Global Challenges and Urgency for Partnership

Sukhwinder Singh Wheat-Lead, Seeds of Discovery (SeeD)-(<u>suk.singh@cgiar.org</u>); International Maize and Wheat Improvement Center (CIMMYT)

> International Agrobiodiversity Congress, New Delhi, November, 2016

Global Challenges for the Crop Breeders

Increasing Demands

Global population by 2030 \sim 8.5 billion; by 2050 \sim 9.7 billion and by 2100 \sim 11.2 billion

- India expected to become the largest country in population size, surpassing China around 2022.
- Nigeria could surpass the United States by 2050

-UN DESA, 2015

Supply Constraint

Climate Change

Weather Extremes

Heat Stress

New Diseases, Pests Frequent droughts

After Effects

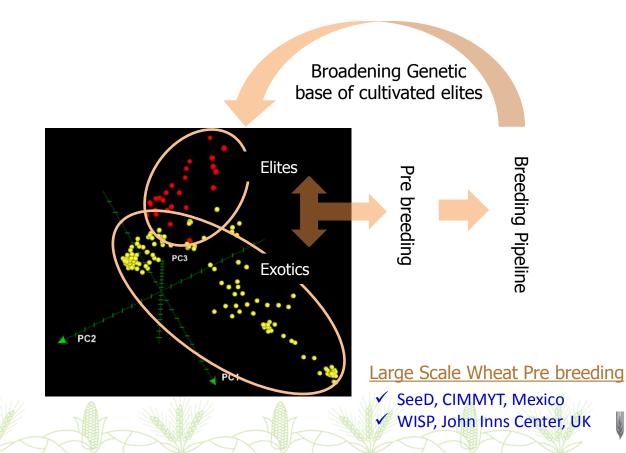
- Urbanization
- Deforestation
- Pollution
- · Conversion of wetlands
- Agricultural modernization
- Changes in diets

Worst Situation:

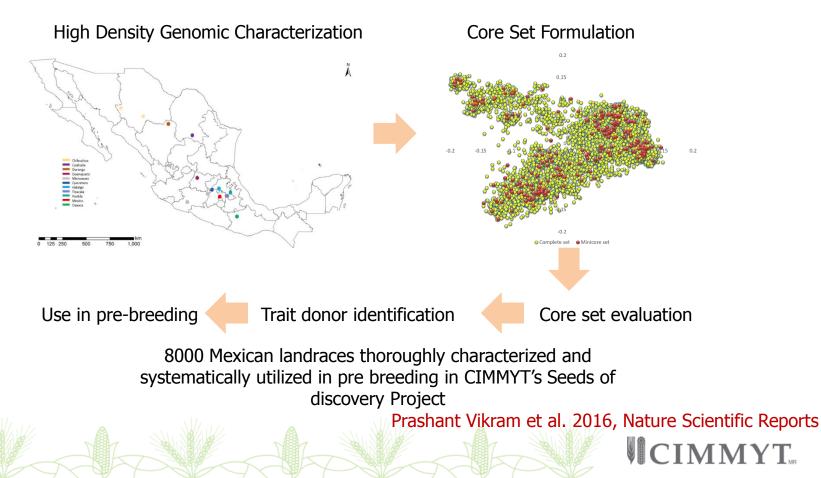
Countries with high demand growth, fragile environments and poor economy <u>Agriculture & Agrobiodiversity is crucial for such countries</u>

Way Forward

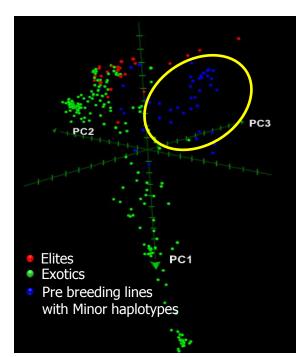
Simultaneously addressing the yield demands, climate resilience, nutrition and <u>continuous broadening of genetic</u> <u>base of crop varieties</u> to handle forthcoming challenge

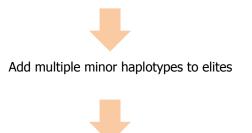

Synergize upstream and downstream research focusing scientific knowledge and delivering product t the same time.

Strengthening breeding pipelines
 Establish Pre breeding platform(s)

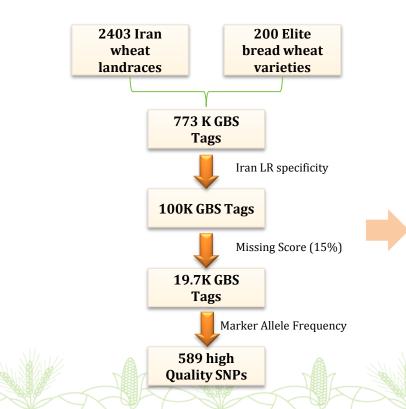


The Urgency


Expansion of genetic repertoire of cultivated elites


The Mexican Wheat Landrace Story

Wheat Pre breeding Lines with Minor Haplotypes: Potential in Breeding

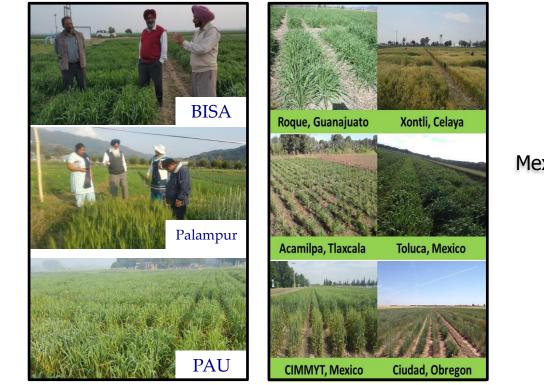

Pre breeding lines with Minor haplotypes are genetically diverse from elites & exotics but agronomically more closer to elites i.e. suitable for increasing the genetic base of elite germplasm pool.

Enhancing resilience

Broadening genetic base

Synergizing Upstream and Downstream Research for Product Development

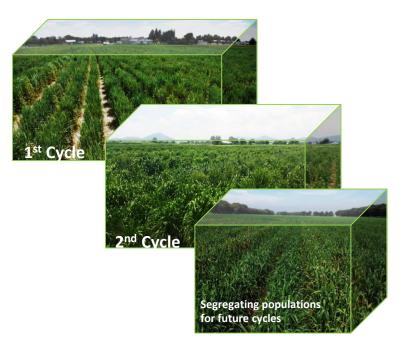
Identifying the value of landrace specific alleles that are absent in elites to utilize efficiently in breeding for trait improvement as well as broadening the genetic base.


· · ·	1			
Trait	Marker	Chr	P-value	PV
Grain Weight	5345847 F	1B	9.67E-04	1.22
Test Weight	1143802 F	1A	1.47E-05	2.15
Grain Weight	4909857 F	1A	9.27E-04	1.23
Test Weight	4909857 F	1A	5.19E-07	2.56
Grain Length	1209531 F	1B	4.89E-06	2.39
Test Weight	1209531 F	1B	7.20E-05	1.94

Genome-wide association analysis with high

quality landrace specific SNPs

First Cycle Wheat Pre breeding Germplasm



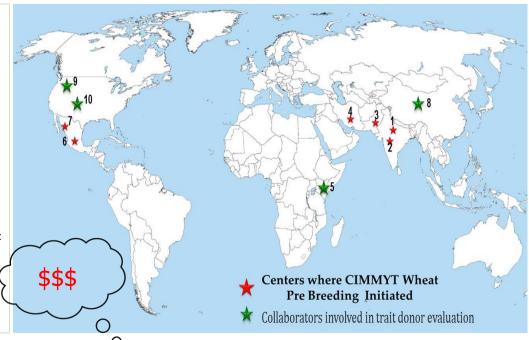
Mexico

- With limited support wheat pre breeding in Mexico and India initiated
- Preliminary results are encouraging

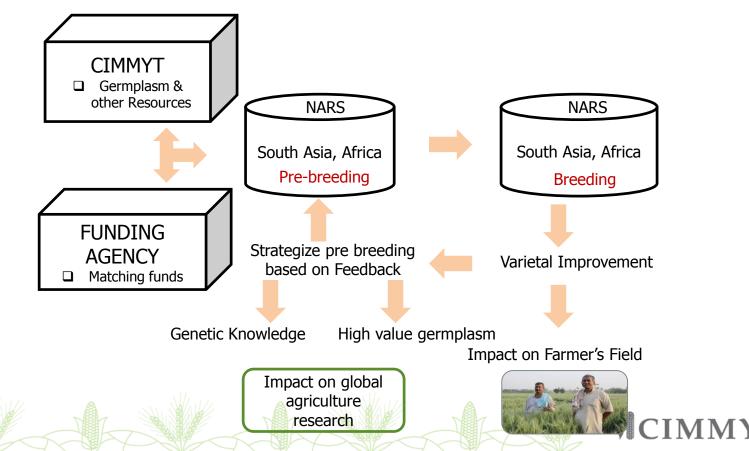
India

Toward Wheat Pre breeding Product Pipeline

From Mexican govt. funding we initiated pre breeding cycles and developed 15000 advanced pre breeding fixed lines


Act in Couth Aci

For impact in South Asia and Africa <u>funding support</u> and <u>partnerships</u> are urgently required


Why Partnership Scale Up Required in Mission Mode to Deliver Impact

- a) CIMMYT-BISA, Ludhiana
 b) PAU, Ludhiana
 c) CSK HPKV, Palampur
- 2. Nat Inst of Abiotic Stress Management, Pune, India
- 3. Nuclear Inst of Agric, Tandojam, Sindh, Pakistan
- 4. Dryland Agric Res Inst, Maragheh, Iran
- 5. KALRO, Njoro, Kenya
- 6. INIFAP, Celaya, México
- 7. INIFAP, Ciudad, Obregon, Mexico
- 8. Wheat Res Inst, Acad Agric Sci, Ganzou, China
- 9. Washington State Univ
- 10. South Dakota State Univ

Seeking dynamic partnership & funding support

The Roadmap The way forward in impact delivery

SeeD-Wheat Research Progress

Scaling up required !!!

Germplasm sharing

- Wheat landrace core sets shared with researchers in USA, India, China, Mexico, Pakistan, Iran and Kenya
- Pre Breeding germplasm: Mexico, India, Pakistan, Iran, China, Kenya

Data sharing

- Data sharing agreements signed with different institutions in USA, Australia, India and Mexico
- High density genomics data being made publicly available

Capacity Building

 Eric Lopez, Cynthia Ortiz, Lulú Ledesma Ramírez, Yuria medina Uriarte, María del Pilar Suaste Franco

Publications

- 1. Huihui Li et al. A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics-2015 16:216.
- 2. Prashant Vikram et al. Unlocking the genetic diversity of creole wheats. Nature Scientific Report-2016 6:23092
- 3. Deepmala Sehgal et al. Exploring and mobilizing the gene bank biodiversity for wheat improvement. PLoS One- 2015 10(7): e0132112.
- 4. Marta Lopes et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of experimental botany-2015 66(12): 3477-86.
- 5. Jose Crossa et al. Genomic prediction of GeneBank Wheat Landraces. Genes Genetics Genomics (G3)-2016 6(7):1819-34
- 6. Saint Pierre et al. Genomic prediction model for grain yield in wheat under diverse climatic regimes. Nature Scientific Report-2016 6:27312.

Four Years Research outcomes

We acknowledge all researchers at CIMMYT or elsewhere who have contributed directly or indirectly to CIMMYT Wheat Pre breeding project

