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Abstract: Maize is the most commonly cultivated cereal in Africa in terms of land area and 
production. Low yields in this region are very often associated with issues related to low Nitrogen 
(N), such as low soil fertility or low fertilizer availability. Developing new maize varieties with high 
and reliable yields in actual field conditions using traditional crop breeding techniques can be slow 
and costly. Remote sensing has become an important tool in the modernization of field-based High 
Throughput Plant Phenotyping (HTPP), providing faster gains towards improved yield potential, 
adaptation to abiotic (water stress, extreme temperatures, and salinity) and biotic (susceptibility to 
pests and diseases) limiting conditions, and even quality traits. We evaluated the performance of a 
set of remote sensing indices derived from Red-Green-Blue (RGB) images and the performance of 
the field-based Normalized Difference Vegetation Index (NDVI) and SPAD as phenotypic traits and 
crop monitoring tools for assessing maize performance under managed low nitrogen conditions. 
Phenotyping measurements were conducted on maize plants at two different levels: on the ground 
and from an airborne UAV (Unmanned Aerial Vehicle) platform. For the RGB indices assessed at 
the ground level, the strongest correlations compared to yield were observed with Hue, GGA 
(Greener Green Area), and GA (Green Area) at the ground level, while GGA and CSI (Crop 
Senescence Index) were better correlated with grain yield at the aerial level. Regarding the field 
sensors, SPAD exhibited the closest correlation with grain yield, with a higher correlation when 
measured closer to anthesis. Additionally, we evaluated how these different HTPP data contributed 
to the improvement of multivariate estimations of crop yield in combination with traditional 
agronomic field data, such as ASI (Anthesis Silking Data), AD (Anthesis Data), and Plant Height (PH). 
All multivariate regression models with an R2 higher than 0.50 included one or more of these three 
agronomic parameters as predictive parameters, but with RGB indices at both levels increased to R2 
over 0.60. As such, this research suggests that traditional agronomic data provide information 
related to grain yield in abiotic stress conditions, but that they may be potentially supplemented by 
RGB indices from either ground or UAV phenotyping platforms. Finally, in comparison to the same 
panel of maize varieties grown under optimal conditions, only 11% of the varieties that were in the 
highest yield-producing quartile under optimal N conditions remained in the highest quartile when 
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grown under managed low N conditions, suggesting that specific breeding for low N tolerance can 
still produce gains, but that low N productivity is also not necessarily exclusive of high productivity 
in optimal conditions. 

Keywords: maize; low nitrogen; High Throughput Plant Phenotyping; remote sensing 
 

1. Introduction 

Maize is the most commonly cultivated cereal in Africa in terms of land area and production [1]. 
Low yields in this region are largely associated with drought stress, low soil fertility, weeds, pests, 
diseases, low input availability, low input use, and inappropriate seeds [2]. After water, nitrogen (N) 
is the single most important input for maize production, and the lack of N is considered the principal 
constraint to cereal yields in areas with more than 400 mm average annual rainfall in sub-Saharan 
Africa [3]. Plants scientists face the challenge of solving these limitations while considering the 
additional implications of climate change on food security [4]. In that sense, affordable technologies 
capable of monitoring crop performance, involving yield prediction, or assessing phenotyping 
variability for agronomical or breeding purposes are aimed at surpassing the bottlenecks in the way 
of full exploitation of this technology [5,6]. One of the first non-destructive and analytical tools was 
the chlorophyll meter, which was based on radiation absorbance by leaves in the red and near-
infrared regions (usually at 650 and 940 nm), as relative leaf chlorophyll content readings have an 
indirect and close relationship with leaf N concentration and leaf chlorophyll concentration (SPAD) 
[7,8]. 

Remote sensing has become an important tool in the modernization of field High Throughput 
Plant Phenotyping (HTPP), including improvements in yield potential, adaptation to abiotic stressors 
(drought, extreme temperatures, salinity), biotic (susceptibility to pests and diseases) limiting 
conditions, and even quality traits [6,9,10]. The Normalized Difference Vegetation Index (NDVI) [11] 
is one of the most well-known vegetation indices derived from multispectral remote sensing, as it 
includes visible and near infrared radiation [12,13]. As a low-cost alternative, various RGB-based 
Vegetation Indices (RGB-VIs) can be calculated from commercial Reed Green Blue (RGB) cameras 
that have proven able to predict grain yield, quantify nutrient deficiencies, and measure disease 
impacts [14,15]. The RGB images can be processed using the Breedpix code that enables the extraction 
of RGB-VIs in relation to different properties of color, which often demonstrate a performance similar 
to or slightly better than that of the better-known NDVI [16]. The RGB-VIs proposed here, namely 
Hue, Saturation, Intensity, Green Area (GA), and Greener Green Area (GGA) (the last two are based 
on pixel selections of Hue of 60–180 and 80–180, respectively), as well as L, a*, and b* from the CIE-
Lab color space, are readily obtainable from zenithal pictures of canopies and by using the 
appropriate calculations [16]. 

The aim of this study is to evaluate the performance of different commercial and pre-commercial 
maize varieties under low nitrogen conditions using affordable HTPP tools. We evaluated the 
selection of maize varieties using a set of remote sensing indices derived from RGB images acquired 
from a UAV (Unmanned Aerial Vehicle) and at the ground level compared with the performance of 
the field-based NDVI and SPAD sensors, and then we tested their capacity for yield estimation both 
alone and in combination with standard agronomical variables, such as ASI (Anthesis Silking Data), 
AD (Anthesis Data), and Plant Height (PH). 

2. Materials and Methods 

2.1. Plant Material and Growing Conditions 

Field trials were conducted at the CIMMYT (International Center for Maize and Wheat 
Improvement) regional station located in Harare, Zimbabwe (−17.800 S, 31.050 E, 1498 m.a.s.l.). The 
soil of the station is characterized by a pH slightly below 6. This study consisted of two different 
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conditions: the first was Optimum Nitrogen (OP) with a standard fertilization application [10], and 
the second was the Low Managed Nitrogen (LOW) that was 25–35% less N fertilizer compared to the 
OP growing conditions. A set of 49 maize hybrids were developed at CIMMYT, and 15 commercial 
maize varieties were developed in Zimbabwe. Seeds were sown during the wet season; on December 
16th, 2015; and during the harvest on 12 May 2016. 

2.2. Remote Sensing and Proximal (Ground) Data Colleciton 

Remote sensing evaluations were performed on seedlings (less than 5 leaves) during the last 
week of January. RGB-VIs were evaluated for each plot at terrestrial and aerial levels. RGB aerial 
images were acquired using an Unmanned Air Vehicle (UAV, Mikrokopter OktoXL, Moormerland, 
Germany) flying under remote control at about 50 m. The digital camera used for aerial imaging was 
a Lumix GX7 (Panasonic, Osaka, Japan). Images were taken at 16-megapixel resolution using a 4/3’’ 
sensor, 20 mm focal length, 1/160 s shutter speed, and auto-programmed aperture. These images were 
taken at the rate of every 2 s from 50 m for the duration of the flight. At the ground level, one 
conventional digital photograph was taken per plot with an Olympus OM-D (Olympus, Tokyo, 
Japan), holding the camera about 80 cm above the plant canopy in a zenith and focusing near the 
center of each plot. The images were acquired with a resolution of 16 megapixels with a 4/3’’ Live 
MOS sensor with a focal length of 14 mm, activated at a speed of 1/125 s with the aperture 
programmed in automatic mode. 

The NDVI of individual plots at ground level was determined with a ground-based portable 
spectroradiometer with an active sensor (GreenSeeker handheld crop sensor, Trimble, Sunnyvale, 
CA, USA). The RGB images at aerial and ground level were taken on January 28th, 2016 with the 
NDVI. SPAD was measured in two different dates, once on February 18th, 2016 (SPAD1) and then 
again on March 1st, 2016 (SPAD2) using a portable Minolta SPAD-502 chlorophyll meter (Spectrum 
Technologies Inc., Plainfield, IL, USA). 

2.3. Image Processing and Statistical Analyses 

For the RGB images, the Microsoft Image Composite Editor (ICE; Microsoft Research Computational 
Photography Group, Redmond, WA, USA) was used to produce an accurate image mosaic as seen in 
Figure 1. A total of 63 overlapping images were used for mosaic. Through the open source image 
analysis platform FIJI (Fiji is Just ImageJ; http://fiji.sc/Fiji), regions of interest were established at each 
row for the plots to be cropped. RGB pictures were subsequently analyzed using a version of the 
Breedpix 0.2 software adapted to JAVA8 and integrated as the CIMMYT MaizeScanner plugin within 
FIJI (https://github.com/George-haddad/CIMMYT). With the Breedpix software code, the images 
were processed to convert RGB values into indices based on the models of Hue-Intensity-Saturation 
(HIS), CIE-Lab, and CIE-Luv cylindrical-coordinate representations of colors. Additionally, Crop 
Senescence Index (CSI) was calculated in agreement with [15,17]. The Triangular Greenness Index 
(TGI) was calculated as the area of a triangle formed by the reflectance values of the Blue, Green, and 
Red bands [18]. Finally, the Normalized Green Red Difference Index (NGRDI) is calculated as the 
difference between the green and red digital numbers differentiates between plants and soil, and the 
sum normalizes for variations in light intensity between different images [19]. All statistical analyses 
were done using R and R Studio (http://cran.r-project.org, http://www.rstudio.com, R Studio, Boston, 
MA, USA). 

3. Results and Discussion 

3.1. The Effect of Optimal Condition and Low Managed Nitrogen on Grain Yield 

The results showed (Figure 1) that of the maize varieties grown under optimal conditions, 11% 
of the varieties that were in highest yield-producing quartile under optimal N conditions remained 
in the highest quartile when grown under managed low N conditions, suggesting that specific 
breeding for low N tolerance can still produce gains, but that low N productivity is not necessarily 
exclusive of high productivity in optimal conditions. In some cases, it has been reported that the 
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genotypes selected under low N fertilization input are not truly adapted to N-rich soils [20]. In [21], 
the authors suggest that when plant material performs relatively well under low N input, it should 
be selected under N deficiency conditions for which yield reduction does not exceed 35–40%. 

 
Figure 1. LY (Low Yield), MLY (Medium-low Yield), MHY (Medium-High Yield), and HY (High 
Yield) maize variety in two different conditions: (A) Optimum Nitrogen (OP) and (B) Low Nitrogen 
(LOW). Each value is the mean ± SD for each genotype (n = 48 per quartile with 16 different variety). 
Bars with the different letters are significant at p < 0.001. 

3.2. Performance of Remote Sensing Indices and Field Sensors in Estimating Grain Yield 

The RGB indices Hue, GGA, and GA calculated from images taken at ground level demonstrated 
the best correlations with GY, outperforming other RGB indices (Table 1). GA quantifies the portion 
of green pixels to the total pixels of the image and is a reliable estimation of vegetation cover [22] and 
the values of GA in both observation levels were consistently below 60%. The ground and aerial 
measurements were taken at the same time on the same day, variation in environmental variables 
such as light intensity and brightness can be assumed to be negligible. On the other hand, all RGB 
indices from the ground and aerial levels did not show significant differences between quartiles. This 
may be best explained considering that the data for our study were collected at an early phenological 
stage when the plants were not yet at full canopy cover and they did not yet show the full range of 
symptoms of N deficiency. N deficiency can reduce plant growth rates, but also other later factors 
that affect GY, including leaf chlorophyll content, soluble protein content, photosynthetic rate, and 
related enzyme activities of the maize plant during grain filling [23]. 

Table 1. Grain yield correlations with all proximal remote sensing variables from the RGB images 
taken from the UAV aerial platform, RGB images from the ground, and SPAD and NDVI field sensors. 
These indices are defined in the Introduction and Materials and Methods. Levels of significance: *, p < 0.05; 
***, p < 0.001. 

RGB Indices/Aerial R p RGB Indices/Ground R p Additional Field Sensors R P 
GGA 0.1978 *** GGA 0.2339 *** SPAD1 (18/02/16) 0.2936 *** 
GA 0.1659 *** GA 0.2175 *** SPAD2 (01/03/16) 0.2564 *** 
Hue 0.1449 *** Hue 0.2351 *** NDVI 0.1404 *** 

Intensity 0.0932 *** Intensity 0.0090     
Saturation 0.1819 *** Saturation 0.0515 *    
Lightness 0.0848 *** Lightness 0.0208 *    

a * 0.1275 *** a* 0.1467 ***    
b * 0.1573 *** b* 0.0080     
u * 0.1470 *** u* 0.2021 ***    
v * 0.0884 *** v* 0.0002     
CSI 0.1830 *** CSI 0.1031 ***    
TGI 0.0527 * TGI 0.0019     

NGRDI 0.1645 *** NGRDI 0.0007     



Proceedings 2018, 2, 366 5 of 7 

 

NDVI has been used with satisfactory results in many prediction models of yield in wheat at the 
field level [24], using field, airborne, and satellite imagery. Regarding NDVI, its values are clearly 
highlighted and the variability is low, with more than 90% of its values being in the range 0.55–0.8. 
These results support the previously reported saturation of reflectance spectra in the red and near-
infrared regions, such that increasing leaf area does not involve a parallel increase in NDVI values 
[25]. 

SPAD is used to measure relative chlorophyll content in plant leaves and it has been effectively 
used to diagnose N status and predict GY potential in maize [26]. In maize, chlorophyll meters 
provide a convenient and reliable way to estimate leaf N content during vegetative growth [27] and 
over a large time scale after anthesis [28]. We can see this as a decline in relative chlorophyll content 
between the two SPAD measurements. This may be because when the crops are in the first phase 
(SPAD1), i.e., vegetative phase, young developing roots and leaves behave as sink organs for the 
assimilation of inorganic N and the synthesis of amino acids originating from the N taken up before 
flowering and then reduced via the nitrate assimilatory pathway. After flowering, (SPAD2), the N 
accumulated in the vegetative parts of the plant, is remobilized and translocated to the grain [29]. 

In multivariate analyses, the estimation for yield using different combinations of RGB images 
from the field and UAV platforms, field sensors, and traditional agronomical field measurements 
provided improved results over the single index results presented in Table 1. Combining RGB images 
and proximal field sensors resulted in R2 values of 0.403 and 0.384 for the ground and aerial RGB 
data, respectively. Further improvements were observed when also employing the traditional 
agronomical field measurements ASI, AD, and PH, resulting in R2 values of 0.6157 and 0.6154 using 
RGB ground and aerial VIs, respectively. This suggests that the use of the more time-consuming field 
senors may be replaced with either ground or aerial RGB data when used in combination with the 
traditional agronomical field measurements for optimal results. 

4. Conclusions 

Maize hybrid technology may show promise for improving much-needed GY in low N 
environments, and the current range of variability in performance suggests the possibility of potential 
for further improvements. We need to take advantage of known effects of low N on physiological 
processes to focus our efforts to bring HTPP to low N breeding. For HTPP, RGB sensors can be 
considered as a functional technology from the ground or a UAV, but also, similar to SPAD, NDVI, 
or any other agronomic or general plant physiological measurement, these measurements must be 
carefully planned for an adequate growth stage in order to optimize their benefits to plant breeding 
(i.e., possible gains with new technologies with regards to equipment and time costs, especially in 
larger breeding platforms). 
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Abbreviations 

N Nitrogen 
NDVI Normalized Difference Vegetation Index 
HTTP High Throughput Plant Phenotyping 
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RGB Red-Green-Blue 
GA Green Area 
GGA Green Greener Area 
CIMMYT International Maize and Wheat Improvement Center 
OP Optimum Nitrogen 
LOW Low Managed Nitrogen 
UAV Unmanned Aerial Vehicle 
ASI Anthesis Silking Data 
AD Anthesis Data 
PH Plant Heigh 
CSI Crop Senescence Index 
TGI Triangular Greenness Index 
NGRDI Normalized Green Red Difference Index 
HIS Hue-Intensity-Saturation 
LY Low Yield 
MLY Medium Low Yield 
MHY Medium High Yield 
HY High Yield 
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