaluations advanced lines Cd. Obregon, Mexico

in beds

1st year Yield Trial, 9044 lines, 323 trials, 2 reps



Possibilities with high throughput phenotyping in wheat breeding

- Aerial and UAV based HTP implemented
- CT and NDVI highly correlates with grain yield (r =0.5-0.7)
- However, CT has strong G x Y and G x E effect

Looking forward:

- Complementing early generation selections with HTP
- Algorithms to estimate other agronomic traits, e.g. heading (days) and plant height
- Evaluating feasibility of assessing certain foliar disease

Potentials of genomic selection

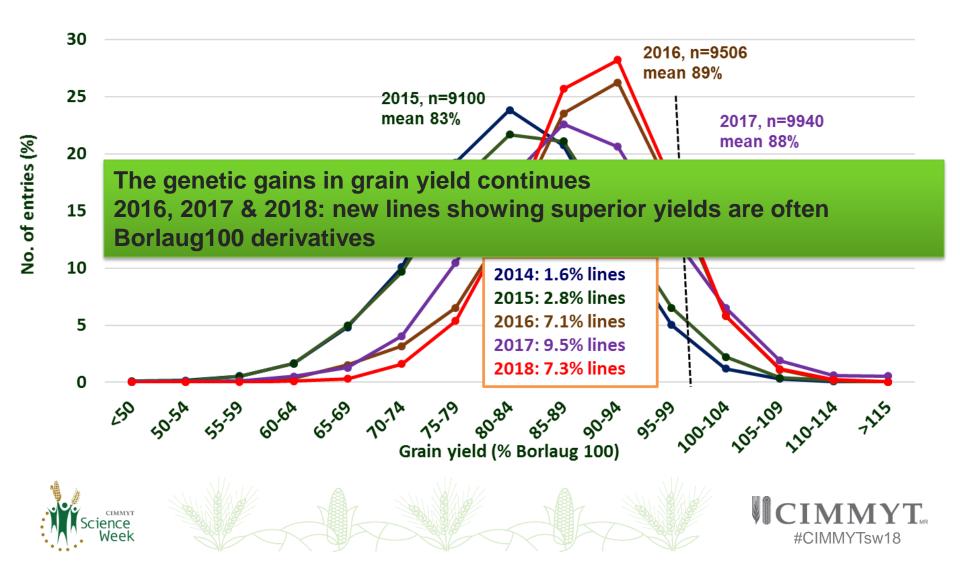
- USAID Feed the Future Innovation Lab at KSU and DGGW focus on implementing GS and HTP at different stages of breeding program
- GBS, phenotypic, yield data for about 46,000 lines (2013-14 to 2017-18) utilized

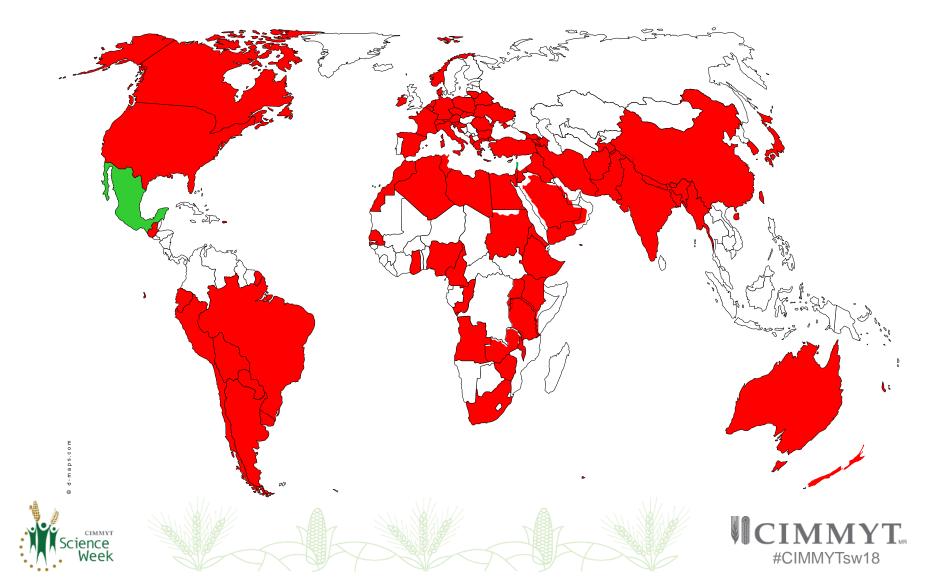
Genomic predictions are very promising for some diseases & quality traits. Challenges: G x E and G x Y interactions need extensive research to improve predictions for grain yields

1st year yield trials

- Average <u>within-nursery</u> prediction accuracy Yield= 0.67, Stem rust=0.60
- Average <u>across-nursery</u> prediction accuracy Yield= 0.42, Stem rust=0.50

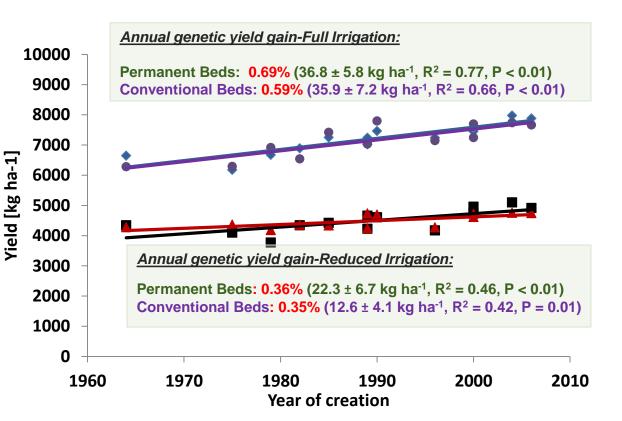
2nd year yield trials, prediction accuracy (r)


	Within	Across	Within	Across	Within	Across	Within	Across	Within	Across
Grain	Bed 5IR		Flat 5IR		Bed 2IR		Flat drip		Late heat	
yield	0.59	0.15	0.60	0.05	0.59	0.14	0.59	0.09	0.60	0.17
	Stem rust		FHB S.		S. tritici blotch		Spot blotch			
Disease	0.79	0.60	0.38	0.11	0.57	0.17	0.55	0.24		
Quality	Alveog	ram W	Flour p	orotein	Flour yield Loa		Loaf v	olume	Mixin	g time
Quality	0.72	0.52	0.73	0.5	0.61	0.43	0.72	0.5	0.76	0.48



Grain yield enhancement:

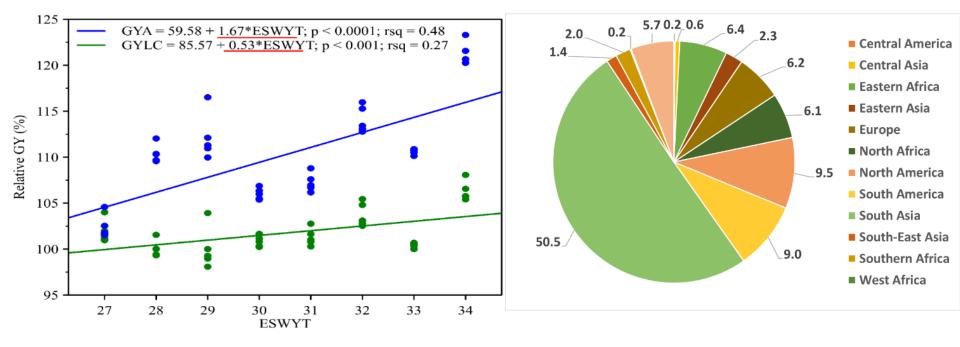
Distribution of 1st year yield trials at Cd. Obregon under optimum irrigation (2014, 2015, 2016, 2017 and 2018)



81 Countries receiving CIMMYT Spring Wheat nurseries 2016/17

Genetic gains in grain yield for CIMMYT derived bread wheat varieties created between 1964-2009 (CENEB, Cd. Obregon, Sonora, Mexico)

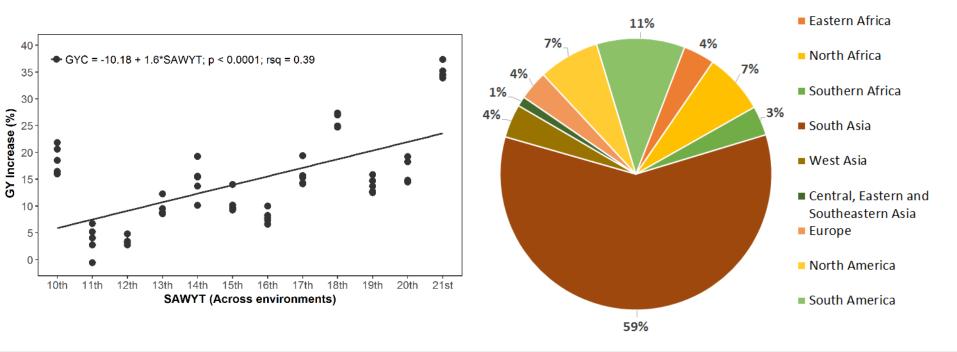
- Trials conducted (2009-10 to 2014-15)
- Conservation agriculture on permanent beds & conventional tillage on beds
- Full and reduced irrigation management
- Semidwarf varieties, adapted for full irrigation, oldest "Siete Cerros"


#CIMMYTsw18

Source: Honsdorf et al. (2018) Field Crops Research 2016:42-52 (doi: 10.1016/j.fcr.2017.11.011)

Genetic gains in Elite Spring Wheat Yield Trial (ESWYT, 2006-07 to 2014-15)

Geographical distribution of 426 sites


1.6 % increase/year in grain yield compared to long-term CIMMYT checks0.5 % increase/year in grain yield compared to local check/new varieties

Genetic gains in Semi-Arid Wheat Yield Trial (SAWYT, 2003-04 to 2013-14)

Geographical distribution (216 sites)

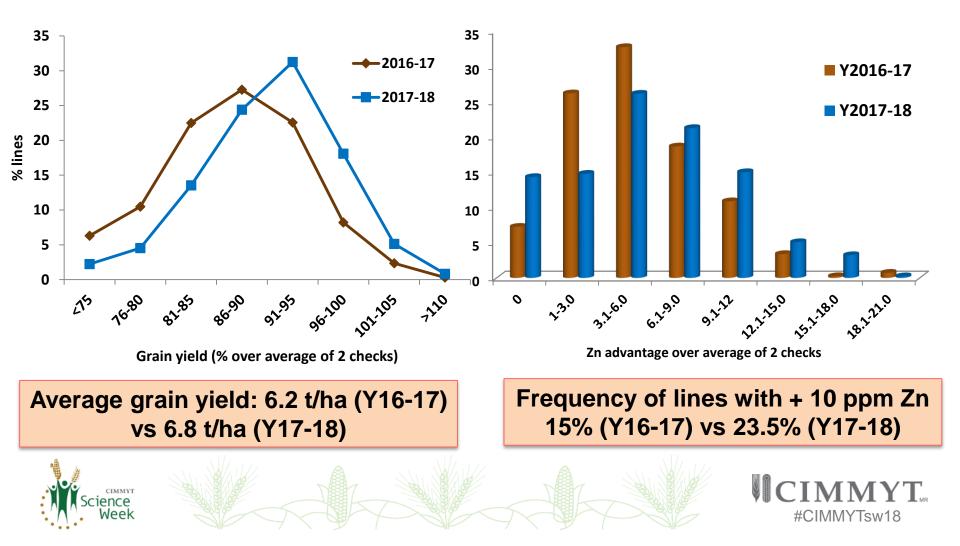
1.6 % increase/year in grain yield compared to long term CIMMYT checks

Variety registration trials in Northwestern Mexico under optimum irrigation CENEB, INIFAP, Cd. Obregon, 2017-18

Variety/ breeding line	Year of release	Mean grain yield (t/ha)	Grain yield (% Roelfs)
ROELFS F2007	2007	5.947	100
ONAVAS F2009	2009	5.833	98
BORLAUG 100	2014	6.583	111
STLN/MUNAL#1// 2*BORL14	2019?	7.057**	119

**P<0.001

Performance similar to CIMMYT breeding trials (3 years) & yield potential trial (1 year)


~ 1.5% annual genetic gain during 2007-2019 compared to 0.7% during 1966-2007

Data source: Miguel Camacho, CENEB, INIFAP, Cd. Obregon, Sonora, Mexico

Keeping pace: Grain yield & Zinc enhancement (Y16-17 & Y17-18)

From genetic resources to High zinc wheat in farmers' fields of South Asia in less than 10 years

Progenitors:

T. Dicoccon based SHW

Zn-Shakti' PVS variety: Extra-early with +14 ppm Zn (40% increase) adopted by >40000 farmers in NEPZ CROC1_/AE.SQUARROSA(210)// INQALAB 91*2/KUKUNA/3/ PBW343*2/KUKUNA

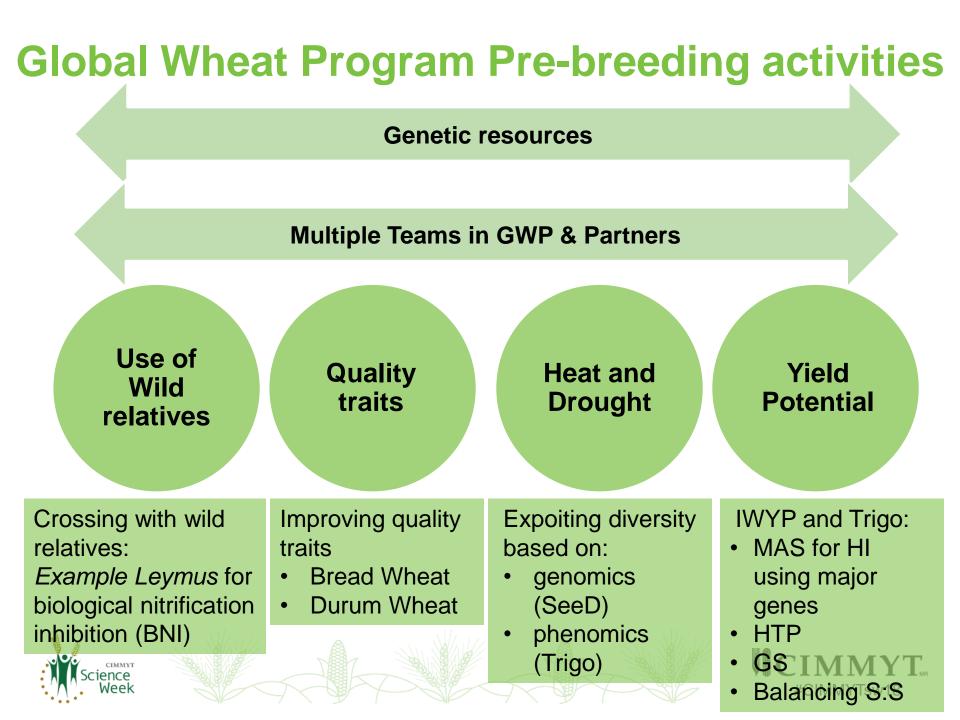
Zincol 2016: 1st high zinc wheat in Pakistan with +6 ppm Zn = 2000

tons of seed to be sown in 2016-17 OASIS/SKAUZ//4*BCN/3/2*PASTOR /4/T.SPELTA PI348449/5/BACEU #1/6/WBLL1*2/CHAPIO

WB02/HPPW-01 = T.DICOCCONCI9309/AE.SQUARR OSA (409)//MUTUS/3/2*MUTUS Two sister lines (+6 ppm Zn) released for NWPZ of India

#CIMMYTsw18

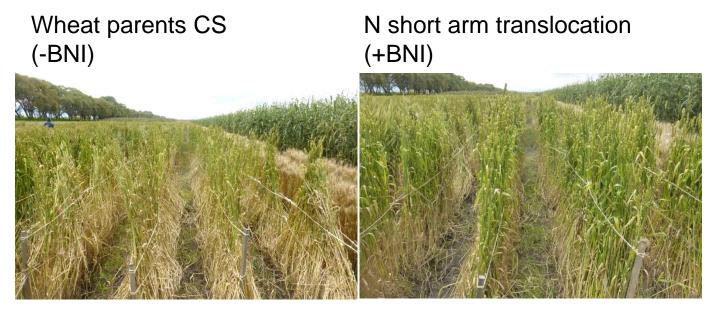
Country	Name of variety
Afghanistan	Daima-17, Lalmi-17, Shamal-17
Argentina	BIOCERES 1008, MS INTA 815
Australia	Borlaug100, SEA Condamine
Bangladesh	BARI Gom 31, BARI Gom 33
Bhutan	Bumthang kaa Drukchu
Bolivia	Cupesi CIAT, INIAF Tropical
Egypt	Misr 3
Ethiopia	Amibara 2, Kingbird, Lemu, Wane


Outcome: 95 direct CIMMYT-derived varieties released by 20 partner countries (2015-2018)

	Songbird, Kenya Weaverbird
Mexico	Bacorehuis F2015, Conatrigo F2015, Ñipal F2016, Ciro NL F2016
Nepal	Chyakhura, Danphe, Munal, Tilottama
Nigeria	Lacriwhit 9, Lacriwhit 10
Pakistan	Anaaj-17, Barani-17, Ihsan-16, Israr-shaheed-2017, Khaista-17, NIFA-Aman,
	Pakhtunkhwa-15, Pasina-2017, Pirsabak-15, Shahid-2017, Sindhu-16, Ujala-16,
	Wadaan-2017, Zincol 2016
Rwanda	Cyumba, Gihundo, Keza, Kibatsi, Majyambere, Mizero, Nyangufi, Nyaruka, Reberaho,
	Rengerabana
Spain	Tujena
Sudan	Ageeb, Akasha
Tajikistan	Haydari, Roghun
Turkey	Altinoz, Ekinoks, Kayra, Koc 2015, Nisrat

Pre-breeding in GWP: Developing proof of concept for trait(s) that add value and broadening the genepool

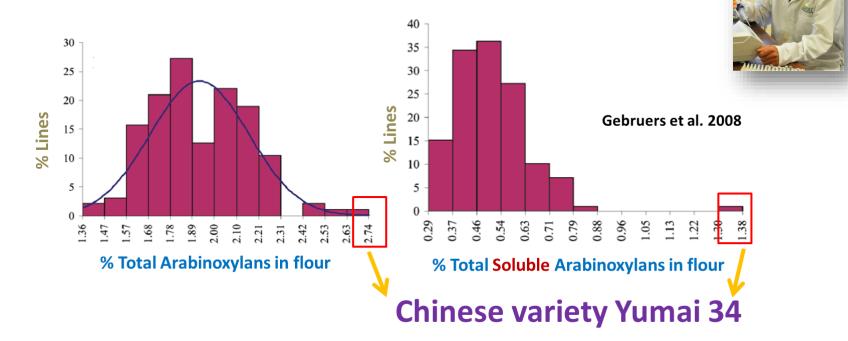
Gemma Molero Wheat Physiology



Wide Crosses with Wild Relatives: Biological nitrification inhibition from Leymus racemosus

#CIMMYTsw18

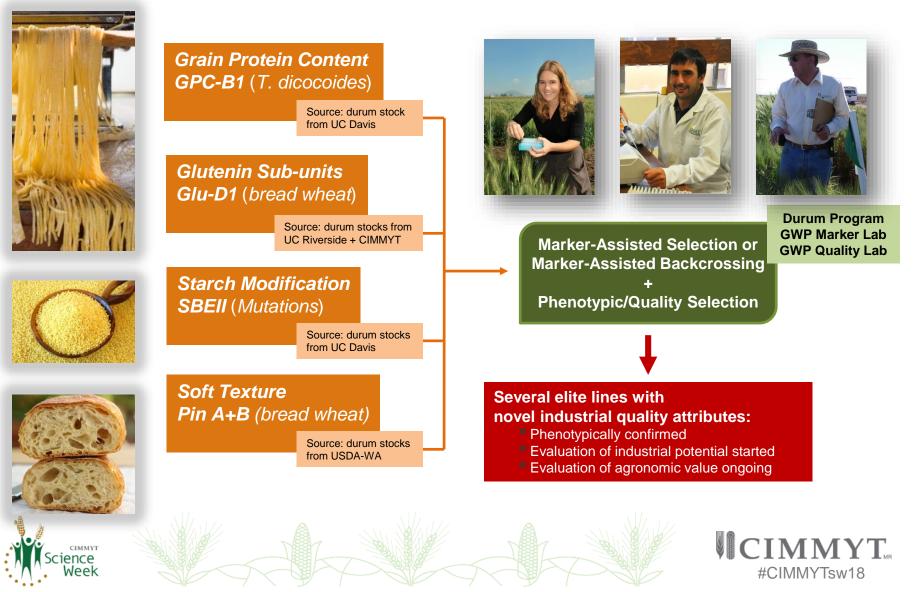
Has the potential to radically increase NUE by preventing losses of available soil N


Yield: 972 Kg/ha Biomass: 3,606 Kg/ha Yield: 831 Kg/ha Biomass: 5,536 Kg/ha

50% higher biomass

Pre-Breeding for Quality in Bread Wheat

 Introgression of genes associated to high content of endosperm soluble fiber (arabinoxylan)


- Objective: increase soluble fiber content in white refined flours
- **Progress**: starting crosses in this cycle

Pre-Breeding in Durum Wheat Improvement

Quality enhancing/diversifying genes transferred to elite durum backgrounds

Exploiting diversity based on genomics (SeeD)

Chain yield ander heat						
GID	Exotic parent type	2015-16	2016-17			
		kg ł	าa ⁻¹			
7641495	Synthetic	2261	2346			
7644075	Synthetic	2325*	2418**			
7645422	Synthetic	2338*	2488**			
7645970	Synthetic	2214	2407*			
7689940	Landrace	2415*	2362			
BAJ #1	Check	2144	2216			
VOROBEY	Check	1769	1985			
SOKOLL	Check	NA	2023			

Grain yield under heat

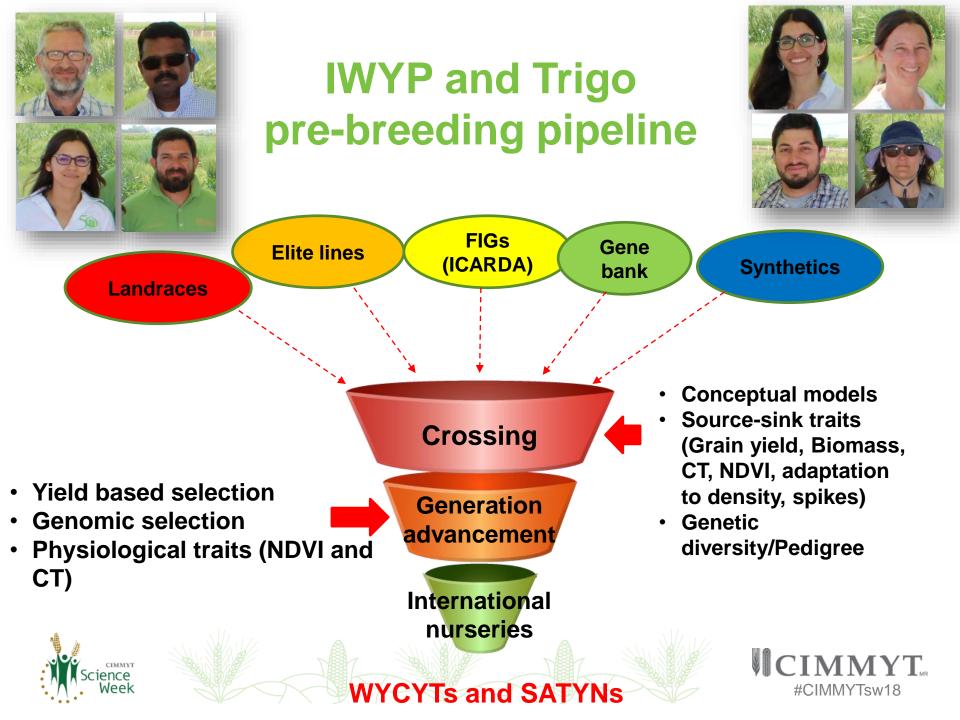
Grain yield under drought

GID	Exotic parent type	2015-16	2016-17
		kg ha	a ⁻¹
7643084	Synthetic	3587	4510*
7642492	Synthetic	3480	4574*
7688508	Landrace	3360	4787*
7687479	Synthetic	3167	5198**
7642491	Synthetic	2766	5151**
VOROBEY	Check	3346	4613
BAJ #1	Check	3111	4858
SOKOLL	Check	NA	3968

Up to 11% yield increase under heat & 5% under drought

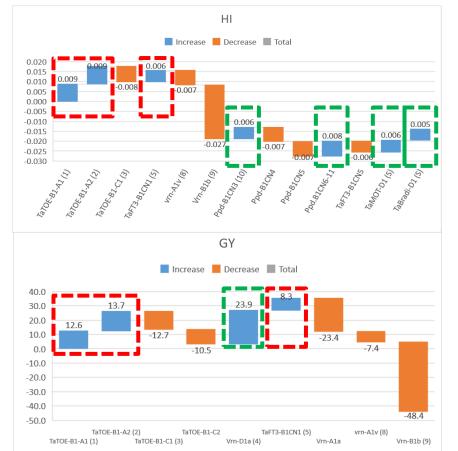
Exploiting diversity based on phenomics (Trigo)

Lines derived from strategic crosses for Heat Tolerance NW Mexico, Combined analysis 2015-2016 & 2016-2017


PT Line	Туре	Yield (g m ⁻²)	%vs. Best check
C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH/4/BERKUT/KRICHAUFF	Elite-Introgression	496	27.6*
WBLL4//OAX93.24.35/WBLL1/5/CROC_1/AE.SQUARROSA (205)//	Synthetic+Landrace derivative	494	26.9*
BCN/WBLL1//PUB94.15.1.12/WBLL1	Landrace derivative	472	21.2*
SOKOLL//PUB94.15.1.12/WBLL1	Synthetic+Landrace derivative	471	20.9*
SOKOLL/WBLL1	Synthetic derivative	462	18.8*
PUB94.15.1.12/FRTL/5/CROC_1/AE.SQUARROSA (205)//	Synthetic+Landrace derivative	459	18.0*
SOKOLL//PUB94.15.1.12/WBLL1	Synthetic+Landrace derivative	455	17.0*
MEX94.27.1.20/3/SOKOLL//ATTILA/3*BCN/4/PUB94.15.1.12/WBLL1	Synthetic+Landrace derivative	451	16.0*
VOROBEY	Check	389	
SOKOLL	Check	370	
BORLAUG100 F2014	Check	357	

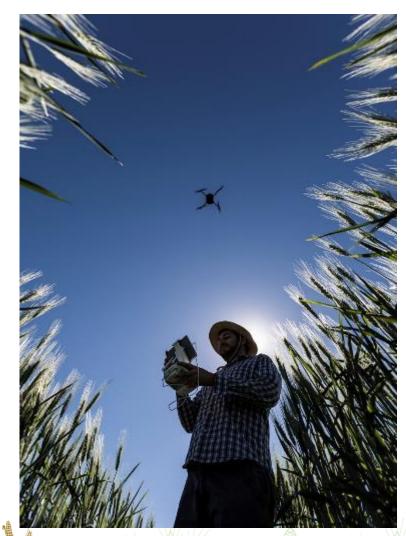
Up to 28% yield increase under heat

New Pre-breeding lines with improved adaptation to heat stress (introgression,


synthetics and landrace background)

#CIMMYTsw18

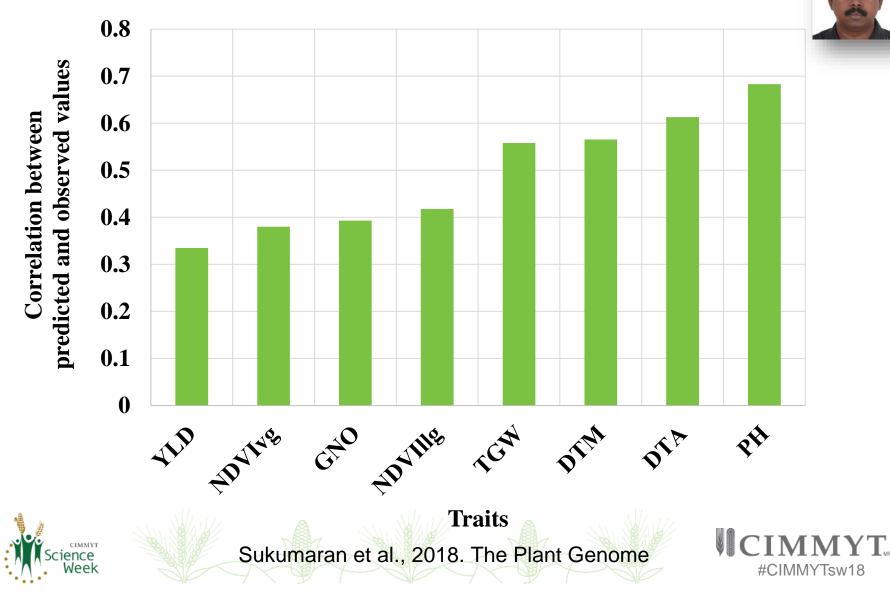
Major genes associated with HI & Grain Yield

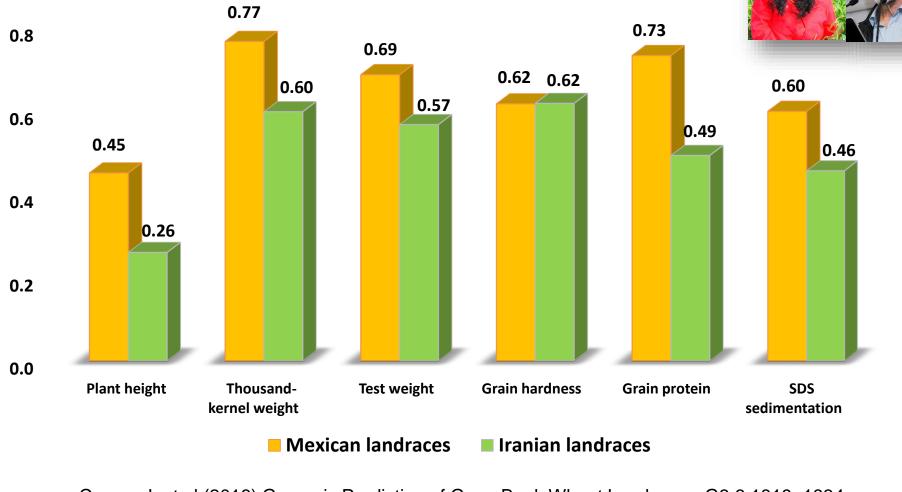


Gene positively effecting HI TARGET of EAT (TaToe1-B1) FLOWERING LOCUS T3 (TaFT3-B1- 1 copy) Eps-D1 Ppd-B1 (6 to 11 copies)

Gene positively effecting GY TARGET of EAT (TaToe1-B1) FLOWERING LOCUS T3 (TaFT3-B1- 1 copy) Vrn-D1a

Complex traits: Aerial remote sensing for HTP

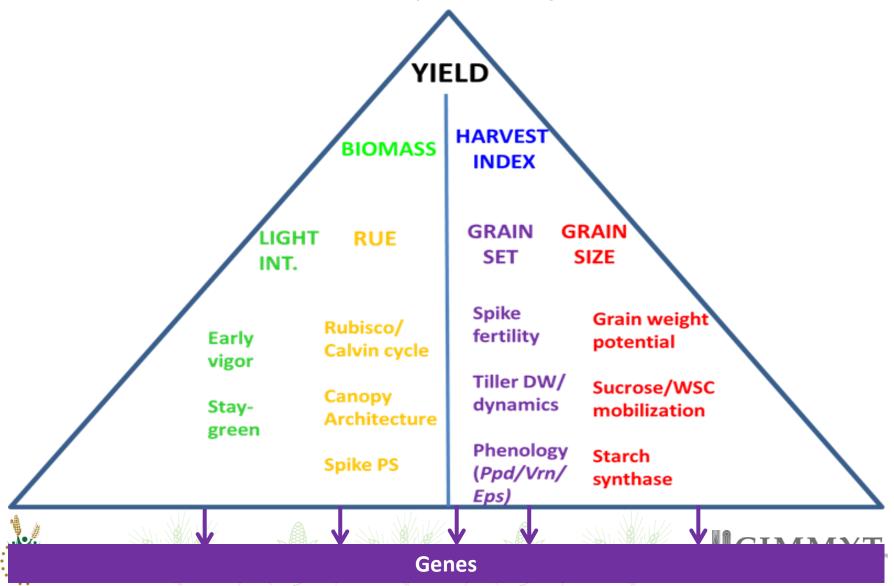




Tattaris M, Reynolds MP, Chapman SC, 2016. A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front. Plant Sci. 7: 1131.

Genomic and pedigree based prediction models durum wheat

Genomic selection also a valuable tool for prebreeding with genetic resources


Crossa J. et al (2016) Genomic Prediction of Gene Bank Wheat Landraces. G3 6:1819–1834.

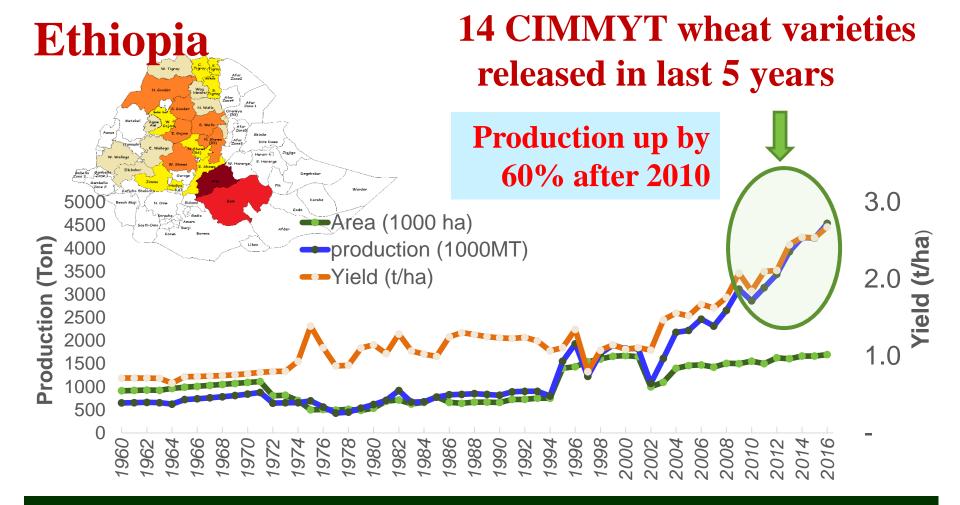
#CIMMYTsw18

IMMY

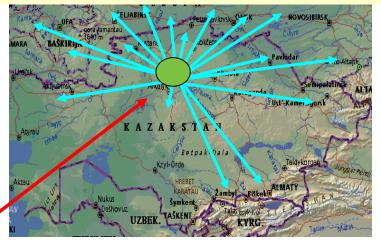
Basis for 'source' x 'sink' strategic crossing

Trait hierarchy (in relation to their degree of integration) depicting the main drivers of yield (biomass and harvest index), and sub-components

International yield trials data 4th WYCYT (2016/17)


	Clust	Clusters based on G x E for yield				
Cluster of sites	C1	C2	C3	C4	C5	Combined
Best PT line (t/ha)	4.96 ^{ns}	5.45*	7.41*	5.89 ^{ns}	8.05*	5.44*
Borlaug (t/ha)	5.29	4.46	5.45	5.65	7.28	5.09
% over Borlaug	-6.2%	22.3%	36.0%	4.2%	10.6%	6.9% *

Global Wheat Program "Regional Offices"


Excellent emergency support and scaling up in 2017
 1082 tons of maize and wheat distributed to 72,371 households (434,226 individuals) in 55 districts

Kazakhstan: Kazakhstan-Siberia Network on Wheat Improvement (KASIB) & Shuttle Breeding "Mexico-KASIB" Program:

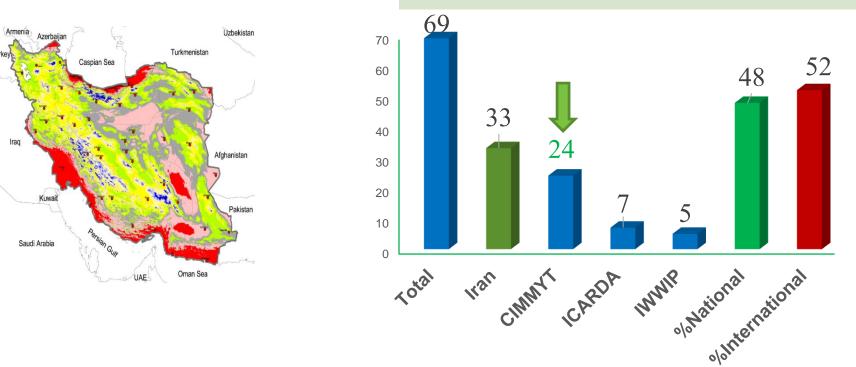
- 21 Breeding programs of Kazakhstan and Russia united in year 2000
- By 2018:
 - >>25,000 advanced lines developed and evaluated
 - >>70 varieties released

KASIB is one of the best examples of regional and Int. cooperation In 2016-17:
Russia: 1st in the world for wheat grain export;
Kazakhstan: 1st in the world for wheat flour export

CIMMYT wheat in China

- 20,000 accessions stored in Chinese gene bank
- Over 300 cultivars developed from CIMMYT wheat, covering 10% area, worth US \$ 3.4 billion
- Received eight awards from State Council since 1998

CAAS-CIMMYT wheat team Ten scientists, 10 support staff, and 20 postgraduates Quality and molecular labs, three breeding stations



#CIMMYTsw18

IRAN 5.4 million ha wheat

24 of 69 wheat/ triticale varieties released during 2001-18 were from CIMMYT

Iran-CIMMYT Joint Project (20 m USD) "Increasing the Productivity of Wheat and Wheat-based Systems in Iran"

Turkey: Int. Winter Wheat Improvement Program

Objectives:

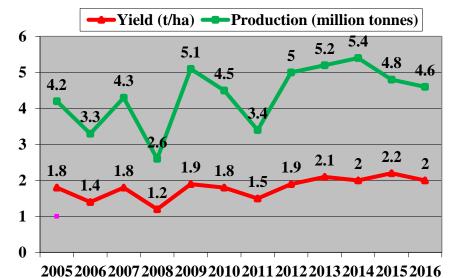
•Develop winter wheat germplasm for Central and West Asia

- •Winter wheat germplasm exchange
- •Maintain wheat landraces
- •Research on priority topics

Country	Varieties released		
Afghanistan	5		
Armenia	4		
Azerbaijan	4		
Georgia	6		
Iran	7		
Kazakhstan	2		
Kyrgyzstan	9		
Tajikistan	6		
Turkey	32		
Turkmenistan	3		
Uzbekistan	2		
Total	80		

7 varieties in 2017:
•Turkey (2)
•Iran (1)
•Kyrgyzstan (2)
•Turkmenistan (2)

Afghanistan Wheat yields sustained despite serious issues. 17 CIMMYT varieties released

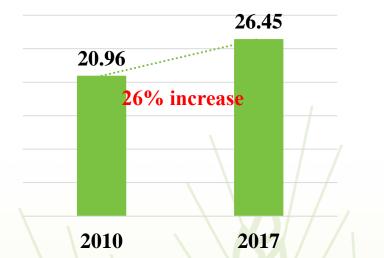

in last 5 years (2013-17)

<image>

441 farmers cleaned 200 MT seed at their door step in 2017

Week

Wheat production & yield in Afghanistan, 2005-2016


Improved seed is the major limitation. Hence, 8 Mobile Seed cleaners were introduced to empower farmers to multiply new varieties on their own and share among themselves.

#CIMMYTsw18

Pakistan

- 10 varieties, 9 direct CIMMYT, released in a single year 2017
- 54 CIMMYT varieties released in last 10 years
- One biofortified Zincol 2016

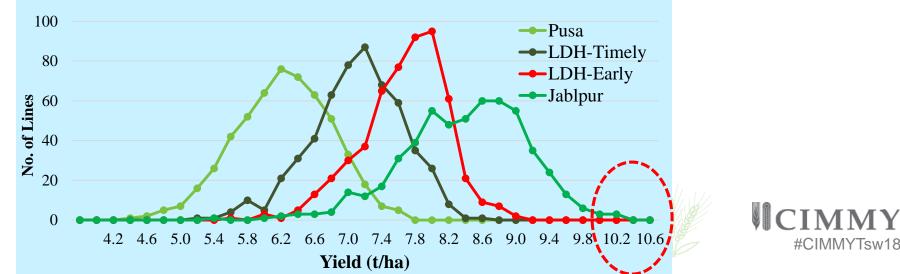
DNA-based 2-D digital barcodes for Wheat Varietal Identification and digital repository use – 130 Pakistan wheat cultivars

Inqalab-91

Pak-81

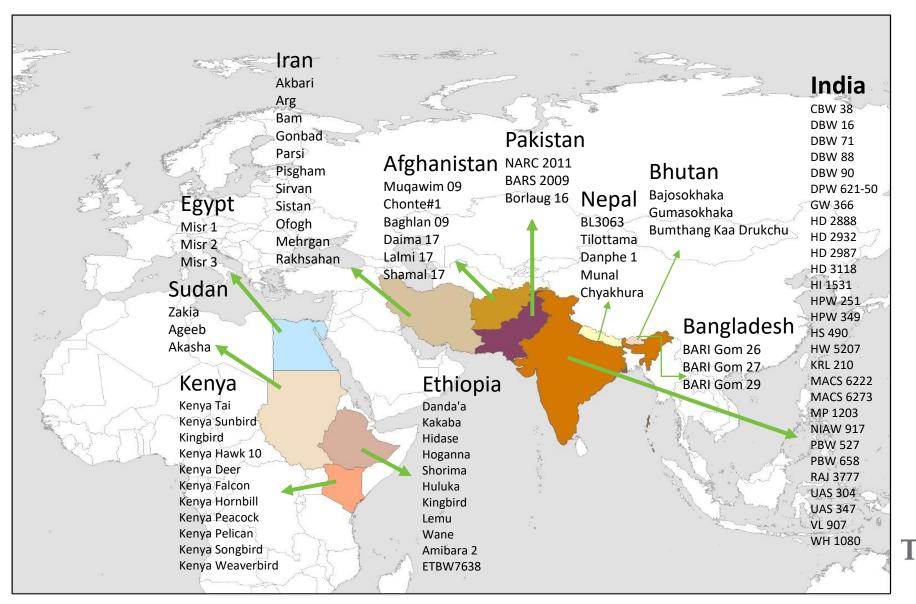
Inquius

Wheat production (MT)


India, Nepal & Bangladesh

35 CIMMYT varieties released since 2010

> 1st biofortified wheat released in India and Bangladesh


> > 1st durum wheat variety released in Nepal

For the first time in South Asia, 10 t/ha grain yield achieved (location: BISA, India)

Kenya

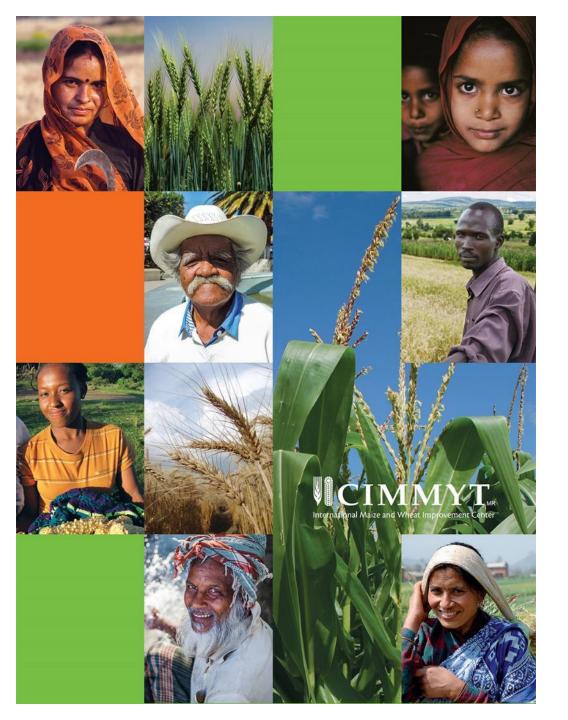
The Ug99 threat mitigated through Kenya phenotyping: identification, release and cultivation of resistant varieties during the last decade

Capacity building


- 287 scientists of 30 countries trained during 2011-18 at Mexico
- Around 350 participated in meetings, symposiums

#CIMMYTsw18

There was a significant progress in wheat research


Acknowledgements

Bill and Melinda Gates Foundation & DFID: DGGW Project HarvestPlus Project, (CRP A4NH) Governments: ACIAR, Australia BMZ, Germany ICAR, India SAGARPA, Mexico USAID, USA

Farmers' organizations: Agrovegetal, Spain GRDC, Australia (ACRCP & CAIGE Projects) Patronato-Sonora, Mexico

The CGIAR Research Program WHEAT receives W1&W2 support from the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Netherlands, New Zealand, Norway, Sweden, Switzerland, U.K., U.S., and the World Bank.

Thank you for your interest!

#CIMMYTsw18

Pre-Breeding Outputs

- Crossing with wild relatives: recent outputs
 - Example: Leymus for biological nitrification inhibition
- Improving quality traits
 - Bread Wheat
 - Durum Wheat
- Pre-breeding outputs for heat and drought
 - Exploiting diversity based on genomics (SeeD)
 - Exploiting diversity based on phenomics (Trigo)
- The international Wheat Yield Partnership
 - MAS for harvest index using major genes
 - High throughput phenotyping
 - Genomic selection
 - Balancing source and sink

