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Abstract
Tar spot complex (TSC) is one of the most destructive foliar dis-
eases of maize (Zea mays L.) in tropical and subtropical areas of 
Central and South America, causing significant grain yield losses 
when weather conditions are conducive. To dissect the genetic 
architecture of TSC resistance in maize, association mapping, in 
conjunction with linkage mapping, was conducted on an associ-
ation-mapping panel and three biparental doubled-haploid (DH) 
populations using genotyping-by-sequencing (GBS) single-nucle-
otide polymorphisms (SNPs). Association mapping revealed four 
quantitative trait loci (QTL) on chromosome 2, 3, 7, and 8. All the 
QTL, except for the one on chromosome 3, were further validated 
by linkage mapping in different genetic backgrounds. Additional 
QTL were identified by linkage mapping alone. A major QTL lo-
cated on bin 8.03 was consistently detected with the largest phe-
notypic explained variation: 13% in association-mapping analysis 
and 13.18 to 43.31% in linkage-mapping analysis. These results 
indicated that TSC resistance in maize was controlled by a major 
QTL located on bin 8.03 and several minor QTL with smaller ef-
fects on other chromosomes. Genomic prediction results showed 
moderate-to-high prediction accuracies in different populations 
using various training population sizes and marker densities. Pre-
diction accuracy of TSC resistance was >0.50 when half of the 
population was included into the training set and 500 to 1,000 
SNPs were used for prediction. Information obtained from this 
study can be used for developing functional molecular markers 
for marker-assisted selection (MAS) and for implementing genom-
ic selection (GS) to improve TSC resistance in tropical maize.

Tar spot complex is one of the most important foliar 
diseases of maize in many Central and South Ameri-

can tropical and subtropical areas with moderately cooler 
and humid climates. Severe TSC outbreaks occurring 
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Core Ideas

•	 Association and linkage mapping are effective for dis-
secting genetic architecture of complex traits in maize.

•	 TSC resistance in maize is controlled by a major QTL 
and several minor QTL.

•	 Major QTL on bin 8.03 confirmed by association and 
linkage mapping.

•	 TSC resistance in tropical maize could be improved by 
MAS and GS individually or stepwise.
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early in the growing season may cause up to 75% grain 
yield loss (Hock et al., 1989; Pereyda-Hernández et al., 
2009; ProMED-mail, 2009). Tar spot complex is caused 
by an interaction of at least three fungal species: Phyl-
lachora maydis Maubl.; Monographella maydis E. Müll. 
& Samuels; and Coniothyrium phyllachorae Maubl. 
(Hock et al., 1992). Although the interaction mechanism 
between the host and the three pathogens is still not 
clear, P. maydis and M. maydis in the complex seem to be 
most detrimental (Hock et al., 1995). Although it is likely 
that the disease was present in Central America for cen-
turies, where it has coevolved with maize, TSC was first 
reported in Mexico only in the beginning of last century 
and was later detected and described in other Latin 
American countries (Castaño, 1969; Liu, 1973; Maublanc, 
1904; Shurtleff, 1982). In 2015, P. maydis was reported for 
the first time in Indiana and Illinois, although the pres-
ence of TSC has not been confirmed (Ruhl et al., 2016).

The use of resistant varieties is one of the most cost-
effective and environmentally friendly approaches for 
controlling the disease (Ceballos and Deutsch, 1992; 
Mahuku et al., 2016). Dissecting the genetic architecture 
of TSC resistance with genome-wide molecular markers 
will allow breeders to improve their breeding efficiency 
by facilitating the introgression of the resistance genes 
into susceptible germplasm using MAS or GS strategies. 
However, only one study has been conducted to deter-
mine the genetic basis of TSC resistance in maize using a 
joint linkage association-mapping approach, and in this 
study, a major QTL (qRtsc8-1) associated with TSC resis-
tance was identified (Mahuku et al., 2016). To develop 
functional molecular markers closely linked to TSC 
resistance genes for use in MAS, the genetic architecture 
of TSC resistance in maize needs to be characterized 
more comprehensively and with higher resolution.

Linkage mapping and association mapping are the 
two most commonly used tools for dissecting the genetics 
of complex traits in plants. Traditional linkage mapping 
explores the recombination events and marker–trait asso-
ciations in biparental segregating populations, such as F2, 
DH, and recombinant inbred lines. The method is very 
powerful in capturing major genes with larger effects and 
rare alleles (Ding et al., 2008; Raman et al., 2013; Trachsel 
et al., 2016; Wu et al., 2007). However, the resulting map-
ping resolution is comparatively low and typically pro-
duces a large confidence interval of 10 to 20 cM as a result 
of the limited number of recombination events occur-
ring in the construction of biparental mapping popula-
tions (Li et al., 2010; Manichaikul et al., 2006; Zhu et al., 
2008). On the other hand, association mapping explores 
functional variations within genetically diverse panels 
through linkage disequilibrium (LD) analysis, which is 
very efficient and effective for identifying new genes or 
confirming candidate genes (Aoun et al., 2016; Yu and 
Edward, 2006). Compared with linkage mapping, associ-
ation mapping is able to identify historical recombination 
events in a given population, which improves mapping 
resolution. At the same time, association mapping may 

detect a high number of false positive associations and is 
less efficient at identifying rare alleles (Zhu et al., 2005). 
The combined use of linkage mapping and association 
mapping offers the opportunity to reduce false positives 
while increasing statistical power and improving map-
ping resolution (Bardol et al., 2013; Lu et al., 2010; Xu et 
al., 2012). This approach is being used in a wide range of 
plants to study the genetic basis of complex traits includ-
ing resistance to several diseases of maize (Li et al., 2016a; 
Mahuku et al., 2016; Kump et al., 2011).

As an alternative to MAS, GS is now being used 
increasingly in several crops to improve breeding effi-
ciency and increase genetic gains. Genomic selection 
uses genome-wide markers to predict the breeding values 
of individuals by capturing the effects of both major and 
minor genes (Meuwissen et al., 2001). Genomic selec-
tion has been shown to be effective in several crops over 
a wide range of marker densities, trait complexities, and 
breeding populations (Poland et al., 2012; Spindel et al., 
2015; Zhao et al., 2012) where varying levels of prediction 
accuracy have been achieved. The main factors affecting 
genomic prediction accuracy are considered to be the 
relationship between the training and selection popula-
tions, training population sizes, population structure 
of training and testing sets, marker densities, genetic 
architecture and heritability of target traits, genotype 
 environment interactions, and statistical methods 
(Crossa et al., 2014; Combs and Bernardo, 2013; Endel-
man, 2011; Ornella et al., 2014; Zhang et al., 2015; Zhao et 
al., 2012). Taking genetic architecture information of the 
target traits into account, it may be possible to improve 
genomic prediction accuracy while implementing GS 
(Bernardo, 2014; Spindel et al., 2015). Combined link-
age mapping and association mapping in conjunction 
with GS may be an effective tool to increase breeding 
efficiency by understanding the genetic architecture of 
complex traits like TSC in maize.

Increasing maker density has been reported to be 
an important factor for increasing statistical power and 
improving mapping resolution during association map-
ping and joint linkage-association mapping (Li et al., 
2013), where millions of markers are required to cover 
all possible recombination events in a broad-based maize 
association panel with low LD decay. For example, LD 
decay in maize landraces is <1 kb (Tenaillon et al., 2001). 
Genotyping-by-Sequencing has been shown to be an 
economical genotyping alternative for increasing marker 
density. Romay et al. (2013) first reported that GBS was 
able to increase the statistical power and improve mapping 
resolution of association mapping by detecting rare alleles 
at high confidence levels in a panel of 2815 maize inbred 
accessions preserved at the US national maize inbred seed 
bank genotyped with GBS. Li et al. (2015) investigated the 
impact of GBS in a joint linkage analysis using multiple 
maize segregating populations and found this approach 
dramatically improved resolution and statistical power. 
If GBS technology becomes more affordable, it may also 
be promising for GS applications within applied breeding 
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programs. Good prediction accuracies have been obtained 
in several crops, when GBS SNPs were used to predict var-
ious target traits in a wide range of breeding populations 
(Gowda et al., 2015; Poland et al., 2012).

In the current study, we combined linkage mapping 
in three biparental DH populations with association 
mapping in conjunction with GS using ~1 million GBS 
SNPs distributed across the genome. The main objectives 
of this study were to (i) elucidate the genetic architecture 
of TSC resistance in maize with genome-wide GBS SNPs, 
(ii) identify major QTL and candidate genes confer-
ring resistance to TSC using the association-mapping 
approach validated with linkage mapping, (iii) explore 
the potential of GS for improving TSC resistance in 
maize, and (iv) investigate the effects of training popu-
lation size and marker density on genomic prediction 
accuracy in broad-based maize association panel and 
biparental DH populations.

Materials and Methods

Plant Materials
An association-mapping panel, designated Drought Tol-
erant Maize for Africa (DTMA), was used to perform 
genome-wide association analysis and genomic predic-
tion in the present study. The DTMA panel consists of 
282 tropical and subtropical inbred lines derived by the 
CIMMYT. These lines originate from different breeding 
programs of CIMMYT and comprise several lines with 
tolerance or resistance to an array of abiotic and biotic 
stresses affecting maize in the tropics, improved N-use 
efficiency, and grain nutritional quality (Wen et al., 2011).

Three biparental DH populations were used to 
perform linkage-mapping analysis and genomic predic-
tion. The first population (Pop1) was derived from an F1 
cross between inbred lines CML495 and La Posta Sequia 
C7 F64-2-6-2-2-B-B-B. The second population (Pop2) 
was developed from an F1 cross between CML451 and 
DTPYC9-F46-1-2-1-2-B-B-B. The third population (Pop3) 
shared the parental line CML451 with Pop2 and was 
crossed to DTPYC9-F74-1-1-1-1-B-B-B-B, a sister line of 
the second parental line of Pop2. In these three popula-
tions, CML495 and CML451 are widely used CIMMYT 
maize lines showing good resistance to TSC. The other 
parental lines are drought-tolerant or drought- and heat-
stress tolerant lines (Cairns et al., 2013), which are sus-
ceptible to TSC. In total, 174, 100, and 111 DH lines were 
developed for Pop1, Pop2 and Pop3, respectively, using the 
protocols described by Prasanna et al. (2012).

Experimental Design and Phenotypic Evaluation
The DTMA panel was evaluated for responses to TSC 
under consistently high natural disease pressure at five 
locations in CIMMYT experimental stations in Mexico, 
namely, in Agua Fria (2028  9738 W; mega-envi-
ronment is lowland tropical) in 2009, 2011, and 2012; 
in Guerrero (1702  9938 W; mega-environment 
is lowland tropical) in 2012; and in Veracruz (1915  

9612 W; mega-environment is lowland tropical) in 
2012. Pop1 was evaluated for response to TSC at three 
locations, that is, in Agua Fria in 2011 and 2014 and in 
Guerrero in 2013. Pop2 was evaluated for response to 
TSC four times, that is, in Agua Fria in 2012 and 2014; 
each year had two planting dates. Pop3 was evaluated for 
response to TSC for three times, that is, in Agua Fria in 
2012 with two planting dates and in Agua Fria in 2014.

A randomized complete block design was used for 
all experiments with three replications per location. 
Each plot consisted of a single 2-m row with 10 plants 
per row. Disease evaluation was performed as described 
by Mahuku et al. (2016). Briefly, disease scores were first 
taken at 2 wk after flowering and repeated two times 
at 7-d intervals. Disease severity was recorded using 
a 1-to-5 scale with a 0.5 increment, where 1 indicates 
highly resistant (HR), no visible disease symptoms 
or lesions identifiable on any of the leaves; 2 indicates 
resistant (R), moderate lesion development below the 
leaf subtending the ear or disease symptoms covering 
~30% of the leaf area; 3 indicates moderately susceptible 
(MS), heavy lesion development on and below the leaf 
subtending the ear and a few lesions above it or 50% of 
the leaf surface have disease symptoms; 4 indicates sus-
ceptible (S), many or severe lesions on all but the upper-
most leaves, which may have a few lesions, lesions have 
coalesced and blighted, or 70% of leaf surface has disease 
symptoms; and 5 indicates highly susceptible (HS), all 
leaves are dead, no green leaf tissue remaining or disease 
symptoms on >80% of the leaf surface. Figures showing 
the symptoms and development of TSC on maize leaves 
and cobs was also provided in the reference of Mahuku 
et al. (2016). For each plot, the average score across the 
three evaluations was used for further analyses.

Phenotypic Data Analysis
MEATA-R software (http://hdl.handle.net/11529/10201) 
was used to analyze multilocation trials using a mixed 
linear model where all factors, including genotype refer 
to samples, environment refers to a combination of years 
and locations, replications in environments, interaction 
between genotype and environment, and interaction 
between replication and environment, were consid-
ered as random effects. Best linear unbiased prediction 
(BLUP) value of genotypes, variance components, and 
broad-sense heritability were obtained. A previous study 
(Mahuku et al., 2016) indicated that response to TSC 
was negatively correlated with maturity. Thus, anthesis 
date (data not shown) was used as a covariate to cor-
rect maturity effect and calculate the final TSC disease 
response BLUP. Broad-sense heritability of the target 
trait was calculated as the ratio of total genetic to total 
phenotypic variance. In multilocation trial analysis, 
broad-sense heritability was calculated as 

( )2 2 2 2 2/ / /g g ge eh e er= s s +s +s , where 2
gs , 2

ges , and 2
es  

are the genotypic, genotype  environment interaction, 
and error variance components, respectively, and e and r 
are the number of environments and of replicates within 
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each environment included in the corresponding analy-
sis, respectively. Descriptive statistics were conducted in 
Excel 2010 (Microsoft). Phenotypic data distribution of 
the four tested populations and the subgroups of associ-
ation-mapping panel was showed in a violin plot, which 
was generated using violin plot package in R software (R 
Development Core Team, 2013).

Genotyping, Single-Nucleotide Polymorphism 
Calling, Imputation, and Filter
Total genomic DNA was extracted from bulked young 
leaves for all inbred lines using a CTAB procedure 
(CIMMYT Applied Molecular Genetics Laboratory, 
2003). Genotyping was performed at Cornell University 
Biotechnology Resource Center (Ithaca, NY). Genomic 
DNA was digested with the restriction enzyme ApeK1. 
Genotyping-by-sequencing libraries were constructed in 
96-plex and sequenced on Illumina HiSeq2000 (Elshire 
et al., 2011). Single-nucleotide polymorphism calling was 
performed using the TASSEL GBS Pipeline, where the 
GBS 2.7 TOPM (tags on physical map) file downloaded 
from Panzea (www.panzea.org) was used to anchor 
reads to the Maize B73 RefGen_v2 reference genome 
(Glaubitz et al., 2014). Imputation was performed with 
FILLIN method in TASSEL 5.0 (Swarts et al., 2014), 
and the donor haplotype files required by FILLIN were 
downloaded from Panzea (www.panzea.org) and con-
sisted of the anonymized GBS 2.7 haplotypes made from 
8000-site windows. The parameters for running FILLIN 
to do imputation were set as the default values, which 
have been descripted in detail by Swarts et al. (2014). 
An imputed GBS dataset was used to conduct genome-
wide association analysis and genomic prediction in the 
DTMA association-mapping panel, while unimputed 
datasets were used for further analyses in the biparental 
populations. For each inbred line, 955,690 SNPs that 
are evenly distributed on the maize chromosomes were 
called; 955,120 of these were assigned to a maize chromo-
some, and 570 of them could not be anchored to any of 
the 10 maize chromosomes. TASSEL V5.0 (Bradbury et 
al., 2007) was used to filter raw GBS datasets for SNPs 
with minor allele frequency (MAF) >0.05 and missing 
data rates <20% in the DTMA panel and in each biparen-
tal population, respectively. Samples with heterozygosity 
>0.05 were excluded from the SNP characteristic analy-
ses. Basic genotypic information, including number of 
SNPs, MAF, missing rate, and heterozygosity rate, was 
calculated at the population level.

Association Mapping
After filter, 261,055 high-quality SNPs were obtained in 
the DTMA panel for genome-wide association analysis. 
Linkage disequilibrium analysis was conducted in TAS-
SEL V5.0 (Bradbury et al., 2007) and the average LD decay 
distance estimated was 3.5 kb (r2 = 0.1) across the 10 maize 
chromosomes. Population structure was estimated using 
an admixture model-based clustering method imple-
mented through the software Structure V2.3.3 (Hubisz 

et al., 2009), where a subset of 10,000 SNPs with no miss-
ing values were randomly selected across the 10 maize 
chromosomes. Hypotheses were tested for subpopula-
tion number K ranging from 1 to 10, and each K was run 
seven times with burn-in time and replications both to 
100,000. A mixed linear model (principle component 
analysis [PCA] + K) was applied for association-mapping 
analysis in GAPIT (Genome Association and Prediction 
Integrated Tool-R package), where a kinship matrix along 
with the three principle components were incorporated 
to avoid spurious associations. Using GAPIT, the kin-
ship matrix was generated automatically with the default 
Vanraden algorithm (VanRaden, 2008), and PCA was also 
calculated. The P-value of each SNP was calculated and a 
false discovery rate (FDR) corrected threshold was used 
to declare significance with a uniform value of P = 2.97 
x 10−5, that is, −log(P) = 4.53. Manhattan and quantile–
quantile plots were created in R package qqman using the 
association-mapping results (Turner 2014).

Candidate Gene Analysis
Based on the association-mapping results, the sequence 
information of each significantly associated SNP was used 
to perform BLAST against the B73 RefGen_v2 genome 
sequence through the MaizeGDB database (http://www.
maizegdb.org/), and genes containing the significantly 
associated SNPs were considered as possible candidate 
genes for TSC resistance. Candidate gene annotation 
was performed on PlantGDB (http://www.plantgdb.org/
ZmGDB/) and Gramene (http://www.gramene.org/).

Linkage Map Construction and Quantitative  
Trait Loci Mapping
For each of the three DH populations, a bin map was 
constructed with high-quality unimputed SNPs using 
customized R scripts (unpublished data, 2017). To reduce 
genotyping error and eliminate the low-quality SNPs 
from the bin map, the following steps were performed: (i) 
unimputed SNP datasets were filtered with the parameters 
of MAF > 0.05 and missing rate <20%; (ii) DH lines with 
heterozygosity rate >5% or missing rate >20% were elimi-
nated from the further analysis; (iii) unlinked SNPs were 
removed from further analysis, where the window size was 
eight, similarity rates of all the SNPs within each window 
were calculated to remove the unlinked SNPs, threshold 
of similarity rate was 95%; (iv) the consecutive SNPs with 
high similarity rate (95%) were merged into one bin; and 
(v) bins were treated as genetic markers to construct a 
genetic map. In Pop1, Pop2, and Pop3, 437, 494, and 493 
bins were constructed with 20,473; 27,818; and 32,607 
SNPs, respectively. The genetic maps of Pop1, Pop2, and 
Pop3 were 987.35, 1150.16, and 1153.99 cM, respectively, 
resulting in an average marker (bin) density of 2.26, 2.35, 
and 2.97 cM, respectively. In software QTL IciMapping 
Version 4.1 (www.isbreeding.net), the MAP function was 
implemented to construct a linkage map using nnTwoOpt 
algorithm and the criterion of logarithm of odds (LOD) 
threshold >3.0. For each individual DH population, QTL 
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mapping was implemented in QTL IciMapping Ver-
sion 4.1 using the BIP function. The scanning step was 1 
cM, the largest P-value for entering variables in stepwise 
regression of phenotype on marker variables (PIN) was 
0.001, and the largest P-value for removing variables was 
2 PIN. One-dimensional QTL scanning was conducted, 
that is, only additive effects for each QTL was estimated. 
The LOD threshold used for declaring putative QTL was 
determined as 3.0, and the phenotypic variation explained 
(PVE) by each QTL was estimated.

Genome Prediction
Genomic prediction was implemented in rrBLUP pack-
age (Endelman, 2011) in the association-mapping panel 
and in each of the three DH populations. A subset of 
10,000 SNPs distributed uniformly across the genome, 
with no missing values and MAF > 0.05, was used for 
genomic prediction in the DTMA panel. In each of the 
three DH populations, SNPs in the genetic map were used 
for genomic prediction. Details of the implementation of 
rrBLUP were described by Zhao et al. (2012). A five-fold 
cross-validation scheme with 100 replications was used 
to generate the training and validation sets and assess the 
prediction accuracy within each population. The average 

value of the correlations between the phenotype and 
the genomic estimated breeding values was defined as 
genomic prediction accuracy (rMG). To test the effects of 
training population size and marker density on genomic 
prediction accuracy, training populations ranging from 
10 to 90% of the total population size and number of 
SNPs varying from 200 to 10,000 were used in the DTMA 
panel to assess the prediction accuracy. In the three DH 
populations, the training population size ranged from 
10 to 90% of the total population size, with an interval of 
10%, and the number of SNPs varied from 200 to 20,000. 
For all the genomic prediction analyses, the training data-
set and validation dataset were independent.

Results

Phenotypic Variation
Phenotypic variation for TSC resistance in the DTMA 
panel and the three DH populations are described in 
Table 1 and Fig. 1a. Disease scores varied across popula-
tions and the mean values in the four populations were 
similar, ranging from 2.04 in DTMA panel to 2.50 in 
Pop3. Sufficient differences were observed between the 
minimum and maximum scores in all the populations; 

Fig. 1. Violin plots of the tar spot complex (TSC) scores in the (a) Drought Tolerant Maize for Africa (DTMA) association-mapping panel, 
Pop1, Pop2, and Pop3 and in (b) subgroups of the DTMA association-mapping panel. The black bars inside the plot represent the first and 
third quartiles, and white dots represent the median. The width of the plot represents probability density of the data at different values.

Table 1. Descriptive statistics of phenotypic response to tar spot complex infection in the Drought Tolerant Maize 
for Africa panel and three biparental doubled-haploid populations.

Population Mean Min. Max. Median SD Skewness Kurtosis Heritability

DTMA 2.04 1.31 3.23 2.00 0.45 0.55 0.06 0.80
Pop1 2.33 1.81 3.00 2.30 0.23 0.49 −0.07 0.54
Pop2 2.14 1.18 3.95 2.04 0.54 0.98 1.02 0.88
Pop3 2.50 1.37 4.39 2.29 0.68 0.68 −0.36 0.93
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the difference between the minimum and maximum 
scores ranged from 1.19 in Pop1 to 3.02 in Pop3. In the 
DTMA association-mapping panel, individual location 
analysis showed that the minimum disease score was 
1.25, 1.12, 1.24, 1.32, and 1.28, respectively, in Agua Fria 
in 2009, 2011, and 2012; in Guerrero in 2012; and in Vera-
cruz in 2012. The maximum disease scores were 3.94, 
3.03, 4.32, 2.59, and 3.81, respectively. There was adequate 
natural expression of the diseases to differentiate resistant 
and susceptible lines in all the phenotyping locations 
except for Guerrero in 2012, where the lowest degree of 
phenotypic variation was observed. For the three DH 
populations, the parental lines were used as controls to 
check for adequate levels of disease infection, and the 
combined analysis across all locations showed that the 
disease scores of the resistant parental lines were 2.11, 
1.48, and 1.42 in Pop1, Pop2, and Pop3, respectively, and 
the disease scores of the susceptible parental line were 
2.95, 3.92, and 3.20, respectively. In the individual loca-
tion analysis, the disease scores of the susceptible parental 
line reached 4.89, 4.93, and 4.44 in Pop1, Pop2, and Pop3, 
respectively. This indicated that adequate infection was 
obtained under natural inoculation conditions. Broad-
sense heritability estimated from the combined analysis 
was 0.80, 0.54, 0.88, and 0.93 in the DTMA panel, Pop1, 
Pop2, and Pop3, respectively. High heritability observed 
in all the populations indicating that the phenotypic data 
was reliable for further genetic analyses.

Single-Nucleotide Polymorphism  
Characteristics in Different Genotyping- 
by-Sequencing Datasets
To compare the differences between imputed and unim-
puted GBS datasets, basic genotypic information of each 
population, including number of SNPs, minor allele fre-
quency, missing rate, and heterozygosity rate, is presented in 
Table 2 and Fig. 2. The total number of SNPs in the imputed 
dataset in the DTMA panel decreased from 955,120 to 
261,055 after filter, while that in the unimputed dataset 
decreased from 955,120 to 44,146; 47,203; and 45,775 in 
Pop1, Pop2, and Pop3, respectively. After filtering, different 
number of SNPs detected between DTMA panel and DH 
populations reflected the greater genetic diversity in the 
DTMA panel, and the higher missing rate in the unimputed 
dataset in the DH populations. The missing rate before fil-
tering in the imputed dataset of the DTMA panel was much 
lower than that in the unimputed dataset in DH popula-
tions, and the missing rate was 15.12% in the DTMA panel, 
while it ranged from 42.32 to 43.57% in DH populations. 
However, the missing rate after filtering in all populations 
was similar, ranging from 6.36% in DTMA panel to 7.90% 
in Pop2. In both the imputed and unimputed datasets, the 
heterozygosity rate increased after filtering.

Before filtering, 58.75% of the SNPs had an MAF < 
0.05, and the average MAF in the imputed dataset of the 
DTMA panel was 0.09. In the unimputed dataset of Pop1, 
85.06% of the SNPs had an MAF lower than 0.05, and the 
average MAF was 0.04. After filtering, the average MAF 

was 0.23, with continuous distribution classes from 0.05 to 
0.50 at intervals of 0.05 in the imputed dataset of DTMA 
panel. In the unimputed dataset of Pop1, the average MAF 
was 0.42 and 79.74% of the SNPs concentrated to the MAF 
ranging from 0.40 to 0.50, similar to the theoretical allele 
frequency of 0.50 expected in each DH population. The 
distribution of MAFs in Pop2 and Pop3 had a similar ten-
dency to that recorded in Pop1 (data not shown).

Population Structure Analysis of the  
Association Mapping Panel
The DTMA panel was divided into three subgroups 
according to the ad hoc statistic delta K (K) value 
changes. The numbers of lines were 40, 111, and 131 in 
Subgroup 1, 2, and 3, respectively. Most of the lines in Sub-
group 1 were from the Mexico physiology research group, 
while lines in Subgroup 2 were mainly from the subtropical 
breeding program, and lines in Subgroup 3 were mainly 
from the lowland tropical breeding program. Violin plots 
of the three subpopulations were provided to show the dif-
ferent responses of the three subgroups to the disease. The 
mean disease score of the three subpopulations was 2.31, 
2.12, and 1.91 in Subgroup 1, 2, and 3, respectively (Fig. 1b).

Genetic Architecture Revealed by  
Association Mapping
Association mapping results of the DTMA panel are 
shown in Fig. 3 and Table 3. In total, 155 SNP mark-
ers with significant marker–trait associations were 
detected, with the multiple testing correction threshold 
of −log10(P) > 4.53 (FDR level of 0.05). These significantly 
associated SNPs were distributed in four genomic regions 
in bins 2.05, 3.04 to 3.09, 7.02, and 8.03. Each of these 
SNPs explained 4.76 to 13% of the total phenotypic vari-
ance individually and together explained 52.60% of the 
total phenotypic variation. The number of significantly 
associated SNPs detected on chromosomes 2, 3, and 7 was 
1, 3, and 1, respectively. The rest of the 150 significantly 
associated SNPs were located on chromosome 8 (bin 8.03) 
in a ~33.6 million bp region based on the B73 reference 
genome (Fig. 3c, 3d) flanked by left and right significant 
SNPs of S8_57248413 and S8_90835374, respectively. 
Significantly associated SNPs on chromosome 2, 3, and 

Table 2. Single-nucleotide polymorphism (SNP) char-
acteristic information of the Drought Tolerant Maize 
for Africa panel and three biparental doubled-haploid 
populations before and after filter of genotyping-by-
sequencing datasets.

Population

No. of SNPs Missing rate Heterozygosity rate

Before  
filter

After  
filter

Before  
filter

After  
filter

Before  
filter

After  
filter

 ————————— % ————————— 
DTMA 955120 261055 15.12 6.36 1.53 1.86
Pop1 955120 44146 42.62 7.68 0.51 2.32
Pop2 955120 47203 42.32 7.90 0.47 2.55
Pop3 955120 45775 43.57 7.60 0.33 2.13
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Fig. 2. Frequency distribution of minor alleles in the Drought Tolerant Maize for Africa (DTMA) panel and Pop1 for (a) DTMA panel 
before filter, (b) DTMA panel after filter, (c) Pop1 before filter, and (d) Pop1 after filter.

Fig. 3. Association mapping for tar spot complex (TSC) resistance in the Drought Tolerant Maize for Africa (DTMA) panel: (a) Manhat-
tan plot, the y-axis represents the P-value of the marker–trait association on a −log10 scale. The horizontal line indicates the genome-
wide significance threshold false discovery rate (FDR = 0.05); (b) quantile–quantile plot, the x-axis represents the expected −log10 (p), 
y-axis represents the observed −log10 (p); (c) association-mapping results of chromosome 8; (d) association-mapping results of the sig-
nificant associated region on chromosome 8.
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7, and the top five SNPs on chromosome 8 are listed in 
Table 3. The most significant SNP S8_83777799 (P-value 
1.29  10−11) was detected on chromosome 8 at position 
83,777,799 in the B73 reference genome; this SNP alone 
explained 13% of the total phenotypic variation. Thus, 
association-mapping results revealed that TSC resistance 
is controlled by a major QTL on chromosome 8 with sev-
eral minor QTL located on other chromosomes.

In total, 46 putative candidate genes were identified 
among the 155 significantly associated SNPs, 28 of which 
were hypothetical genes with known predicted functions 
referring to 71 SNPs in total, and the rest of them were 
putative uncharacterized proteins. For the 28 putative 
candidate genes with known predicted functions, the 
number of SNPs detected for each candidate gene ranged 
from one to 12, and 2.54 SNPs per gene were identified on 
average (Supplemental Table S1). Some candidate genes 
contain more than one significant SNP, and multiple SNPs 
identified in candidate genes is valuable for developing 
haplotypes for implementing MAS. Functional annotation 
of the 28 hypothetical genes showed that several of them 
are associated with disease resistance or defense responses 
in plants. For instance, GRMZM2G062974 was annotated 
as an endochitinase that plays a significant role in resis-
tance to plant diseases. Twelve SNPs linked with endochi-
tinase were significantly associated with TSC resistance 
in association-mapping analysis (Fig. 3d) including the 
most significant associated SNP S8_88812938 (chromo-
some_position). Several hypothetical genes with protein 
kinase function, such as leucine-rich repeat receptor-like 
protein kinase (GRMZM2G073884, GRMZM2G339540), 
protein NSP-INTERACTING KINASE 3-like 
(GRMZM5G835516), MAP kinase family protein 
(GRMZM2G063144), and protein kinase superfamily pro-
tein (GRMZM2G117465) were also detected.

Quantitative Trait Loci Detected  
by Linkage Mapping
Quantitative trait loci detected by linkage mapping in all 
three DH populations are summarized in Table 4. In Pop1, 
three QTL were detected in bins 4.08 to 4.09, 7.03, 8.03, 
explaining 8.63, 9.19, and 13.18% of the total phenotypic 
variation, respectively. In Pop2, four QTL were detected 
in bins 1.05, 2.04, 5.04 to 5.05, and 8.03 accounting for 
17.82, 6.19, 5.12, and 43.31% of the total phenotypic varia-
tion, respectively. In Pop3, four QTL were detected in bins 
1.06, 7.03, 8.03, and 10.07 explaining 32.29, 5.96, 16.78, and 
6.01% of the phenotypic variation, respectively.

A major QTL located in bin 8.03 was detected in 
all the three DH populations and had the largest LOD 
score and PVE relative to the other detected QTL, with 
the only exception in Pop3. This was consistent with the 
association-mapping results, where a major QTL located 
on bin 8.03 was identified as well. In addition to the 
major QTL on bin 8.03, other QTL detected by associa-
tion mapping were also confirmed by linkage mapping 
in different genetic backgrounds, with the only exception 
of the QTL on chromosome 3 (bins 3.04, 3.06, and 3.09). 
The QTL located in bin 2.05 was validated by linkage 
mapping in Pop2 in a neighboring bin 2.04, and the QTL 
located in bin 7.02 was validated by linkage mapping 
both in Pop1 and Pop3 in the neighboring bin 7.03. Addi-
tional unique QTL were detected by linkage mapping, 
which were not identified via association mapping, that 
is, QTL in bins 1.05 to 1.06, 4.08 to 4.09, 5.04 to 5.05, and 
10.07. Thus, integration of linkage mapping and associa-
tion mapping proved to be a powerful tool for increasing 
statistical power, and improving the mapping resolution.

Genomic Prediction Accuracy
Genomic prediction accuracies (rMG) obtained from five-
fold cross-validations, and 100 replications for all the 
four populations are shown in Fig. 4, where the predic-
tion accuracies were moderate to high and varied across 

Table 3. Significantly associated single-nucleotide polymorphisms (SNPs) revealed by association-mapping analy-
sis in the Drought Tolerant Maize for Africa panel on chromosomes 2, 3, and 7, with the top five significantly as-
sociated SNPs on chromosome 8 listed.

SNP name† Allele P-value PVE‡ MAF§ Candidate gene Annotation

%
S2_143450705 A,T 1.28  10−5 5.14 0.40 – –
S3_187460281 A,T 2.63  10−5 4.76 0.30 GRMZM2G072853 –
S3_224167844 A,C 1.17  10−5 5.19 0.15 GRMZM2G339540 Leucine-rich repeat receptor-like protein kinase family protein
S3_28621298 A,G 2.57  10−5 4.77 0.44 GRMZM2G180622 Sarcoplasmic reticulum histidine-rich calcium-binding protein
S7_21279210 A,G 2.41  10−5 4.80 0.18 GRMZM2G063340 Rps12 ribosomal proteins12
S8_83777799 A,G 1.29  10−11 13.00 0.25 – –
S8_83777830 C,G 1.33  10−11 12.98 0.27 – –
S8_83335753 A,T 5.73  10−11 12.11 0.23 GRMZM2G104025 60S ribosomal protein L18–3-like
S8_82826985 A,G 5.83  10−11 12.1 0.24 – –
S8_80045991 G,T 6.11  10−11 12.07 0.23 GRMZM2G106526 ATP10 protein

† SNP name, chromosome_position, for example, S2_14345070 means the SNP is on chromosome 2, the physical position is 143450705 bp.

‡ PVE, phenotypic variation explained.

§ MAF, minor allele frequency.
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populations. The lowest rMG was observed in the DTMA 
panel with a mean value of 0.55, where 10,000 high-
quality SNPs were used for prediction. The rMG observed 
in Pop1, Pop2, and Pop3 were 0.58, 0.74, and 0.69, respec-
tively. In Pop1, smaller phenotypic differences (1.19) and 
lower heritability (0.54) caused a moderate rMG compared 
with the other two DH populations.

The effects of marker density and training popula-
tion size on rMG are presented in Fig. 5. The rMG continu-
ously increased as the number of SNPs increased in all 
the populations. In the DTMA panel, only a marginal 

increase was observed on rMG, where the number of SNPs 
increased from 1000 to 10,000, and rMG obtained with 
261,948 high-quality SNPs was similar to that obtained 
from 10,000 randomly selected high-quality SNPs (data 
not shown). The maximum rMG with minimum stan-
dard error was observed when 3000 SNPs were used for 
genomic prediction. In Pop1, a very slight increase in rMG 
was observed when the number of SNPs increased from 
500 to 20,000, indicating that 500 SNPs were sufficient 
to obtain good prediction accuracy of TSC resistance 
in biparental DH populations. The training population 

Fig. 4. Genomic prediction accuracy (rMG) of tar spot complex (TSC) resistance in the Drought Tolerant Maize for Africa (DTMA) panel, 
Pop1, Pop2, and Pop3. Ten thousand randomly selected SNPs without missing data and minor allele frequencies (MAFs) >0.05 were 
used for prediction in the DTMA panel. Single-nucleotide polymorphisms in the genetic map were used for genomic prediction in the 
three biparental doubled-haploid populations.

Table 4. Linkage-mapping analysis results of tar spot complex resistance in three biparental doubled-
haploid populations.

Population Chromosome Left marker (position)† Right marker (Position) LOD‡ PVE§ Additive effect

%
Pop1 4 C4M190 (197840452) C4M191 (209059831) 5.82 8.63 0.07

7 C7M315 (144585946) C7M316 (149528489) 9.19 14.41 0.09
8 C8M347 (70713777) C8M348 (82228021) 13.18 21.85 0.12

Pop2 1 C1M30 (92194874) C1M31 (100468505) 9.07 17.82 0.19
2 C2M95 (36770127) C2M96 (45491073) 3.59 6.19 0.11
5 C5M266 (171692383) C5M267 (174071529) 3.06 5.12 0.10
8 C8M390 (46943754) C8M391 (83381560) 17.88 43.31 0.30

Pop3 1 C1M38 (184932563) C1M39 (188828594) 14.07 32.29 0.38
7 C7M366 (129063233) C7M367 (131806297) 3.25 5.96 0.17
8 C8M399 (23160646) C8M401 (38729344) 8.24 16.78 0.28

10 C10M509 (147329967) C10M511 (147901114) 3.24 6.01 0.17
† Marker name comprises information on specific chromosome and bin, for example, C4M190 means the 190th bin on chromosome 4 and the physical position is 197,840,452 bp.

‡ LOD, logarithm of odd.

§ PVE, phenotypic variation explained.
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size affected the prediction accuracy considerably in all 
the populations, and the rMG continuously increased as 
training population size increased in all the populations. 
In the DTMA panel, a slight increase was observed in 
rMG when the training population size increased from 40 
to 90%. A relatively high rMG with the smallest standard 
error was observed when 60% of the total genotypes 
were used as a training population. A similar trend was 
also observed in Pop1, where relative high prediction 
accuracy with the smallest standard error was observed 
when 50% of the total genotypes were used as a train-
ing population. This indicated that the optimum size of 
training population was 50 to 60% of the total number of 
genotypes used. However, prediction accuracy can vary 
depending on the population size of total genotypes used 
and the heritability of the trait of interest.

Discussion
Combined linkage and association mapping can comple-
ment the strengths and weaknesses of each approach, 
and has been successfully used in several crops to dis-
sect the genetic architecture of complex traits (Chen et 
al., 2014; Li et al., 2016b; Lu et al., 2010). In this study, 
combined linkage mapping and association mapping 
was implemented for detecting and validating genomic 
regions conferring resistance to TSC in maize. Genome-
wide association analysis revealed four QTL on chromo-
somes 2, 3, 7, and 8. All the QTL revealed by association 
mapping were validated by linkage mapping in different 
genetic backgrounds, with the exception of a QTL on 
chromosome 3. A major QTL located on bin 8.03 was 
consistently detected in the association-mapping panel 
and all the three DH populations, and it exhibited the 

Fig. 5. Genomic prediction accuracy (rMG) of tar spot complex (TSC) resistance in the Drought Tolerant Maize for Africa (DTMA) panel 
and Pop1 with different training population size and marker density: (a) DTMA panel, the number of single-nucleotide polymorphisms 
(SNPs) varied from 200 to 10000; (b) DTMA panel, training population size ranged from 10 to 90% of the total population size with 
an interval of 10%; (c) Pop1, the number of SNPs varied from 200 to 20000; (d) Pop1, training population size ranged from 10 to 90% 
of the total population size with an interval of 10%.
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highest PVE in Pop1 and Pop2. A QTL in bin 8.03 of 
Pop3 had the second largest PVE. The physical posi-
tion of the major QTL detected by association mapping 
was between 57.2 and 90.8 Mb, while the position of the 
major QTL in bin 8.03 in Pop1, Pop2, and Pop3 was 70.7 
to 82.2, 46.9 to 83.4, and 23.2 to 38.7 Mb, respectively. In 
addition to the QTL detected by both association map-
ping and linkage mapping, several QTL were identified 
through linkage mapping in different genetic back-
grounds. Three QTL located on bin 4.08 to 4.09, 5.04 to 
5.05, and 10.07 were identified in Pop1, Pop2, and Pop3, 
respectively. The QTL located in bin 1.05 to 1.06 was 
identified in two genetic backgrounds, that is, Pop2 and 
Pop3. These results reveal that combined linkage map-
ping and association mapping is a powerful approach 
to detect QTL associated with TSC resistance across the 
maize genome in different genetic backgrounds. Further-
more, it was also determined that TSC resistance is con-
trolled by a major QTL located on bin 8.03 in addition 
to several minor QTL with smaller effect distributed on 
other chromosomes. The QTL information generated in 
this study will be valuable for fine mapping of the major 
gene in bin 8.03 and for developing functional molecular 
markers for implementing MAS for TSC resistance.

Compared with a previous study on TSC resistance 
(Mahuku et al., 2016), the populations and phenotypic 
data used in the current study were slightly different in 
both association and linkage-mapping analysis. In the 
association analysis, an unbalance dataset was used in 
the previous study, and association-mapping analysis was 
performed separately for seven environments. In the cur-
rent study, a balance dataset from five environments was 
used, eliminating two environments with low heritability 
and small numbers of genotypes. Additional QTL were 
identified in the current study through the use of this 
improved phenotypic data as well as through the use of 
higher-density GBS SNPs. Mahuku et al. (2016) identi-
fied three QTL located in bins 2.07, 7.02, and 8.03 with 
an Illumina MaizeSNP50 BeadChip containing 56,110 
evenly spaced SNPs. In the present study, we verified 
all the three previously reported QTL and also identi-
fied a new QTL on chromosome 3. Furthermore, the 
genetic region of the major QTL located on bin 8.03 was 
narrowed from 81 million to 33.6 million bp based on 
significantly associated SNPs. These results demonstrate 
that improved phenotypic data and higher density GBS 
SNPs can increase statistical power and improve map-
ping resolution of association mapping as compared with 
the lower-density chip-based SNP arrays.

In regard to biparental linkage analysis, the current 
linkage-mapping analysis used ultrahigh-density genetic 
maps constructed with GBS SNPs, which increased sta-
tistical power and detected more QTL with improved 
mapping resolution relative to the previous study of 
Mahuku et al. (2016). Linkage-mapping analysis in the 
current study validated all the QTL regions previously 
reported by Mahuku et al. (2016) with the exception 
of the QTL located on chromosome 6, which was not 

identified in this study. Three new QTL located on chro-
mosomes 2, 4, and 5 were detected only in the current 
study. One reason for this difference is that the popula-
tions and phenotypic data used in these two studies were 
slightly different. Two of the DH populations used in the 
current study were identical to those used in the previous 
study, but the third DH population in the current study 
replaced the F2:3 population from the previous work. In 
addition, the number of locations used for phenotyping 
was also different in these two studies. Populations were 
evaluated only in two, one, and one location in the previ-
ous study, while in the current study, the three DH popu-
lations were evaluated in three, four, and three locations, 
respectively. Improved phenotypic data with higher 
heritability (0.54 in Pop1, 0.88 in Pop2, and 0.93 in Pop3) 
resulting in the detection of more robust QTLs in the 
current study. Mapping resolution of the current study 
was also improved by using the ultrahigh-density genetic 
maps constructed with GBS SNPs, and the interval of the 
detected QTL (Table 4) ranged from 0.57 to 36.44 million 
bp with an average of 9.66 million bp (physical position 
difference between the right marker and left marker), 
which is smaller than the normal interval of the genetic 
map constructed with few hundred markers.

Genotyping-by-sequencing is a low-coverage 
sequencing technology generating a large number of 
SNPs at a lower genotyping cost per SNP per sample. 
However, GBS also results in a very high rate if missing 
data. Imputation of missing data is generally conducted 
before downstream analysis is performed. Recently, 
Wu et al. (2016) reported that the missing rate of an 
unimputed GBS dataset in a diverse tropical maize 
panel was 57.99% before filter, which indicates that the 
imputed GBS dataset is more appropriate for running 
association-mapping analysis in a diverse maize panel 
because of the high rate of missing data within unim-
puted GBS datasets. In the current study, the imputed 
GBS dataset was used for association mapping, and the 
missing rate in the diverse DTMA tropical maize panel 
was 15.17% before filter and 6.66% after filter. Statistical 
power and mapping resolution of association mapping 
was improved by including more imputed GBS SNPs. 
However, within the biparental mapping populations, 
incorrectly imputed SNPs could result in identification 
of false crossovers, which would adversely affect the 
accuracy of the genetic map. For this reason, unimputed 
GBS data was used for ultrahigh-density bin map con-
struction and linkage-mapping analysis in all the three 
DH populations. Because an imputed dataset was used 
in association-mapping analysis and unimputed datasets 
were used for linkage-mapping analysis, combined link-
age mapping and association mapping proceeded as a 
parallel approach rather than an integrated approach. 
The integrated approach of employing a common set of 
SNPs will be assessed in the further studies.

Factors affecting genomic prediction accuracy have 
been investigated in several crops over a wide range 
of target traits (Poland et al., 2012; Spindel et al., 2015; 
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Zhang et al., 2015). In the current study, genomic pre-
diction accuracy for TSC in maize has been estimated 
in different types of populations with different training 
population sizes and marker densities. Genomic predic-
tion accuracy observed in DH populations was always 
higher than that observed in the association-mapping 
panel, even though heritability of TSC in Pop1 was lower 
than that of the association-mapping panel. This suggests 
that the genomic prediction accuracy is relatively lower 
in a population with a broader genetic base, and novel 
statistical models are required to be developed to improve 
prediction accuracies in broad genetic base populations. 
Similarly, Gowda et al. (2015) found that the genomic pre-
diction accuracy for improving resistance to maize lethal 
necrosis disease was also relatively lower in a broader 
genetic population. In actual application, however, maize 
breeding rarely proceeds using source populations as 
broad as the DTMA panel since maize breeding programs 
are generally focused on specific geographies. Within 
geographies, germplasm is focused on relative maturity 
targets, and source breeding populations are typically 
further restricted by organization of lines into discrete 
heterotic groups, often with important founder lines con-
tributing substantially to breeding progress.

Appropriate training population sizes to maximize 
prediction accuracy while minimizing standard error were 
also determined for each population. In all populations, 
relatively high prediction accuracies with the smallest 
standard error were observed when 50 to 60% of the total 
genotypes were used as a training population. Currently, 
one of the most significant challenges for maize breeders is 
to select an optimum subset of lines or families using MAS 
or GS prior to multiple-location testing. Optimal training 
population size for running genomic prediction within a 
biparental DH population is also of interest. Results from 
this study indicate that good prediction accuracy of TSC 
resistance can be achieved by phenotyping and genotyping 
as little as half of the breeding material as the training set. 
This confirms the results of Crossa et al. (2014) showing 
that a good prediction of maize grain yield in a biparental 
population can be achieved when only half of the popula-
tion is included in the training set. However, the predic-
tion accuracy could vary depending on the population 
sizes used and the target traits.

The relationship between the training population 
and selection population is an important factor affecting 
prediction accuracy. In this study, prediction accuracy 
was only assessed within each population, which is the 
most favorable situation for running GS since the train-
ing and prediction sets are closely related. However, most 
breeders also would like to know the prediction accuracy 
across populations or use pooling of multiple popula-
tions into the training set to predict the rest. This will be 
assessed in the further studies.

Conclusion
The majority of the presently grown commercial maize 
varieties in Central and South America are susceptible to 
TSC. Developing and deploying improved maize variet-
ies with resistance to TSC is important, as it provides the 
most cost-effective approach for controlling the spread 
and impact of TSC in the maize production areas in the 
Americas. In the current study, the genetic architecture 
of TSC resistance in maize was dissected through com-
bined linkage and association mapping in conjunction 
with high density GBS SNPs. Results indicate that TSC 
resistance in maize is controlled by a major QTL located 
on bin 8.03 with several minor QTL with smaller effect on 
other chromosomes. This study is the first report on TSC 
resistance in maize using sequencing-based genotyping, 
which increases the statistical power by detecting more 
QTL and improves the mapping resolution of detected 
QTL. This study revealed SNPs that are significantly asso-
ciated with TSC resistance genes. The sequence informa-
tion of these SNPs can be used to develop assays for MAS, 
and can be fitted as fixed effects in GS models to improve 
prediction accuracy (Bernardo, 2014). Tar spot complex 
resistance in tropical maize could be improved by imple-
menting MAS and GS individually or by implementing 
them in a stepwise fashion. The decision of a breeding 
strategy to implement MAS and GS stepwise for multiple 
traits in a maize improvement program requires further 
research and development.
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