# Use of molecular marker technologies to enhance genetic gain in maize

Mike Olsen on behalf of the STMA PO1 team and MAIZE AFS CoA 2.2 Maize training workshop on improving genetic gain Nairobi, Kenya June 23, 2017

## **Maize Novel Tools and Germplasm**

 Vision: To improve input use efficiency and reduce production risk of small holder maize farming systems by enhancing the rate of genetic gain for economically important traits through the application of innovative technology and novel germplasm





# **MAIZE CRP CoA 2.2 Organization**

- 2.2.1 DH cost reduction
- 2.2.2 Forward Breeding applications (Deployment)

- 2.2.3 Trait Pipeline (Discovery and Validation)
- 2.2.4 Genomic Selection
- 2.2.5 Gene Editing

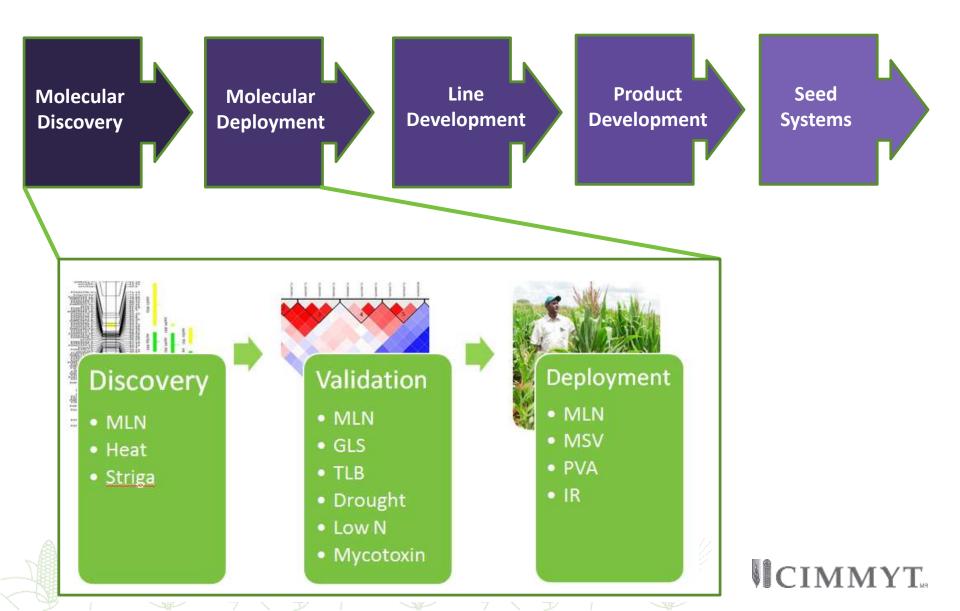
# **MAIZE CRP CoA 2.2 Organization**

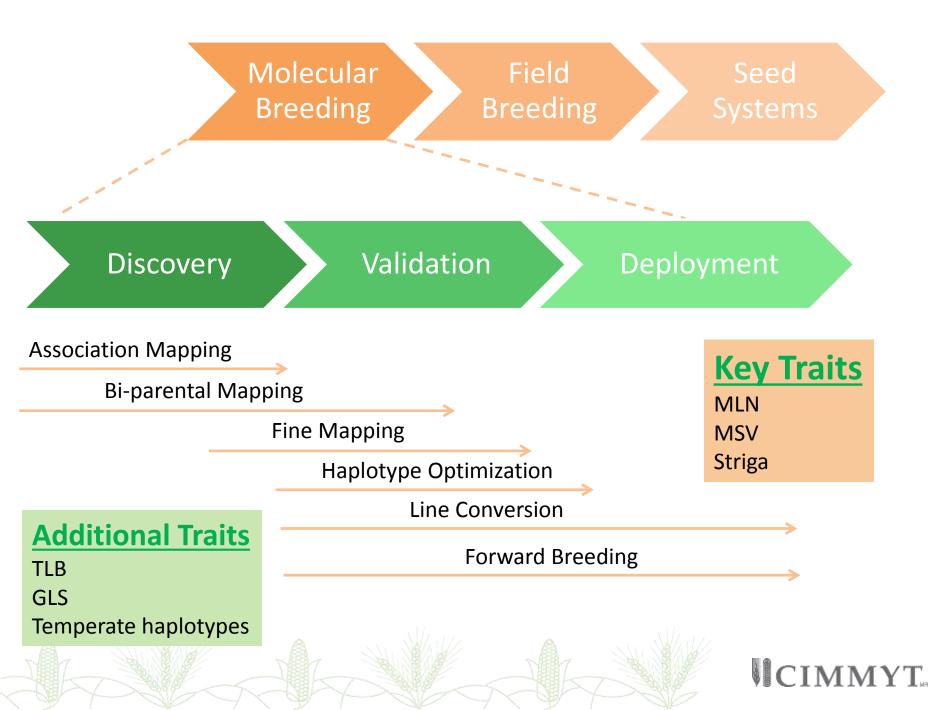
- 2.2.3 Trait Pipeline (Discovery and Validation)
- Trait teams

| Priority 1 | Priority 2    | Priority 3     |  |  |  |  |
|------------|---------------|----------------|--|--|--|--|
| TSC        | TLB           | BLSB           |  |  |  |  |
| MLN        | GLS           | PFSR           |  |  |  |  |
| MSV        | Low P         | DM             |  |  |  |  |
| PVA        | Low N         | QPM            |  |  |  |  |
| Zinc       | Acid Soil     | CMS            |  |  |  |  |
| Striga     | Drought       | CSC            |  |  |  |  |
| Aflatoxin  | Heat          | Waterlogging   |  |  |  |  |
|            | Temperate     | Herbicide      |  |  |  |  |
| (Ms44)     | Introgression | susceptibility |  |  |  |  |
|            |               | Highland       |  |  |  |  |
|            |               | Adaptation     |  |  |  |  |



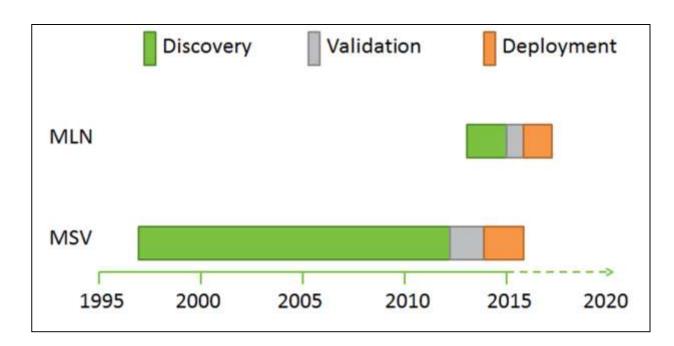
## Improved breeding efficiency – increasing genetic gain


#### Informatics - GOBII \*\* Cycles of selection Seed chipping \* Novel New recombinants Evaluation Germplasm 106 **Cycle Time** Genotype Untested New \*\* Tested 104 Haplotypes **Genomic Selection** \* ✤ Accelerated DH Informatics – GOBII \*\* Advancement 10<sup>3</sup> donor use Mechanization \*\* 102 Heritability Elite germplasm 101 Phenotype \*\* Phenotyping Commercial innovation Release ✤ Affordable DH **Decision Support Tools** Mechanization \* \* Parent Selection \* Advancement decisions Adapted from Cooper et al. 2014


CIMMYT.

Selection intensity

Low cost genotyping


# **GMP-Africa pipeline**





# **Critical Path Analysis**

- Which steps can be done in parallel?
- Cost-benefit of crashing timelines
- Which steps are critically timesensitive?
- Role specialization to improve efficiency at bottlenecks
- Integration of process workflows





avoid Value have or have sted Neir Effort (time speat If it takes Z hours to score 90% manexan but 6 hours to score 100% take the 90, we have to many other important things we need you for!



|                  |        | HG A D  | ONORS   |               | HG B DONORS |        |        |               |  |  |  |  |
|------------------|--------|---------|---------|---------------|-------------|--------|--------|---------------|--|--|--|--|
| Haplotype        | DTPF46 | CLWN270 | CLYN261 | <b>CML509</b> | CLRCY034    | CML574 | CML494 | <b>CML543</b> |  |  |  |  |
| MLN_01.002       |        |         |         |               |             |        | 1      |               |  |  |  |  |
| MLN_02.185       |        |         | 1       |               |             |        |        |               |  |  |  |  |
| MLN_02.194       | 1      |         | 6       |               |             | 2      |        | 1             |  |  |  |  |
| MLN_03.044       | 1      |         | 8       |               |             | 1      |        |               |  |  |  |  |
| MLN_03.113       |        |         | 2       |               |             |        |        |               |  |  |  |  |
| MLN_03.133       | 3      | 1       | 2       |               | 1           | 2      |        |               |  |  |  |  |
| MLN_03.140       |        |         |         |               |             |        |        | 9             |  |  |  |  |
| MLN_03.171       |        |         |         |               |             |        | 4      |               |  |  |  |  |
| MLN_03.189       | 2      | 1       | 7       |               | 1           | 2      |        |               |  |  |  |  |
| MLN_06.020       |        |         |         |               |             |        |        | 8             |  |  |  |  |
| MLN_06.166       |        |         | 5       |               |             |        |        |               |  |  |  |  |
| MLN_07.142       |        |         |         |               |             |        | 3      |               |  |  |  |  |
| MLN_07.158       |        |         |         |               |             |        |        | 2             |  |  |  |  |
| MLN_08.074       | 2      |         |         |               |             | 1      |        |               |  |  |  |  |
| MLN_09.108       |        |         |         |               |             |        | 4      |               |  |  |  |  |
| MLN_09.146       |        |         | 1       |               |             |        |        |               |  |  |  |  |
| MSV_01.087       |        |         |         | 3             |             |        |        | 3             |  |  |  |  |
| Y1_06.082        |        |         |         | 3             |             |        |        | 2             |  |  |  |  |
| Theor Appl Genet |        |         |         |               |             | 1      |        |               |  |  |  |  |

U

Theor Appl Genet DOI 10.1007/s00122-015-2559-0

ORIGINAL ARTICLE

Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm

 $\begin{array}{l} Manje\ Gowda^1 \cdot Biswanath\ Das^1 \cdot Dan\ Makumbi^1 \cdot Raman\ Babu^2 \cdot Kassa\ Semagn^1 \cdot George\ Mahuku^1 \cdot Michael\ S.\ Olsen^1 \cdot Jumbo\ M.\ Bright^1 \cdot Yoseph\ Beyene^1 \cdot Boddupalli\ M.\ Prasanna^1 \end{array}$ 

#### **QTL Deployment**

- 37 MLN MABC projects
- Target: 10% GY increase vs RP in hybrids
- 6 white + MSV1 donor conversion projects
- Inbred efficacy trial planted
- Hybrid equivalency and efficacy trials in the field



# **MLN QTL deployment**

| MLN Conversions |        |                   |   |  |  |  |  |  |  |
|-----------------|--------|-------------------|---|--|--|--|--|--|--|
| CML202          | CML539 | DTPWC9-F67-2-2-1  |   |  |  |  |  |  |  |
| CML312          | CML540 | LPSC7-F103-2-2-2  |   |  |  |  |  |  |  |
| CML341          | CML544 | LPSC7-F180-3-1-1  |   |  |  |  |  |  |  |
| CML343          | CML545 | LPSC7-F64-2-6-2   |   |  |  |  |  |  |  |
| CML373          | CML546 | CKL05015          |   |  |  |  |  |  |  |
| CML442          | CML547 | CLRCY034          | * |  |  |  |  |  |  |
| CML444          | CML548 | CML574 (CLRCY039) | * |  |  |  |  |  |  |
| CML445          | CML550 | CLYN231           | * |  |  |  |  |  |  |
| CML489          | CZL052 | CLWN270           | * |  |  |  |  |  |  |
| CML507          | CZL068 | DTPYC9-F46-1-2-1  | * |  |  |  |  |  |  |

\*\* MLN tolerant lines converted from

yellow to white + MSV1







#### CML442

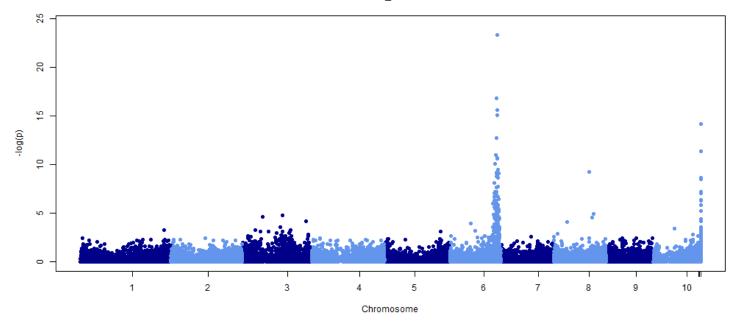
## CML442\*5/CLWN270

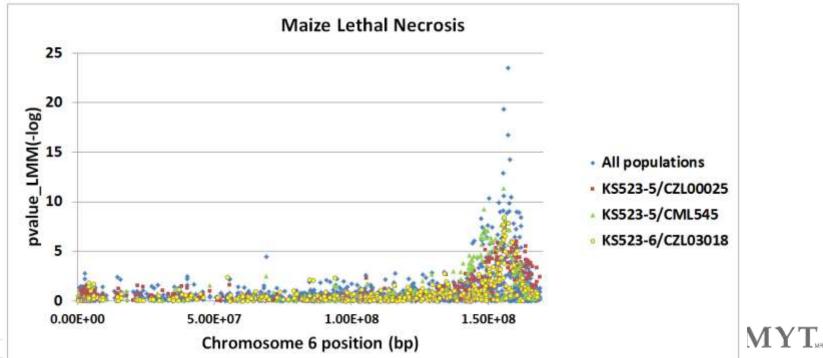


CML488\*5/DTPYF46

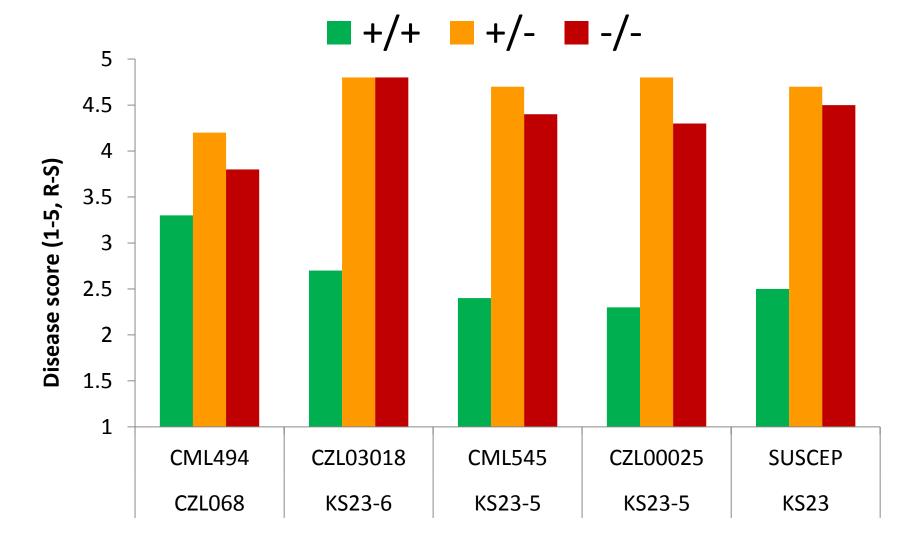





#### CML539




## CML444\*5/CML494










#### **Contribution of MLN<sub>R</sub> Locus to Resistance Against MLN**



Parents in cross (KS23 resistant)

Olsen

# KS23 MLN haplotype deployment

- Six marker haplotype identified for HTPG
- 40 breeding populations to deliver to ESA line development team in June
- 19 MABC projects at BC2 or BC3 stage

|                                                    |              | PZA          |      |      |       | PH |
|----------------------------------------------------|--------------|--------------|------|------|-------|----|
|                                                    |              |              |      | ***  | • • • |    |
| CKL05019/KS23-6//CL1211302                         | FB100        | 00/0         |      |      |       |    |
| CKL05019/KS23-5//CL1211302                         | FB101        | 66/          |      |      |       |    |
| ZEWAc1F2-151-6-1-B-1-BBB-2-2-B-B-B-B/KS23          |              | GG/C         |      |      |       |    |
| CML548/KS23-6//CML540                              | FB119        | 66/          |      |      |       |    |
| CML442/KS23-6//CML540                              | FB120        | 00/0         |      |      |       |    |
| CML539/KS23-6//CZL111                              | FB128        | 00/0         |      |      |       |    |
| (CML539/KS23-6):B-                                 | FB13         | GG/C         |      |      |       |    |
| CML505/KS23-6//CZL1397                             | FB139        | 66/          |      |      |       |    |
| (CKDHL0186/KS23-6):B-                              | FB14         | cc/c         |      |      |       |    |
| CML509/KS23-6//CZL1397                             | FB140        | 0070         |      |      |       |    |
| CML537/KS23-5//CZL1397                             | FB141        | 66/          |      |      |       |    |
| (CKDHL0221/KS23-6):B-                              | FB15         | CC/C         | AA// | GG/( | con   | GG |
| ZEWA-1F2-151-6-1-B-1-BBB-2-2-B-B-B-B/KS23          | FB151        | GG/C         | 661  | GG/C | CC/1  | GG |
| CML505/KS23-6//CML572                              | FB153        | GG/C         | 661  | AAI  | CON   | GG |
| CML545/KS23-6//CML572                              | FB159        | GG/C         | AA#  | GG/C | CC/1  | AΑ |
| (CML442/KS23-6):B-                                 | FB16         | CC/C         | AA/A | AAK  | TT/T  | AA |
| CML548/KS23-6//CML572                              | FB160        | GG/C         | ee#  | GG/C | TT/T  | GG |
| (CML537/KS23-5):B-                                 | FB17         | GG/C         | GG#  | GG/( | CONT  | T  |
| La Parta Sog C7-F64-2-6-2-2-B/KS23-6//CML57        | FB171        | 00/0         | AAH  | GG/C | TT/T  | GG |
| ((ZEWAc1F2-151-6-1-B-1-BBB-2-2-B-B-B-B)*2/F        | FB177        | GG/C         | GG/ł | GG/( | cc/1  | GG |
| CML505/KS23-6//ZEWA<1F2-151-6-1-B-1-BBB-2          | FB179        | 66/+         | 661  | AA/Q | CCI   | 66 |
| (CML312/KS23-6):B-                                 | FB18         | CC/C         |      |      |       |    |
| CML509/KS23-6//ZEWA<1F2-151-6-1-B-1-BBB-2          | FB180        | 00/0         |      |      |       |    |
| CML537/KS23-5//ZEWAc1F2-151-6-1-B-1-BBB-2          |              | 66%          |      |      |       |    |
| CML539/KS23-6//ZEWAc1F2-151-6-1-B-1-BBB-2          |              | 00/0         |      |      |       |    |
| DTPYC9-F46-1-2-1-2-B/KS23-6//ZEWA<1F2-151-         |              | 0040         |      |      |       |    |
| LaParta Soq C7-F64-2-6-2-2-B/KS23-6//ZEWAc         |              | 0070         |      |      |       |    |
| CKL05017/KS23-6//CML567                            | FB21         | GG/C         |      |      |       |    |
| CKL05017/KS23-5//CML567                            | FB22         | GG/G         |      |      |       |    |
| CKL05019/KS23-6//CML567                            | FB23         | CC/C         |      |      |       |    |
| (CML548/KS23-6):B-                                 | FB3          | GG/C         |      |      |       |    |
| CKL05017/KS23-6//CML568<br>CKL05017/KS23-5//CML568 | FB32<br>FB33 | GG/C<br>GG/G |      |      |       |    |
| CML548/KS23-6//CKL05017                            | FB41         | 66/          |      |      |       |    |
| CML540rK323-677CKL05011<br>CML5677KS23-677CKL05017 | FB43         | CC/C         |      |      |       |    |
| CML567/KS23-6//CKL05019                            | FB58         | CC/C         |      |      |       |    |
| CKL05017/KS23-6//CKL05019                          | FB62B        | GG/C         |      |      |       |    |
|                                                    | FB63         | GG/G         |      |      |       |    |
| CKL05017/KS23-6//CL1211302                         | FB98         | 66/          |      |      |       |    |
|                                                    | FB99         | GG/G         |      |      |       |    |
| CML567*2/KS23-6                                    | J001         | 00/00        |      | GG/( |       |    |
| CML568*2/KS23-6                                    | J002         | 00/6(        |      | AAI  |       |    |
| CKL05017*2/KS23-6                                  | J003         | GG/CC        |      |      | 00/1  |    |
| CKL05019*2/KS23-6                                  | J004         | 00/00        |      |      | TT/T  |    |
| CML539*2/KS23-6                                    | J005         | 00/00        |      |      | TT/T  |    |
| CML540*2/KS23-6                                    | J006         | GG/CC        |      |      | TT/T  |    |
| (CML442/KS23-6):B-                                 | J007         | 00/00        |      |      | TT/T  |    |
| (CML537/KS23-6):B-                                 | J008         | GG/CC        | ;    | AAI  | 0070  | GG |
| (CML548/KS23-6):B-                                 | J009         | GG/CC        | ;    | GG/( | TT/C  | AA |
| CML548/KS23-6//CML572                              | J010         | GG/CC        | HCC  | GG/C | TT/T  | GG |
| (CKDHL01867KS23-6):B-                              | J011         | 00/00        | ;    | GG/( | 00/1  | GG |
| (CKDHL0106/KS523-5):B-                             | J012         | CC/G         | i    | GG/C |       |    |
| (CKDHL0323/KS23-6):B-                              | J013         | 00/00        |      | GG/( |       |    |
| (CML444/KS23-6):B-                                 | J014         | CC/CC        |      | GG/( |       |    |
| ······                                             | J015         | 00/00        |      | GG/( |       |    |
| (CML5477KS23-6):B-                                 | J016         | GG/CC        |      | AA/C |       |    |
| (CML566/KS23-6):B-                                 | J017         | CC/CC        |      | GGł  |       |    |
| (CML569*2/KS523-5):B-                              | J018         | CC/GC        |      | GG/C |       |    |
| 10MI 5704/ 575-61.0-                               | 1046         | 00161        | =    | cen  | 1110  | GG |

#### **CIMMYT**

TI GGA

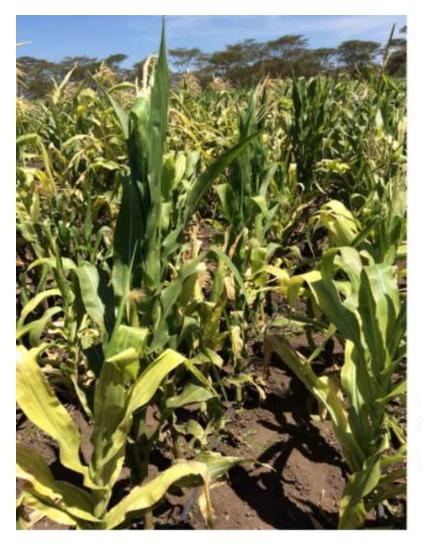
1 AAH 1 AAH 1 AAH 1 AAH

> AAA GGA

> 664



Entries 52&53 CML539 and KS23-6








Entries 297&298 CML442 and KS23-6





Entry 30 (Left) and entry 35 (Right)

Class – R/S





#### **CKDHL 1086**

Entry 140 (Left) and entry 141 (Right)

Class

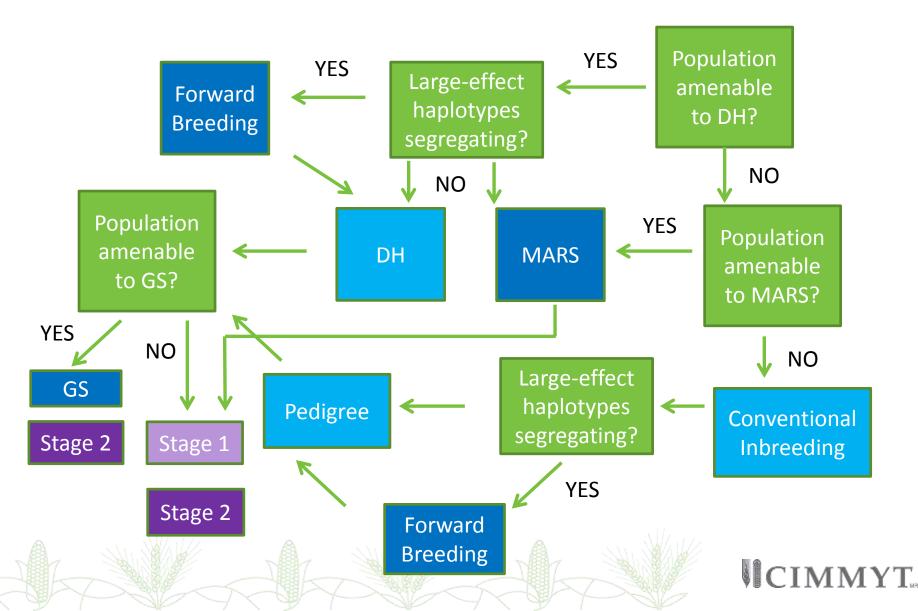
140 - R/R

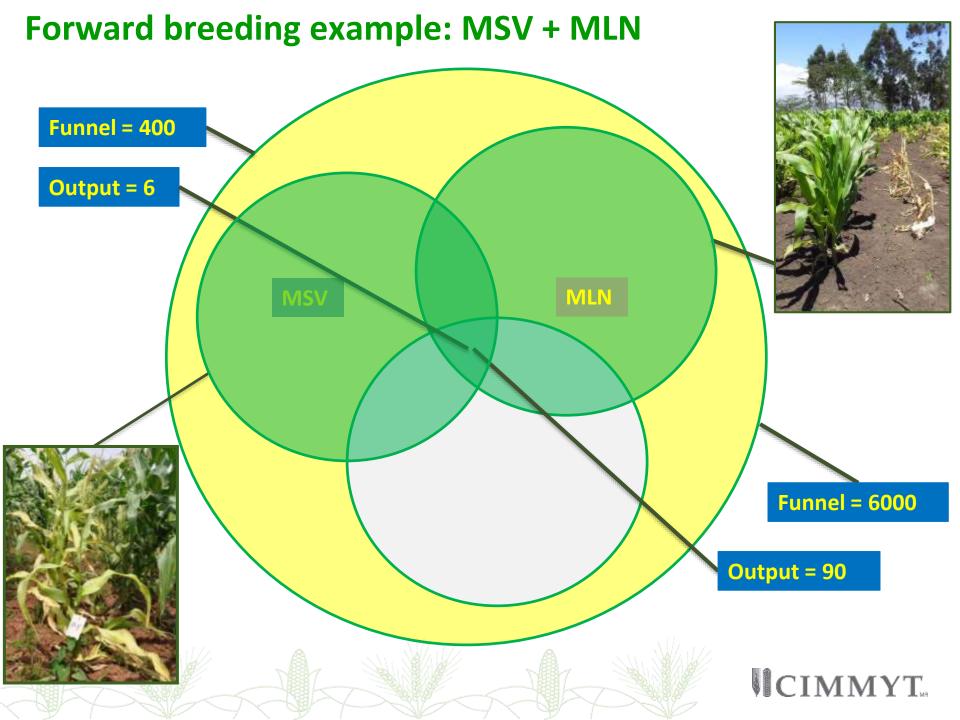
141 - R/S





| ENTRY            | 126 | 126   | 127 | 130  | 130  | qMLN | 131 | 132 |     | 133 | 133 | AVE<br>MLN | MLN SCORES |   |   |   |     |   |   |   |     |     |       |   |   |     |     |   |   |           |       |   |   |
|------------------|-----|-------|-----|------|------|------|-----|-----|-----|-----|-----|------------|------------|---|---|---|-----|---|---|---|-----|-----|-------|---|---|-----|-----|---|---|-----------|-------|---|---|
| week c           |     | . / . |     | - /- | - 1- |      |     |     |     |     | 010 |            |            |   |   | ~ |     |   |   |   |     |     |       |   |   |     |     |   |   | $\mp$     | $\mp$ |   | _ |
| KS23-6           | c/c |       |     |      | G/G  | R/R  |     | A/A | G:G | c/c | c/c | <br>4.0    | 4          |   | 4 | 3 | 3 4 | _ |   |   | _   |     | 4     | 4 | - | -   | 4 4 | 4 | 4 |           |       |   |   |
| CML548/KS23-6    | c/c |       |     |      | G/G  | R/R  |     | A/A | G:G | c/c | c/c | <br>3.0    | 3          | _ | 3 | 3 | 4 4 | - | 3 | 4 | 3   | _   | <br>4 | 4 |   | 3   | 3 3 | 4 |   |           | 3 4   |   |   |
| CML548/KS23-6    |     | A/A   |     |      | G/G  | R/R  |     | A/A | G:G | c/c | c/c | 4.0        | 4          | - | 4 | 4 | 4 3 | 3 | 3 | 4 |     |     | 4     | 3 | 3 | 5 4 | 4 4 | 4 | 3 |           | 4 3   |   |   |
| CML548/KS23-6    | C/C |       |     |      | G/G  | R/R  |     | A/A | G:G | c/c | c/c | 4.0        | 4          | - | 3 | _ | 5 3 | 4 | 4 | 4 |     |     | <br>3 | 4 | 3 | 3   | 3 3 | 3 |   | 5         |       |   |   |
| CML548/KS23-6    | c/c |       |     | A/A  | G/G  | R/R  |     | A/A | -   | c/c | c/c | 4.0        | 4          | 4 | 4 | 4 | 4 3 | 4 | 4 | 4 | 4 4 | ł   | 4     | 4 | 4 | 4 4 | 4 4 | 4 | 4 | 5         | 5     |   |   |
| CML548/KS23-6    | c/c | A/C   |     | A/A  | G/G  | R/R  |     | A/A | G:G | c/c | c/c | 4.0        | 6          | 5 | 5 | 4 | 4 4 | 4 | 3 | 4 | 3 3 | 3 4 | 4     | 4 | 4 | 4 4 | 4 5 | 4 | 4 | 4         | 4     |   |   |
| CML548/KS23-6    | c/c | A/A   |     | A/A  | G/G  | R/R  |     | A/G | G:A | C/T | C/T | 3.8        | 3          | 3 | 3 | 4 | 4 4 | 4 | 4 | 3 | 4   |     | 3     | 4 | 4 | 4   | 4 4 | 4 | 4 | 4         | 4 4   |   |   |
| CML548/KS23-6    | c/c | A/A   |     | A/A  | G/G  | R/R  |     | A/G | G:A | C/T | C/T | 4.0        | 4          | 3 | 4 | 3 | 3 4 | 3 | 5 | 3 |     |     | 4     | 5 | 4 | 4   | 4 4 | 4 | 4 | 6         |       |   |   |
| CML548/KS23-6    | c/c | A/A   |     | A/C  | G/T  | R/S  |     | A/G | G:A | C/T | C/T | 6.0        | 4          | 3 | 5 | 3 | 5 8 | 6 | 4 | 7 |     |     | 6     | 6 | 7 | 4   | 3 4 | 9 | 9 | 9         | 8     |   |   |
| CML548/KS23-6    | c/c | c/c   |     | A/C  | G/T  | R/S  |     | A/G | G:A | C/T | C/T | 5.0        | 6          | 4 | 6 | 7 | 4 6 | 4 | 6 | 7 | 7 ( | 5   | 4     | 5 | 3 | 4 4 | 4 4 | 6 | 7 | 3         |       |   |   |
| CML548/KS23-6    | c/c | c/c   |     | c/c  | т/т  | s/s  |     | G/G | G:A | C/T | C/T | 7.0        | 6          | 6 | 6 | 5 | 8 4 | 9 | 9 | 6 |     |     | 7     | 7 | 8 | 9   | 78  | 5 | 4 | 9         |       |   |   |
| CML548/KS23-6    | c/c | c/c   |     | c/c  | т/т  | s/s  |     | G/G | A:A | т/т | т/т | 7.9        | 6          | 9 | 5 | 9 | 8 9 | 9 | 8 | 6 | 5 9 | )   | 9     | 7 | 9 | 8 8 | 8   |   |   |           |       |   |   |
| CML548           | C/G | c/c   |     | c/c  | т/т  | s/s  |     | G/G | A:A | т/т | т/т | 7.0        | 9          | 5 | 5 | 5 | 5 6 |   |   |   |     |     | 9     | 9 | 9 | 7   | 9 9 | 5 |   | $\square$ |       |   |   |
|                  |     |       |     |      |      |      |     |     |     |     |     |            |            |   |   |   |     |   |   |   |     |     |       |   |   |     |     |   |   | _         |       |   |   |
| KS23-6           | c/c | A/A   | G/G |      |      | R/R  | A/A | A/A |     | т/т | т/т | 4.0        | 4          | 4 | 5 | 4 | 4 4 |   |   |   |     |     | 4     |   |   |     |     |   |   |           |       |   | _ |
| CKDHL0221/KS23-6 | c/c | A/A   | G/G |      |      | R/R  | A/A | A/A |     | т/т | т/т | 3.0        | 3          | 3 | 3 | 3 | 3 4 | 3 | 3 | 4 | 3   |     | 3     | 4 | 3 | 4   | 4 3 | 3 | 4 | 5         | 4 4   | 4 | 4 |
| CKDHL0221/KS23-6 | c/c | A/A   | G/G |      |      | R/S  | A/G | A/G |     | т/т | т/т | 6.0        | 4          | 4 | 8 | 8 | 4 8 | 8 | 8 | 6 | 7   |     | 4     | 8 | 4 | 4   | 7 4 | 4 | 8 | 7         | 4 4   | 4 |   |
| CKDHL0221/KS23-6 | c/c | A/A   | A/G |      |      | R/S  | A/G | A/G |     | т/т | т/т | 7.0        | 9          | 9 | 8 | 9 | 9 7 | 4 | 9 | 9 | 9   |     | 8     | 4 | 8 | 4   | 7 5 | 9 | 8 | 4         | 9     |   |   |
| CKDHL0221/KS23-6 | C/G | A/C   | A/G |      |      | R/S  | A/G | G/G |     | т/т | т/т | 7.0        | 9          | 7 |   |   |     |   |   |   |     |     | 7     | 6 | 9 | 4 4 | 49  |   |   |           |       |   |   |
| CKDHL0221/KS23-6 | C/G | A/C   | A/G |      |      | R/S  | A/G | G/G |     | т/т | т/т | 7.0        | 5          | 3 | 9 | 8 | 9 4 | 9 |   |   |     |     | 8     | 7 | 8 | 9   | 39  | 5 |   |           |       |   |   |
| CKDHL0221/KS23-6 | C/G | A/C   | A/G |      |      | R/S  | A/G | A/G |     | т/т | т/т | 7.0        | 8          | 5 | 6 | 7 | 5 9 | 9 | 5 |   |     |     | 6     | 7 | 8 | 7   | 89  | 9 | 4 | 9         | 9 9   | 9 |   |
| CKDHL0221/KS23-6 | G/G | A/C   | A/G |      |      | s/s  | G/G | A/G |     | т/т | T/T | 9.0        | 9          | 9 | 9 | 9 | 9 9 | 9 |   |   |     |     | 9     | 5 | 9 | 9 9 | 9 9 | 9 |   |           |       |   |   |
| CKDHL0221/KS23-6 | G/G | c/c   | A/A |      |      | s/s  | G/G | G/G |     | т/т | T/T | 9.0        | 8          | 8 | 7 | 9 |     |   |   |   |     |     | 9     | 9 | 9 | 9 9 | 9 9 | 9 | 9 |           |       |   |   |
| CKDHL0221        | G/G | c/c   | A/A |      |      | s/s  | G/G | G/G |     | т/т | т/т | 8.0        | 9          | 6 | 9 | 9 |     |   |   |   |     |     | 5     | 4 | 9 | 9   | 9 9 |   |   |           |       |   |   |








# **Designing decision trees**



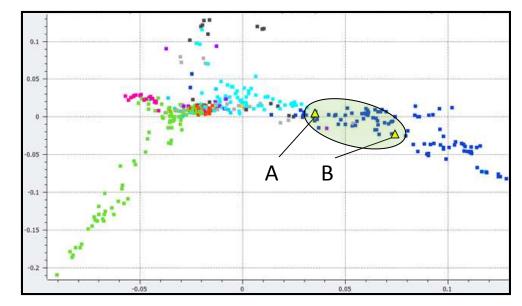


#### Example: KS23-5/CML442

#### KS23-5 (msv/msv MLN/MLN) / CML442 (MSV/MSV mln/mln)

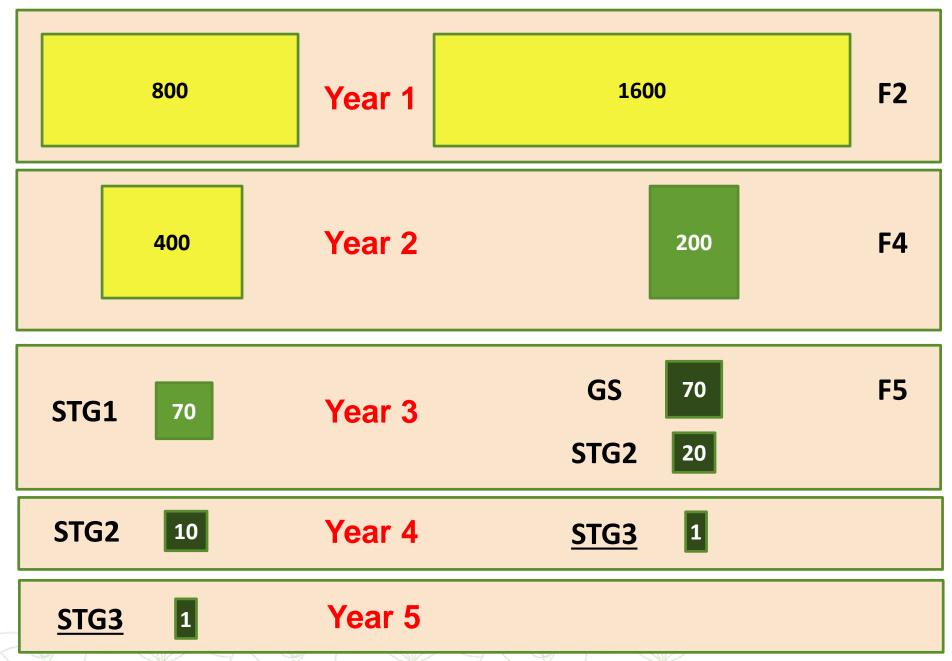


### 100 MSV/MSV+MLN/MLN F4 ears


| Gov | otvno  | Ph  | enotype  | Fo  | rward  | Conv.       | Relative |
|-----|--------|-----|----------|-----|--------|-------------|----------|
| Gei | notype | (MS | V + MLN) | Bre | eeding | 20117.      | cost     |
| \$  | 2.50   | \$  | 8.00     | \$  | 2,800  | \$<br>3,200 | 88%      |
| \$  | 2.50   | \$  | 10.00    | \$  | 3,000  | \$<br>4,000 | 75%      |
| \$  | 2.50   | \$  | 12.00    | \$  | 3,200  | \$<br>4,800 | 67%      |
| \$  | 2.00   | \$  | 8.00     | \$  | 2,400  | \$<br>3,200 | 75%      |
| \$  | 2.00   | \$  | 10.00    | \$  | 2,600  | \$<br>4,000 | 65%      |
| \$  | 2.00   | \$  | 12.00    | \$  | 2,800  | \$<br>4,800 | 58%      |
| \$  | 1.50   | \$  | 8.00     | \$  | 2,000  | \$<br>3,200 | 63%      |
| \$  | 1.50   | \$  | 10.00    | \$  | 2,200  | \$<br>4,000 | 55%      |
| \$  | 1.50   | \$  | 12.00    | \$  | 2,400  | \$<br>4,800 | 50%      |
| \$  | 1.00   | \$  | 8.00     | \$  | 1,600  | \$<br>3,200 | 50%      |
| \$  | 1.00   | \$  | 10.00    | \$  | 1,800  | \$<br>4,000 | 45%      |
| \$  | 1.00   | \$  | 12.00    | \$  | 2,000  | \$<br>4,800 | 42%      |

## 100 MSV/MSV+MLN/MLN DH lines (\$15/DH)

| Gei | Genotype |     | enotype  | Forward  | Conv.     | Relative   |
|-----|----------|-----|----------|----------|-----------|------------|
|     | Ποτγρε   | (MS | V + MLN) | Breeding |           | cost       |
| \$  | 2.50     | \$  | 8.00     | \$ 4,300 | \$ 9,200  | 47%        |
| \$  | 2.50     | \$  | 10.00    | \$ 4,500 | \$ 10,000 | 45%        |
| \$  | 2.50     | \$  | 12.00    | \$ 4,700 | \$ 10,800 | 44%        |
| \$  | 2.00     | \$  | 8.00     | \$ 3,900 | \$ 9,200  | <b>42%</b> |
| \$  | 2.00     | \$  | 10.00    | \$ 4,100 | \$ 10,000 | 41%        |
| \$  | 2.00     | \$  | 12.00    | \$ 4,300 | \$ 10,800 | 40%        |
| \$  | 1.50     | \$  | 8.00     | \$ 3,500 | \$ 9,200  | 38%        |
| \$  | 1.50     | \$  | 10.00    | \$ 3,700 | \$ 10,000 | 37%        |
| \$  | 1.50     | \$  | 12.00    | \$ 3,900 | \$ 10,800 | 36%        |
| \$  | 1.00     | \$  | 8.00     | \$ 3,100 | \$ 9,200  | 34%        |
| \$  | 1.00     | \$  | 10.00    | \$ 3,300 | \$ 10,000 | 33%        |
| \$  | 1.00     | \$  | 12.00    | \$ 3,500 | \$ 10,800 | 32%        |


# **Training set development**

- Windheusen et al. 2013:
  - ...emphasizing the need (for) larger training sets with <u>strong genetic</u> <u>relationship</u> to the validation set.
- Endelman et al. 2013:
  - ...the training population must be expanded beyond the full-sib family under selection, <u>using close</u> <u>relatives of the parents</u> as a source of prediction accuracy.



- Jacobsen et al. 2014:
  - GCA model half-sib populations involving A and B
  - Gain from prediction = 68-76% of phenotypic selection at much lower cost

## **Breeding process comparison**



# **Next Steps / Challenges**

- Migrate to a centralized breeding database
- Implement role specialization / centralization of core functions
- Demonstrate forward breeding value proposition
- Expand impact of GS in wheat
- Develop appropriate GS prediction sets in maize

**ICIMMYT** 

# Special thanks to staff and graduate students

