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RESEARCH

The most general linear phenotypic selection index (PSI) 
associated with the standard Smith (1936) PSI (SPSI) is the 

optimum predetermined proportional gains (PPG) PSI (PPG-
PSI), originally developed by Mallard (1972) as an extension of 
the Kempthorne and Nordskog (1959) restricted PSI (RPSI). 
The PPG-PSI allows imposing restrictions on the trait expected 
genetic gains to make some traits change their mean values based 
on a predetermined level, while the rest of the traits change their 
values without restriction.

A PSI is a linear combination of several observable, optimally 
weighted trait values; its aims are to: (i) predict the unobservable net 
genetic merit values of the candidates for selection; (ii) maximize 
the selection response and the expected genetic gains for each trait; 
and (iii) provide the breeder with an objective rule for evaluat-
ing and selecting several traits simultaneously (Baker, 1974). Smith 
(1936) developed the basic theory of the PSI under two assump-
tions: first, the net genetic merit of the candidates for selection is a 
linear combination of the additive genetic values of several traits; 
and second, the PSI and the net genetic merit have a jointly normal 
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remain without restrictions. However, due to the 
increasing number of restricted traits: (i) PPG-
PSI accuracy decreases; (ii) the proportional 
constant associated with this index can be neg-
ative, in which case, its results have no mean-
ing in practice; and (iii) the PPG-PSI can shift 
the population means in the opposite direction 
to the predetermined desired direction. Based 
on the eigen selection index method (ESIM), we 
propose a PPG-ESIM that does not require a 
proportional constant, and due to the proper-
ties associated with eigen analysis, it is possible 
to use the theory of similar matrices to change 
the direction of the eigenvector values without 
affecting PPG-ESIM accuracy, which helps to 
eliminate the problem indicated in the third point 
above, associated with the standard PPG-PSI. 
The PPG-ESIM uses the first eigenvector as its 
vector of coefficients, and the first eigenvalue in 
the selection response. Two simulated and one 
real data set, each with four traits, were used to 
validate PPG-ESIM efficiency vs. PPG-PSI effi-
ciency; the simulated and real results indicated 
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distribution. The main problem of the SPSI is that when 
used to select individuals, the expected genetic gain values 
of the individual traits can change in a positive or negative 
direction without any control. Because of this, Kemp-
thorne and Nordskog (1959) developed the basic theory of 
the RPSI that allows imposing restrictions equal to zero 
on the expected genetic gains of some traits, while other 
traits increase (or decrease) their expected genetic gains 
without imposing any restrictions. Mallard (1972) extended 
the original RPSI theory to the case of a PSI that allows 
imposing optimal predetermined level restrictions on the 
trait expected genetic gains. The main objective of the 
Smith (1936) PSI was to maximize the selection response, 
while the main objective of the RPSI and the PPG-PSI is 
to optimize, under some restrictions, the expected genetic 
gains per selection cycle for each trait.

The PPG-PSI is more useful than any other PSI 
because its expected genetic gain values can change 
according to the breeder’s interest. For example, the 
expected genetic gain value for one observed trait can be 
negative in the SPSI, while the breeder’s interest may lie 
in a positive expected genetic gain value, or vice versa. In 
this case, the PPG-PSI can impose positive or negative 
restrictions on the expected genetic gain values. By this 
reasoning, the PPG-PSI should be the basic tool for select-
ing individuals as parents of the next generation.

Other PPG-PSIs were proposed by Harville (1975) 
and Tallis (1985). Itoh and Yamada (1987) showed that the 
Mallard (1972) index is equal to the Tallis (1985) index and 
that, except for a proportional constant, the Tallis (1985) 
index is equal to the Harville (1975) index. Thus, accord-
ing to the results of Itoh and Yamada (1987), in reality 
there is only one PPG-PSI. From a theoretical point of 
view, it is easier to work with the Mallard (1972) PPG-
PSI than the Harville (1975) or the Tallis (1985) PPG-PSI. 
That is, it is easier to obtain the sampling statistical prop-
erties of the coefficients of the Mallard (1972) PPG-PSI 
than those of the Harville (1975) or the Tallis (1985) PPG-
PSI (Cerón-Rojas et al., 2016).

In the canonical correlations context, a phenotypic 
unrestricted and restricted eigen selection index method 
(ESIM and RESIM, respectively), which uses the elements 
of the first eigenvector as the PSI coefficient and the first 
eigenvalue in the selection response, was developed by 
Cerón-Rojas et al. (2008a). The sampling statistical prop-
erties of ESIM are known and Cerón-Rojas et al. (2016) 
have shown that they can be used to find the sampling sta-
tistical properties of the coefficients of the SPSI, the RPSI 
and the PPG-PSI.

When the trait’s phenotypic and genotypic variances 
and covariances are known, the PPG-PSI has similar sta-
tistical properties as the SPSI: (i) the correlation between 
the net genetic merits of the candidates for selection and 
the PPG-PSI is maximized; (ii) the mean prediction error 

is minimized; and (iii) the PPG-PSI is the best linear 
predictor of the net genetic merit of the candidates for 
selection and the one with the highest relative efficiency 
when compared to other selection procedures (Lin, 2005). 
However, when the phenotypic and genotypic variances 
and covariances are estimated, the PPG-PSI selection 
response and expected genetic gain will be optimal only 
if the estimators of the index coefficients are unbiased and 
have minimal variance (Hayes and Hill, 1980; Cerón-
Rojas et al., 2016). An additional disadvantage of the 
PPG-PSI is that it is difficult to assign economic weights 
to the traits of interest.

Authors such as Vandepitte and Hazel (1977) and 
Smith (1983) have used computer simulation to estimate 
economic weights; however, their results are limited to 
some traits of pigs. Using economic theory, Melton et al. 
(1979) proposed a profit function to estimate the economic 
weight; however, Goddard (1983) found inconsistencies in 
the method of Melton et al. (1979). Magnussen (1990) esti-
mated the economic weights as functions of the eigenvalues 
and eigenvectors of a quadratic form of the additive genetic 
and phenotypic covariance matrices, but he did not show 
that his estimated economic weights maximize the correla-
tion between the SPSI and the net genetic merit.

Itoh and Yamada (1987) pointed out several additional 
problems associated with the PPG-PSI: due to the restric-
tions imposed on the PPG-PSI expected genetic gains, 
there is a loss of accuracy in the PPG-PSI, that is, the 
correlation between the PPG-PSI and the net genetic 
merit tends to decrease as the number of restricted traits 
increases; the proportional constant associated with the 
PPG-PSI can be negative, in which case PPG-PSI results 
have no meaning in practice; and the PPG-PSI may cause 
the population means to shift in the opposite direction to 
the predetermined desired direction; this may happen due 
to the opposite directions between the economic values 
and the predetermined desired direction.

The aims of the present study are to: (i) propose a 
PPG eigen selection index method (PPG-ESIM) as a gen-
eralization of the ESIM (RESIM) of Cerón-Rojas et al. 
(2008a); (ii) show that the PPG-ESIM does not require a 
proportional constant; (iii) show that due to the proper-
ties associated with eigen analysis, it is possible to use the 
theory of similar matrices (Harville, 1997) to change the 
direction of the eigenvector values without affecting the 
correlation between the PPG-ESIM and the net genetic 
merit, which helps to eliminate the problem of PPG-PSI 
in the third point indicated by Itoh and Yamada in the pre-
vious paragraph; (iv) estimate the economic weight in the 
canonical correlation context and show that the estimated 
economic weights maximize the correlation between the 
PPG-ESIM and the net genetic merit; and (v) compare the 
efficiency of PPG-PSI to PPG-ESIM efficiency.
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linear selection index used to select individuals, e.g., PPG-PSI 
or PPG-ESIM.

Predetermined Proportional Gains Phenotypic 
Selection Index (PPG-PSI) Theory
Mallard (1972) extended the Kempthorne and Nordskog (1959) 
RPSI by considering that if mq is the population mean of the qth 
trait before selection, one objective could be to change mq to mq 
+ dq, where dq is the predetermined proportional gain imposed 
by the breeder on mq in one selection cycle (in Kempthorne and 
Nordskog [1959], dq = 0, q =1, 2, …, r); the rest of the traits 
change without any restrictions.

Vector of Coefficients of the PPG-PSI
Let d¢ = [d1 d2 … ds] be the vector of the predetermined propor-
tional gains imposed by the breeder, and 
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a matrix r(r – 1) where r is the number of predetermined propor-
tional gains and dq (for q = 1, 2, …, r) is the qth element of vector 
d¢. Matrix D¢ is the Mallard (1972) matrix of predetermined 
proportional gains and can be used to impose predetermined 
restrictions on the expected genetic gain per selection cycle 
for each trait (Eq. [1a]). Let M¢ = D¢Y¢ be the Mallard (1972) 
matrix of predetermined restrictions, where Y¢ = U¢C and U¢ 
is the Kempthorne and Nordskog (1959) matrix of restrictions 
comprised of values 1 and 0, where ‘1’ indicates that the trait is 
restricted (i.e., dq = 0) and ‘0’ that the trait has no restrictions. 
The vector of predetermined restrictions M¢b = 0 is used to 
maximize the correlation between I = b¢p and H = w¢a.

Maximizing FM = w¢Cb  – 0.5l(b¢Pb – 1) – v¢M¢b with 
respect to b¢, v¢, and 0.5l, where 0.5l and v¢ = [v1 v2 … vr–1] are 
Lagrange multipliers, is equivalent to maximizing the correla-
tion between I = b¢p and H = w¢a (Bulmer, 1980). The vector 
of coefficients of the Mallard (1972) PPG-PSI is

M =b Kb  [2a]

where K = [It – Q], Q = P–1YD(D¢Y¢P–1YD)–1D¢Y¢, It is an 
identity matrix t ´ t, and b = P–1Cw is the vector of coef-
ficients of the SPSI. When D¢ = U¢, bM = bKN (the vector of 
the RPSI), and when U¢ is a null matrix, bM = b. That is, the 
Mallard (1972) index is more general than the Kempthorne and 
Nordskog (1959) RPSI and is an optimum PPG-PSI.

According to Itoh and Yamada (1987), an additional 
form of writing Eq. [2a] is as

M KN= + qdb b  [2b]

where bKN = [I – P–1Y(Y¢P–1Y)–1Y¢]b is the vector of coef-
ficients of the Kempthorne and Nordskog (1959) RPSI, 
b = P–1Cw, d = P–1Y(Y¢P–1Y)–1d, and
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is a proportional constant associated with the PPG-PSI coef-
ficient. When q = 0, bM = bKN, and if U¢ is the null matrix, 

Like ESIM (RESIM), PPG-ESIM uses the elements 
of the first eigenvector as the vector of coefficients and the 
first eigenvalue in the selection response. The efficiency of 
PPG-ESIM is expected to be higher than PPG-PSI effi-
ciency in all selection cycles, regardless of the number of 
restricted traits.

MATERIALS AND METHODS

Linear Phenotypic Selection Index (PSI) 
Theory

Objectives of the PSI
The objectives of any linear phenotypic selection index are: first 
to predict the net genetic merit H = w¢a, where a¢ = [a1 a2 … at] 
(t = number of traits) is the vector of true breeding values for 
an individual and w¢ = [w1 w2 … wt] is the vector of economic 
weights; and second to select individuals with the highest H 
values in each selection cycle as parents of the next generation.

Expected Genetic Gain per Selection Cycle  
for Each Trait and Selection Response
While the objective of the SPSI is to maximize the selection 
response, the main objective of PPG-PSI is to optimize, under 
some restrictions, the expected genetic gain per selection cycle 
for each trait by requiring that its values change to some prede-
termined value, or in some specified direction (sign). According 
to Kempthorne and Nordskog (1959), the expected genetic gain 
per selection cycle for each trait (E) of any linear PSI can be 
written as

I

= k
s
CbE  [1a]

where k is the standardized selection differential (or selec-
tion intensity), C is the matrix of covariance of true breeding 
values a; b and sI are the vectors of coefficients and the stan-
dard deviation of the variance ( 2

Is ) of any linear index I = b¢p, 
respectively; p¢ = [p1 p2 … pt] is a vector of trait phenotypic 
values, and t = number of traits in the selection index. In the 
SPSI context, vector b = P–1Cw optimizes Eq. [1a], where P–1 
is the inverse of the phenotypic covariance matrix, P.

Selection Response
For any linear selection index, the equation that predicts the net 
genetic change due to selection for H = w¢a from one selec-
tion cycle to the next, is the selection response, which can be 
written as

,
H,I

H H I
I

R k k
s

= = s 
s

 [1b]

where k and sI were defined in Eq. [1a], sH is the standard 
deviation of H, sH,I and H,I are the covariance and the correla-
tion between H and any linear index I, respectively. The second 
part of Eq. [1b] (ksHH,I) indicates that the genetic change due 
to selection is proportional to H,I and to k (Kempthorne and 
Nordskog, 1959). In general, it is assumed that k and sH are 
fixed and then, R will be maximized when H,I is maximized 
and the final form of Eq. [1b] will depend on the particular 
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bM = b. Equation [2b] is the Tallis (1985) PPG-PSI vector of 
coefficients; that is, the Mallard (1972) and Tallis (1985) indices 
are the same.

Maximized PPG-PSI Expected Genetic Gains  
and Selection Response
The PPG-PSI expected genetic gains per selection cycle for 
each trait can be written as

PSI
M

M M

k=
¢

Cb
E

b Pb
  [4a]

Equations [2a] and [2b] maximize the selection response, which 
can be written as

PSI M MR k ¢= b Pb  [4b]

The parameters of Eq. [4a] and [4b] were previously defined.

Proposed Predetermined Proportional Gains 
Eigen Selection Index (PPG-ESIM)

PPG-ESIM Vector of Coefficients
To obtain the PPG-ESIM vector of coefficients, we 
added to equation FM = w¢Cb – 0.5l(b¢Pb – 1) – v¢M¢b 
the restriction w¢Cw  =  1, and we maximized equation 
F = w¢Cb – 0.5l(b¢Pb – 1) – 0.5m(wCw – 1) – v¢M¢b with 
respect to b, w, 0.5l, 0.5m, and v¢, where 0.5l, 0.5m, and v¢ = [v1 
v2 … vr–1] were Lagrange multipliers. This process maximized 
the correlation between I = b¢p and H = w¢a. The PPG-ESIM 
vector of coefficients can be obtained from equation

2
PPG-ESIM( )- l =T I b 0  [5a]

where T = [It – P–1YD(D¢Y¢P–1YD)–1D¢Y¢]P–1C = KP–1C 
(matrix K was defined in Eq. [2a]), l2 is the first eigenvalue (l 
is the maximum correlation between I = b¢p and H = w¢a) and 
bPPG-ESIM is the first eigenvector of matrix T. When D¢ = U¢, 
T = [I – P–1Y(Y¢P–1Y)–1Y¢]P–1C (RESIM case), and when U¢ 
is a null matrix, T = P–1C (ESIM case), from where Eq. [5a] is 
more general than RESIM and ESIM, and these last two indi-
ces are particular cases of PPG-ESIM. In Eq. [5a], the values of 
bPPG-ESIM and l2 can be estimated using singular value decom-
position (Cerón-Rojas et al., 2008a).

bPPG-ESIM is Independent of the Economic Values 
and of the q Values
Note that as bPPG-ESIM is the first eigenvector of matrix T, then 
it is independent of the economic values and of the q values 
(Eq. [3]).

PPG-ESIM Coefficient Vector and the Theory  
of Similar Matrices
Equation [5a] can be written as TIbPPG-ESIM = l2IbPPG-ESIM, 
where I = F–1F is an identity matrix and F = diag{ f1 f2 … ft} 
(t = number of traits) is a diagonal matrix with values equal to 
any real number, except zero values. Then, an additional form 
of write Eq. [5a] is as

2
2( )- l b =T I 0  [5b]

where T2 = FTF–1 and b = FbPPG-ESIM; T and T2 = FTF–1 
are similar matrices and both have the same eigenvalues but 
different eigenvectors (Harville, 1997). When the F values are 
only 1s, vector bPPG-ESIM is not affected; when the F values are 
only -1s, vector bPPG-ESIM will change its direction, and if the 
F values are different from 1 and -1, matrix F will change the 
proportional values of bPPG-ESIM. In practice, first we obtained 
bPPG-ESIM from (T – l2I)bPPG-ESIM = 0 and then we multiplied 
bPPG-ESIM by the F values to obtain b = FbPPG-ESIM, that is, we 
did a linear transformation of bPPG-ESIM. Cerón-Rojas et al. 
(2006) introduced an alternative procedure for modifying the 
bPPG-ESIM signs that is a particular case of the method proposed 
in this work based on the theory of similar matrices.

Estimating the PPG-ESIM Vector  
of Economic Weights
In the context of canonical correlation, Cerón-Rojas et al. 
(2008a) showed that the vector of economic weights can be 
written as

1
PPG-ESIM[ ]E

-= l +w C Pb Mv  [6]

where C and l were defined in Eq. [1a] and [5a], respectively; 
M¢ = D¢Y¢ is the Mallard (1972) matrix of predetermined 
restrictions (Eq. [2a]), Y¢ = U¢C was defined in Eq. [2a], and 
v = l–1(M¢P–1M)–1M¢P–1CbPPG-ESIM.

PPG-ESIM Expected Genetic Gains  
and Selection Response
The PPG-ESIM expected genetic gains per selection cycle for 
each trait can be written as

ESIM k
b

=
b b

C
E

P
 [7a]

and, by Eq. [1b], [5a] and [6], the PPG-ESIM selection response 
can be written as

ESIM HER k= s l  [7b]

where HE E E
¢s = w Cw  and l was defined in Eq. [5a]. Note 

that Eq. [7a] does not requires economic weights, and when 
sHE = 1, Eq. [7b] can be written as RESIM = kl (Cerón-Rojas et 
al., 2008a); that is, in this last form it does not require economic 
weights.

Criteria for Comparing PPG-ESIM efficiency  
vs. PPG-PSI Efficiency
To compare PPG-ESIM efficiency vs. PPG-PSI efficiency, we 
used the ratio

,ESIM

,PSI

ˆ
ˆ

ˆ
H

H


p =


 [8]

which was proposed by Bulmer (1980) as a criterion for com-
paring the efficiency of linear PSI. In Eq. [8], ,ESIM

ˆˆ
H = l and 

,PSI

ˆˆ
ˆ

ˆ ˆˆ ˆ
M

H

M M

¢
 =

¢ ¢

w Cb

w Cw b Pb   [9]

are the maximized estimated correlations (or accuracy) between 
H and PPG-ESIM, and between H and PPG-PSI, respectively, 
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was obtained from QU-GENE by setting the per-plot herita-
bility of T1, T2, T3 and T4 at 0.4, 0.6, 0.6, and 0.8, respectively.

In this data set, we restricted traits T1, T2 and T3 (trait 
T4 was not restricted) in PPG-PSI and PPG-ESIM, and we 
imposed three predetermined proportional gains in both selec-
tion indices, i.e., the vector of predetermined proportional 
gains was d¢ = [7 –3 5]. Matrices U¢ and D¢ for this data set for 
each of the seven selection cycles were

1 0 0 0

0 1 0 0
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Note that the sign and proportion of the expected genetic 
gain values for T1, T2 and T3 should change according to the 
breeder’s interest. For this reason, the sign and proportion values 
of the first eigenvectors for each selection cycle should follow 
the direction given by the breeder’s interest on the expected 
genetic gain per each trait (Cerón-Rojas et al., 2008a, 2008b). 
Thus, if the expected genetic gain values for T1 and T3 are pos-
itive and negative for T2, if it is necessary, the sign of the values 
of the first eigenvector will be according to this objective, from 
where the diagonal matrix F should have a combination of signs 
and proportional values to achieve predetermined and positive 
values for T1 and T3 and predetermined and negative values 
for T2 in the linear transformation b = FbPPG-ESIM. When the 
signs and proportion of the values of the first eigenvectors are 
according to those required by the breeder’s interest, then all 
the values in diagonal matrix F will be 1s. The same idea should 
be applied to traits in simulated data set 2 and the real data set.

Note that the inner product of the PPG-ESIM eigenvec-
tor is equal to 1; however, the inner product of the PPG-PSI 
coefficient vector could not be equal to 1. Thus, the best way 
of comparing the PPG-ESIM results with those from the 
PPG-PSI is when the PPG-PSI coefficient vector is normal-
ized, (i.e., when the PPG-PSI coefficient vector is equal to

* /M M M M
¢=b b b b ), otherwise, the product M M

¢b b  will spuri-
ously increase the PPG-PSI results. In the present study, the 
PPG-PSI coefficient vector was normalized only for simulated 
data set 2.

Simulated Data Set 2
A stochastic simulation was performed to compare the results of 
applying PPG-PSI and PPG- ESIM selection indices to 10 gen-
erations of selection. The initial input for the phenotypic and 
genetic covariance matrices, and therefore the heritability, eco-
nomic weights and desired gains for four traits, were taken from 
Akbar et al. (1984), from where the estimated phenotypic and 
genetic covariance matrices among number of eggs (RL), age 
at sexual maturity (SM, days), egg weight (EW, kg), and body 
weight (BW, kg) were used as initial values for the simulation. 
The predetermined proportional gains for traits RL, SM, and 
EW were d¢ = [3 –1 2] (Lin, 2005) in both selection indices, 
and the economic weights were all equal to 1.

We used a hypothetical genome with 200 independent seg-
regating sites that affected all traits following a full pleiotropic 
model according to Zhang et al. (2015). A recurrent selection 
scheme was performed over 10 cycles, where the breeding 
design considered 200 full-sib progenies with 200 individuals 
each. The selection was done based on PPG-PSI and PPG-ESIM 

where l̂ is an estimation of the square root of the first eigen-
value in Eq. [5a], Ĉ and P̂ are estimates of matrices C and P, 
and ˆ Mb  is an estimation of Eq. [2a] or [2b]. Using this criterion, 
if ˆ 1p > , PPG-ESIM efficiency will be greater than PPG-PSI 
efficiency, if ˆ 1p = , the efficiency of both selection indices will 
be equal, and if ˆ 1p < , PPG-PSI will be more efficient than 
PPG-ESIM.

Simulated and Real Data Sets

Simulated Data Set 1
This data set was simulated by Ceron-Rojas et al. (2015) and 
can be obtained at http://hdl.handle.net/11529/10199. The 
data were simulated for 8 phenotypic selection cycles (C0 to 
C7) each with 4 traits (T1, T2, T3 and T4), 500 genotypes 
and 4 replicates for each genotype. In this paper, we used only 
cycles C1 to C7.

In all selection cycles, we used a selection intensity of 10% 
(k = 1.75) to make selections using PPG-PSI and PPG-ESIM. 
The PPG-PSI economic weights for T1, T2, T3 and T4 were 
1, -1, 1, and 1, respectively. In each selection cycle, we esti-
mated the proportional constant associated with the PPG-PSI 
coefficient (Eq. [3]), the PPG-PSI and PPG-ESIM expected 
genetic gain per selection cycle for each trait (Eq. [4a] and [7a]), 
the PPG-PSI and PPG-ESIM selection responses (Eq. [4b] and 
[7b]), the correlation between the net genetic merit H = w¢a 
and PPG-PSI and between H = w¢a and PPG-ESIM (Eq. [8]), 
the ratio p l  ,PSI

ˆˆ ˆ/ H=  (Eq. [8]), and finally, we calculated the 
true correlation between H = w¢a and the PPG-PSI index and 
between H = w¢a and the PPG-ESIM (l and H,PSI, respec-
tively) index.

Simulated data were generated using QU-GENE software 
(Podlich and Cooper, 1998; Wang et al., 2003). A total of 2500 
molecular markers were distributed uniformly across 10 chro-
mosomes while 315 QTLs were randomly allocated over the 
10 chromosomes to simulate one maize (Zea mays L.) popula-
tion. Each QTL and molecular marker was biallelic and the 
QTL additive values ranged from 0 to 0.5. As QU-GENE uses 
recombination fraction rather than map distance to calculate 
the probability of crossover events, recombination between 
adjacent pairs of markers was set at 0.0906; for two flank-
ing markers, the QTL was either on the first (recombination 
between the first marker and QTL was equal to 0.0) or on the 
second (recombination between the first marker and QTL was 
equal to 0.0906) marker; excluding the recombination fraction 
between 15 random QTLs and their flanking markers which 
was set at 0.5, i.e., complete independence (Haldane, 1919), 
to simulate linkage equilibrium between 5% of the QTLs and 
their flanking markers. In addition, all two adjacent QTLs were 
in complete linkage.

Each of the four traits (T1, T2, T3, and T4) was affected by 
a different number of QTLs: 300, 100, 60, and 40, respectively. 
The common QTLs affecting the traits generated genotypic 
correlations of -0.5, 0.4, 0.3, -0.3, -0.2, and 0.1 between T1 
and T2, T1 and T3, T1 and T4, T2 and T3, T2 and T4, and T3 
and T4, respectively.

The genotypic value of each plant was generated based on 
its haplotypes and the QTL effects for each trait. For each trait, 
the phenotypic value for each of four replications of each plant 
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with a selection intensity of 20%. From each simulation, we 
estimated the proportional constant associated with the PPG-
PSI coefficient (Eq. [3]); the expected genetic gain for each trait 
(Eq. [4a] and [7a]), the selection response (Eq. [4b] and [7b]), 
and the accuracy (Eq. [8]) for both selection indices; finally we 
estimated the ratio (Eq. [8]) to compare the PPG-PSI efficiency 
vs. the PPG-ESIM efficiency. The results were summarized 
based on the average of 200 simulations for each scenario. The 
genomic recombination routines were implemented in C++ 
linked to R 3.2.0 through Rcpp (R Development Core Team, 
2014; Eddelbuettel, 2013).

Real Data Set
This data set was obtained from Manning (1956) and contains four 
traits measured in cotton (Gossypium hirsutum L.). The traits were: 
number of cotton balls per plant (V1), number of seeds per ball 
(V2), lint per seed (V3) and total lint yield per plant (V4), evalu-
ated during seven annual selection cycles from 1949 through 1955. 
Estimates of the phenotypic and genotypic (in parentheses) vari-
ance and covariance of the four traits are given in Table 1.

Similar to simulated data set 1, in all selection cycles we 
used a value of k = 1.75 for making selections using PPG-PSI 
and PPG-ESIM. The economic weights for V1, V2, V3 and V4 
were 1, 1, 1, and 1, respectively, in both indices. In each selection 
cycle, we estimated the proportional constant associated with 
the PPG-PSI coefficient (Eq. [3]), the PPG-PSI and PPG-ESIM 
expected genetic gain per selection cycle for each trait (Eq. [4a] 
and [7a]), the PPG-PSI and PPG-ESIM selection response (Eq. 
[4b] and [7b]), the correlation between the net genetic merit H 
= w¢a and PPG-PSI and between H = w¢a and PPG-ESIM (Eq. 
[8]), and the ratio ,PSI

ˆˆ ˆ/ Hp = l   (Eq. [8]). In this data set, it was 
not possible to calculate the true correlation between H = w¢a 
and PPG-PSI and between H = w¢a and PPG-ESIM.

We restricted traits V1, V2 and V3 (trait V4 was not 
restricted) in both indices and we imposed three predetermined 
proportional gains in both selection indices, i.e., d¢ = [2 –5 10]. 
Matrices U¢ and D¢ for this data set for each of the 7 yr were

1 0 0 0

0 1 0 0

0 0 1 0

é ù
ê ú
ê ú¢ = ê ú
ê ú
ë û

U  and 
10 0 2

0 10 5

é ù-ê ú¢ = ê úë û
D

The F matrix (Eq. [5b]) was equal to the identity matrix 
to facilitate comparing PPG-ESIM results to PPG-PSI results.

RESULTS
Simulated Data Set 1
The first part of Table 2 shows the estimated values of the 
proportional constant associated with PPG-PSI (Eq. [3]), 
the estimated PPG-PSI expected genetic gains per selec-
tion cycle for each trait (Eq. [4a]), the estimated PPG-PSI 
selection responses (Eq. [4b]), the correlations between the 
net genetic merit (H = w¢a) and PPG-PSI (Eq. [8]), and the 
calculated true correlation between H = w¢a and PPG-PSI 
(l and H,PSI) for three restricted traits T1, T2 and T3 (trait 
T4 was not restricted) in seven selection cycles.

The second part of Table 2 shows the estimated 
values of the ratio ,PSI

ˆˆ ˆ/ Hp = l   (Eq. [8]), the estimated 
PPG-ESIM expected genetic gains per selection cycle 
for each trait (Eq. [7a]), the estimated PPG-ESIM selec-
tion responses (Eq. [7b]), the correlations between the net 
genetic merit H = w¢a and PPG-ESIM (Eq. [8]), and the 
calculated true correlation between H = w¢a and PPG-
ESIM (l and H,PSI) for three restricted traits T1, T2 and 
T3 (trait T4 was not restricted) in seven selection cycles.

In all selection cycles, the estimated values of the pro-
portional constant associated with PPG-PSI were positive 
(Table 2); this means that all PPG-PSI results were valid. 
The averages of the estimated PPG-PSI expected genetic 
gains per selection cycle for traits T1, T2 and T3 were 5.20, 
-2.23 and 3.72, respectively, while the estimated PPG-
ESIM expected genetic gains per selection cycle for traits 
T1, T2 and T3 were 7.74, -2.35 and 2.19, respectively. 

Table 1. Real data set. Estimates of the phenotypic and genotypic (in parentheses) variances 
1

2
V̂s , 

2

2
V̂s , 

3

2
V̂s  and 

4

2
V̂s  and covari-

ances 
1 2V̂ Vs , 

1 3V̂ Vs , 
1 4V̂ Vs , 

2 3V̂ Vs , 
2 4V̂ Vs  and 

3 4V̂ Vs  for four cotton traits: number of cotton balls per plant (V1), number of seeds per ball 

(V2), lint per seed (V3), and total lint yield per plant (V4) in each of seven annual selection cycles (extracted from Manning, 1956).

Year
1

2
V̂s 2

2
V̂s 3

2
V̂s 4

2
V̂s 1 2V̂ Vs 1 3V̂ Vs 1 4V̂ Vs 2 3V̂ Vs

2 4V̂ Vs
3 4V̂ Vs

1949 7.298 0.927 0.048 14.618 -0.121 0.09 9.848 -0.087 0.046 0.316

(4.619) (0.082) (0.028) (10.604) (-0.058) (-0.074) (6.854) (-0.060) (0.382) (0.310)

1950 4.590 1.259 0.075 4.597 0.124 -0.020 2642 -0.077 0.075 0.244

(0.0) (0.436) (0.0561) (0.871) (-0.088) (0.081) (-0.068) (-0.051) (0.040) (0.161)

1951 1.028 2.157 0.066 2.772 0.566 -0.120 1.098 -0.120 0.915 0.077

(0.273) (1.542) (0.055) (0.613) (0.659) (-0.110) (0.272) (-0.101) (0.712) (0.025)

1952 6.717 1.253 0.1228 7.591 -0.183 -0.183 5.470 -0.082 0.102 0.261

(3.606) (0.452) (0.105) (3.671) (-0.362) (-0.240) (5.578) (-0.073) (-0.386) (0.165)

1953 0.785 0.689 0.0374 1.963 -0.050 -0.078 0.071 -0.054 0.077 -0.097

(0.0) (0.142) (0.025) (0.0) (-0.192) (-0.078) (-1.079) (-0.049) (-0.169) (-0.123)

1954 1.801 0.903 0.0322 2.489 -0.176 -0.070 1.691 -0.007 0.274 0.043

(0.218) (0.536) (0.0119) (0.397) (0.334) (-0.067) (0.257) (-0.116) (0.225) (-0.001)

1955 0.582 1.315 0.0404 1.535 0.004 -0.015 0.650 -0.077 0.555 -0.009

(0.118) (0.338) (0.0139) (0.505) (0.149) (-0.023) (0.138) (-0.068) (0.515) (-0.033)
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Then, according to the vector of predetermined pro-
portional gains, d¢ = [7 –3 5], the estimated PPG-ESIM 
expected genetic gains per selection cycle for T1 and T2 
were closer to the predetermined proportional gains (7.74 
and -2.35) than the estimated PPG-PSI expected genetic 
gains (5.20 and -2.23) per selection cycle for T1 and T2 
in all selection cycles; however, the estimated PPG-PSI 
expected genetic gain per selection cycle for T3 (3.72) was 
better than that of PPG-ESIM (2.19) (Table 2).

The average values for the estimated PPG-PSI selec-
tion response, the correlation between H = w¢a and 
PPG-PSI, and the calculated true correlation between 
H = w¢a and PPG-PSI were 12.58, 0.77 and 0.74, respec-
tively. The average values for the estimated PPG-ESIM 
selection response, the correlation between H = w¢a 
and PPG-ESIM, and the calculated true correlation 
between H = w¢a and PPG- ESIM were 14.79, 0. 996 
and 1.0, respectively, while the average value of the ratio 

,PSI
ˆˆ ˆ/ Hp = l   (Eq. [8]) was 1.30. This last result indicates 

that PPG-ESIM efficiency was 30% higher than PPG-PSI 
efficiency in each selection cycle. In addition, note that 
the estimated and true correlations between H = w¢a and 
PPG-PSI were very similar (Table 2); the same was true 
for the estimated and true correlations between H = w¢a 
and PPG-ESIM (Table 2). This indicates that there was no 
difference between the estimated and true correlations in 

both indices, but in all selection cycles PPG-ESIM accu-
racy was higher than PPG-PSI accuracy.

Simulated Data Set 2
The upper part of Table 3 shows the estimated values of 
the proportional constants associated with PPG-PSI, the 
PPG-PSI expected genetic gains per selection cycle for 
each trait, the PPG-PSI selection responses, the correla-
tions between the net genetic merit and PPG-PSI, and the 
calculated true correlations between net genetic merit and 
index PPG-PSI for traits RL, SM, and EW (trait BW was 
not restricted) in 10 selection cycles.

The lower part of Table 3 shows the estimated values 
of ,PSI

ˆˆ ˆ/ Hp = l  , the PPG-ESIM expected genetic gains 
per selection cycle for each trait, the PPG-ESIM selec-
tion responses, the correlations between the net genetic 
merit and PPG-ESIM, and the calculated true correla-
tions between the net genetic merit and PPG-ESIM for 
three restricted traits: RL, SM, and EW (trait BW was not 
restricted) in 10 selection cycles.

In all selection cycles, the estimated values of the pro-
portional constant associated with PPG-PSI were positive 
and the average PPG-PSI expected genetic gains per selec-
tion cycle for traits RL, SM and EW were 1.68, -0.56 and 
1.12, respectively, while the average PPG-ESIM expected 
genetic gains per selection cycle for traits RL, SM, and 
EW were 0.71, -2.91 and 6.66, respectively.

Table 2. Simulated data set 1. Estimated values of the Predetermined Proportional Gains Phenotypic Selection Index (PPG-

PSI) and the Predetermined Proportional Gains Eigen Selection Index Method (PPG-ESIM) for the proportional constant asso-

ciated with PPG-PSI (theta value, q̂ ), the expected genetic gain per selection cycle for each trait, the selection response ( PSIR̂  
and ESIMR̂ ), the estimated ( ,PSIˆH  and l̂) and true ( ,PSIH  and l) correlation between the net genetic merit and PPG-PSI and PPG-

ESIM and the ratio p = l  ,PSI
ˆˆ ˆ/ H , for restricted traits T1, T2 and T3, using d¢= [7 –3 5] in seven selection cycles.

PPG-PSI estimated values
Theta Expected genetic gain Response Correlation True correlation

Cycle q̂  T1 T2 T3 T4 PSIR̂  ,PSIˆH  ,PSIH

1 4.53 6.41 -2.75 4.58 1.50 15.23 0.78 0.75

2 3.93 5.89 -2.52 4.21 1.77 14.39 0.81 0.78

3 3.35 5.48 -2.35 3.91 1.45 13.18 0.80 0.77

4 2.55 4.76 -2.04 3.4 1.36 11.56 0.70 0.70

5 2.87 5.08 -2.18 3.63 1.28 12.16 0.76 0.74

6 2.19 4.39 -1.88 3.14 1.36 10.77 0.74 0.74

7 2.20 4.41 -1.89 3.15 1.30 10.75 0.77 0.72

Average 3.09 5.20 -2.23 3.72 1.43 12.58 0.77 0.74

PPG-ESIM estimated values
Ratio Expected genetic gain Response Correlation True correlation

Cycle p̂ T1 T2 T3 T4 ESIMR̂ l̂ l
1 1.27 8.51 -3.79 2.98 1.01 16.44 0.99 1.0

2 1.21 8.31 -2.47 2.67 0.72 15.31 0.98 1.0

3 1.25 7.56 -2.37 2.14 1.17 12.56 1.00 1.0

4 1.43 8.48 -2.40 1.88 0.26 17.07 1.00 1.0

5 1.30 7.90 -1.99 2.08 0.60 15.15 0.99 1.0

6 1.34 7.25 -1.72 1.57 0.40 13.83 0.99 1.0

7 1.32 6.19 -1.69 2.03 0.31 13.17 1.02 1.0

Average 1.30 7.74 -2.35 2.19 0.64 14.79 0.99 1.0
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Real Data Set
The first part of Table 4 shows the estimated values of the 
proportional constant associated with PPG-PSI (Eq. [3]), 
the estimated PPG-PSI expected genetic gain per selec-
tion cycle for each trait (Eq. [4a]), the estimated PPG-PSI 
selection response (Eq. [4b]), and the correlation between 
the net genetic merit (H = w¢a) and PPG-PSI (Eq. [8]) 
for the restricted traits: number of cotton balls per plant 
(V1), number of seeds per ball (V2) and lint per seed (V3) 
(trait total lint yield per plant, V4, was not restricted) using 
d¢ = [2 –5 10] in seven annual selection cycles (from 1949 
through 1955).

The second part of Table 4 shows the estimated 
values of the ratio ,PSI

ˆˆ ˆ/ Hp = l   (Eq. [8]), the estimated 
PPG-ESIM expected genetic gain per selection cycle 
for each trait (Eq. [7a]), the estimated PPG-ESIM selec-
tion responses (Eq. [7b]), and the estimated correlations 
between the net genetic merit H = w¢a and PPG-ESIM 
(Eq. [8]) for the restricted traits: number of cotton balls per 
plant (V1), number of seeds per ball (V2) and lint per seed 
(V3) (trait total lint yield per plant, V4, was not restricted) 

using d¢ = [2 –5 10] in seven annual selection cycles (from 
1949 through 1955).

Note that for this data set, the estimated values of the 
proportional constant associated with PPG-PSI (Eq. [3]) 
were negative for 1951, 1952, and 1953 (Table 4). This 
means that the PPG-PSI results were valid only for 1949, 
1950, 1954, and 1955. Valid averages for 4 yr (1949, 1950, 
1954, and 1955) of the estimated PPG-PSI expected 
genetic gain per selection cycle for each trait (V1, V2 and 
V3) were 0.039, -0.096 and 0.192, respectively.

Similar to the PPG-PSI index, note that for 1949, 1952, 
and 1953, the estimated eigenvalues were higher than 1, 
ˆ 1l >  (Table 4). This is because although the estimated 
matrix P̂ was positive definite (all eigenvalues positive), 
the estimated matrix Ĉ was not positive semidefinite (no 
negative eigenvalues), i.e., some Ĉ eigenvalues for 1949, 
1952, and 1953 were negative. Thus the PPG-ESIM 
results were valid only for 1950, 1951, 1954, and 1955. 
The PPG-ESIM valid averages for the 4 yr (1950, 1951, 
1954, and 1955) of the estimated PPG-ESIM expected 

Table 3. Simulated data set 2. Estimated values of the Predetermined Proportional Gains Phenotypic Selection Index (PPG-

PSI) and the Predetermined Proportional Gains Eigen Selection Index Method (PPG-ESIM) for the proportional constant asso-

ciated with PPG-PSI (theta value, q̂), the expected genetic gain per selection cycle for each trait, the selection response ( PSIR̂
and ESIMR̂ ), the estimated ( ,PSIˆH  and l̂) and true ( ,PSIH  and l ) correlation between the net genetic merit and PPG-PSI and PPG-

ESIM and the ratio p = l  ,PSI
ˆˆ ˆ/ H , for three restrictive traits RL, SM, and EW, using d¢= [3 –1 2] in 10 selection cycles.

PPG-PSI estimated values
Theta Expected genetic gain Response Correlation True correlation

Cycle q̂ RL† SM EW BW PSIR̂  ,PSIˆH  ,PSIH

1 18.80 1.64 –0.55 1.09 58.30 60.49 0.42 0.41

2 19.48 1.74 –0.58 1.16 56.98 59.30 0.42 0.42

3 18.75 1.69 –0.56 1.12 56.32 58.56 0.41 0.40

4 18.33 1.63 –0.54 1.09 55.36 57.54 0.41 0.41

5 19.34 1.75 –0.58 1.17 55.87 58.21 0.42 0.41

6 17.38 1.63 –0.54 1.09 54.28 56.46 0.41 0.42

7 18.03 1.71 –0.57 1.14 53.99 56.26 0.42 0.42

8 17.58 1.70 –0.57 1.13 52.93 55.19 0.41 0.41

9 17.55 1.72 –0.57 1.15 52.41 54.70 0.41 0.41

10 16.28 1.64 –0.55 1.09 51.04 53.22 0.41 0.40

Average 18.15 1.68 –0.56 1.12 54.75 56.99 0.41 0.41

PPG-ESIM estimated values
Ratio Expected genetic gain Response Correlation True correlation

Cycle p̂ RL SM EW BW ESIMR̂ l̂ l
1 1.70 0.85 –3.15 7.45 78.23 196.80 0.71 0.57

2 1.68 0.73 –3.09 6.99 74.90 186.37 0.70 0.57

3 1.70 0.75 –3.03 6.79 74.27 182.57 0.71 0.57

4 1.70 0.52 –2.85 6.83 73.38 180.22 0.70 0.57

5 1.67 0.47 –2.92 6.79 72.57 179.45 0.70 0.57

6 1.69 0.72 –2.96 6.58 71.87 176.51 0.70 0.57

7 1.70 0.84 –2.97 6.55 71.03 175.07 0.71 0.57

8 1.69 0.75 –2.87 6.32 69.25 169.77 0.70 0.57

9 1.68 0.63 –2.68 6.31 68.76 166.46 0.70 0.57

10 1.67 0.85 –2.56 5.99 66.12 157.02 0.68 0.56

Average 1.69 0.71 –2.91 6.66 72.04 177.02 0.70 0.57

† RL, number of eggs; SM; age at sexual maturity; EW, egg weight; BW, body weight.
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genetic gain per selection cycle for each trait (V1, V2 and 
V3) were 0.125, 0.338 and 0.075, respectively.

According to the vector of predetermined propor-
tional gains d¢ = [2 –5 10], the estimated expected genetic 
gains per selection cycle for the three traits in both selec-
tion indices were not precise. These results may be due to 
the lowest phenotypic and genotypic variance and covari-
ance (Table 1).

The valid average values for the estimated PPG-PSI 
selection responses and the correlations between H = w¢a 
and PPG-PSI were 1.481 and 0.315, respectively. On the 
other hand, the valid average value for the estimated PPG-
ESIM selection responses was 2.176 and its correlations 
with H = w¢a was 0.728 (Table 4). The valid average value 
of the ratios ,PSI

ˆˆ ˆ/ Hp = l   (Eq. [8]) was 2.91. This last result 
indicates that PPG-ESIM efficiency was almost twice as 
high as PPG-PSI efficiency in each selection cycle.

DISCUSSION
Results for two simulated data sets and one real data set 
showed that PPG-ESIM is more efficient than PPG-PSI 
because in the three data sets, the estimated PPG-ESIM 
selection responses and the estimated correlations between 

the net genetic merit and PPG-ESIM were higher than the 
estimated PPG-PSI selection responses and the estimated 
correlations between the net genetic merit and PPG-PSI.

The results obtained using the simulated data set for 
comparing PPG-PSI efficiency vs. PPG-ESIM efficiency 
showed that the average PPG-ESIM expected genetic 
gains for two of three restricted traits were closer to the 
predetermined proportion than the PPG-PSI expected 
genetic gains. The PPG-PSI and PPG-ESIM expected 
genetic gains obtained using the real data set were less pre-
cise than those obtained using the two simulated data sets: 
however, PPG-ESIM accuracies were also higher than 
PPG-PSI accuracies for all restricted traits in all seven 
selection cycles.

As the objective of any PSI is to predict the net genetic 
merit (H = w¢a), the correlation between PPG-PSI and 
H, and between PPG-ESIM and H, should be the maxi-
mum value possible (Hazel, 1943). Thus, as the correlation 
between PPG-ESIM and H was always higher than the 
correlation between PPG-PSI and H, PPG-ESIM is a 
better predictor of H than PPG-PSI from this point of 
view. In addition, the ratio H,ESIM / H,PSI (Eq. [8]) was 
higher than 1 for the three data sets.

Table 4. Real data set. Estimated values of the Predetermined Proportional Gains Phenotypic Selection Index (PPG-PSI) and 

the Predetermined Proportional Gains Eigen Selection Index Method (PPG-ESIM) for the proportional constant associated 

with PPG-PSI (theta value, q̂), the expected genetic gain per selection cycle for each trait, the selection response ( PSIR̂  and ESIMR̂ ), 

the estimated correlation ( ,PSIˆH  
and l̂) between the net genetic merit and PPG-PSI and PPG-ESIM, and the ratio (p = l  ,PSI

ˆˆ ˆ/ H ) 

for four real cotton traits: number of cotton balls per plant (V1), number of seeds per ball (V2), lint per seed (V3), and total lint 

yield per plant (V4) in each of seven annual selection cycles (extracted from Manning, 1956). Traits V1, V2 and V3 were restricted 

with d¢= [2 –5 10] in all selection cycles.

PPG-PSI estimated values
Theta Expected genetic gain Response Correlation

Year q̂ V1 V2 V3 V4 PSIR̂  ,PSIˆH
1949 0.0302 0.053 -0.132 0.263 3.346 3.531 0.37

1950 0.0058 0.034 -0.085 0.169 0.947 1.065 0.49

1951 -0.0001 -0.002 0.004 -0.008 0.429 0.424 0.10

1952 -0.0011 -0.002 0.004 -0.008 4.163 4.158 0.57

1953 -0.0003 -0.001 0.002 -0.004 2.449 2.446 0.78

1954 0.0063 0.064 -0.160 0.320 0.381 0.605 0.22

1955 0.0002 0.003 -0.007 0.014 0.460 0.470 0.18

Valid Average† 0.011 0.039 -0.096 0.192 1.284 1.481 0.315

PPG-ESIM estimated values
Ratio Expected genetic gain Response Lambda

Year p̂ V1 V2 V3 V4 ESIMR̂ l̂
1949 7.14 3.139 0.168 0.142 4.861 19.092 2.64

1950 1.35 -0.038 -0.006 0.141 0.710 2.426 0.66

1951 5.50 0.270 0.718 0.053 0.635 2.148 0.55

1952 3.88 3.536 -0.263 0.109 2.384 10.722 2.21

1953 2.88 1.324 0.184 0.154 -0.028 5.493 2.25

1954 3.18 0.079 -0.066 0.146 0.332 1.444 0.70

1955 5.56 0.187 0.707 -0.041 0.684 2.685 1.00

Valid Average‡ 2.910 0.125 0.338 0.075 0.590 2.176 0.728

† Averages were obtained only for 1949, 1950, 1954, and 1955. Values where q̂ was negative were not considered.

‡ Averages were obtained only for 1950, 1951, 1954, and 1955. Values where l >ˆ 1 were not considered.
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Why PPG-ESIM Accuracies were Higher than 
PPG-PSI Accuracies for the Three Data Sets
Note that H,PSI was maximized only with respect to 
the vector of Eq. [2a] (bM), while H,PSI was maximized 
with respect to the vector of Eq. [5a] (bPPG-ESIM) and 
with respect to the estimated vector of economic values 
w, which, in the PPG-ESIM context, can be written as 
wE = C–1[lPbPPG-ESIM + Mv] (Eq. [6]). We believe this is 
the main reason why in all cases ,ESIM ,PSI

ˆ ˆ
H H >  .

PPG-ESIM Estimated Economic Weights
The economic weight for each trait depends on the amount 
by which profit may be expected to increase for each unit 
of improvement in that trait. In the context of animal 
breeding, these values may vary from breed to breed or 
from region to region within the same breed and they may 
change, even while a breeding program is in progress, if per-
manent shifts in market demand occur (Hazel, 1943). In the 
most favorable case, when we have complete information, 
multiple regression techniques can be used to determine the 
economic weights. In this case, the economic weights are 
unbiased, but usually have fairly large sampling errors. For 
some traits, however, economic information is lacking or 
only partially available. In these circumstances, economic 
weights are intelligent guesses rather than accurate esti-
mates (Vandepitte and Hazel, 1977).

Vandepitte and Hazel (1977) and Smith (1983) ran 
computer simulations to evaluate the economic weight 
sampling error for five traits and concluded that the effects 
on the SPSI for errors of up to 50% (in one trait at a time) 
had small effects on selection efficiency, but that large 
changes (±200%) in some traits caused substantial losses in 
SPSI efficiency. Based on economic theory, Melton et al. 
(1979) proposed a profit function to estimate the economic 
weight; however, Goddard (1983) found inconsistencies 
in the method of Melton et al. (1979). Magnussen (1990) 
used an approach for estimating economic weight that is 
similar to the one used in Eq. [6].

In the PPG-ESIM context, we can estimate w as one 
linear combination of the first eigenvector and the first 
eigenvalue. Note that in the canonical correlation theory 
(Anderson, 2003), there are two linear combinations (sim-
ilar to the net genetic merit H = w¢a and to the linear 
phenotypic selection index I = b¢p), and in each one, the 
vectors of coefficients are unknown and thus have to be 
estimated; the same argument is valid for the PPG-ESIM 
theory. Finally, note that the estimated economic weights 
are valid only for the PPG-ESIM, that is, it is not a gen-
eral method to estimate economic weights for any linear 
phenotypic selection index.

Importance of the PPG-PSI
The PPG-PSI allows imposing restrictions on the expected 
genetic gain values to make some traits change their mean 

values based on a predetermined level, while the rest of the 
traits remain without restrictions. By this reasoning, the 
PPG-PSI should be the basic tool for selecting individuals 
as parents of the next generation. We think that the Lande 
and Thompson (1990) index, the molecular eigen selec-
tion index (Cerón-Rojas et al., 2008b), and the Dekkers 
(2007) index, which use molecular marker information 
for making selections (the first two combine quantita-
tive trait loci information with phenotypic information, 
whereas the third combines genomic estimated breeding 
values with phenotypic information), should be adapted 
to the PPG-PSI or the PPG-ESIM. The same should be 
done with the genomic selection indices of Togashi et al. 
(2011) and Ceron-Rojas et al. (2015).

Importance of the PPG-ESIM
The PPG-ESIM does not require a proportional constant 
and, due to the properties associated with eigen analysis, it 
is possible to use the theory of similar matrices to change 
the direction of the eigenvector values without affect-
ing the correlation between the PPG-ESIM and the net 
genetic merit (Harville, 1997), which helps to eliminate 
the problem of shifting the population means in the oppo-
site direction to the predetermined desired direction. The 
accuracy of PPG-ESIM is always higher than PPG-PSI 
accuracy because the PPG-ESIM accuracy is not affected 
by the increasing number of restricted traits.

Hayes and Hill (1980) have shown that when the 
eigenvalues of matrix 1ˆ ˆ-P C  are negative or greater than 
one, matrix P̂ is not positive definite (all eigenvalues 
positive) or Ĉ is not positive semidefinite (no negative 
eigenvalues); thus the estimated P̂ and/or Ĉ matrix values 
are wrong. This result is valid in the context of matrix 

1ˆ ˆ ˆˆ -=T KP C, which is used to obtain the PPG-PSI and 
PPG-ESIM vectors of coefficients (Eq. [2a] and [5a]). 
We believe this is another important characteristic of the 
PPG-ESIM because the eigenvalues of matrix T̂ can be 
used to check the values of matrices P̂ and Ĉ.

In addition, note that matrices K = [I – Q] and Q 
are projectors. That is, matrices K and Q are idempotent 
(K = K2 and Q = Q2) and unique (Searle, 1966); they are 
also orthogonal, i.e., KQ = QK = 0. In Eq. [2a], matrix Q 
projects vector b into a space generated by the columns of 
matrix M due to the restriction M¢b =0 that is introduced 
when FM is maximized with respect to b, while matrix 
K projects vector b into a space perpendicular to that 
generated by the columns of matrix M (Rao, 2002; 
Cerón-Rojas et al., 2016). That is, the main function of 
matrix K is to transform vector b into vector bM.

Matrix K has a similar function in Eq. [5a] but is 
adapted to the canonical correlation theory (Anderson, 
1999, 2003). Thus, note that vectors p and a (Eq. [1a]) can 
be ordered in a new vector x as x¢ = [p¢ a], from where 
the covariance matrix of x is é ù

ê ú
ê úë û

P C

C C
. One measure of the
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association between a linear combination of p and a 
linear combination of a is the canonical correlation (lj) 
value obtained from equation (P–1C – lj

2I)bj = 0, where 
bj is the jth eigenvector of matrix P–1C and lj is the jth 
( j  =  1, 2, …, t) canonical correlation value of a linear 
combination of p and a linear combination of a. When we 
maximized Equation F with respect to b, w, 0.5l, 0.5m, 
and v¢, we introduced matrix K in equation (P–1C – lj

2I)
bj = 0, as can be seen in Eq. [5a]. These results simpli-
fied the PPG-ESIM vector of coefficients because it does 
not need a proportional constant and thus is simpler than 
the PPG-PSI vector of coefficients. Thus, PPG-ESIM effi-
ciency is greater than PPG-PSI efficiency in part because 
PPG-ESIM vector of coefficients is simpler than PPG-PSI 
vector of coefficients.

CONCLUSIONS
We proposed a predetermined proportional gains pheno-
typic selection index based on the eigen selection index 
method (PPG-ESIM), which does not require a propor-
tional constant. Due to the properties associated with 
eigen-analysis, it is possible to use the theory of similar 
matrices to change the direction of the eigenvector values 
without affecting the correlation between PPG-ESIM and 
the net genetic merit. PPG-ESIM uses the first eigenvector 
for determining the proportion of each trait contributing 
to PPG-ESIM, and the first eigenvalue in the PPG-ESIM 
selection response. Results obtained using two simulated 
data sets and one real data set indicated that, in all cases, 
PPG-ESIM efficiency was higher than the predetermined 
proportional gains phenotypic selection index efficiency. 
We concluded that PPG-ESIM is a good selection index 
that can be used in any phenotypic selection program.
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