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RESEARCH

Modern genotyping technologies have made genetic data 
for plant breeding relatively inexpensive; however, the gen-

eration of multilocation phenotypic data remains expensive and 
laborious. There is an increasing interest in reducing phenotyp-
ing costs, either by increasing the efficiency of phenotyping or by 
extracting maximum information from the available phenotypic 
data. This paper focuses on the latter by combining modern geno-
typing with phenotypic data from separate datasets to map important 
traits under well-watered and drought stress conditions in maize.

The materials for this analysis were generated by CIMMYT 
under the Water-Efficient Maize for Africa (WEMA) project. 
This project is a public-private partnership that focuses on breed-
ing drought-tolerant and water-efficient maize for Sub-Saharan 
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ABSTRACT
Genotyping breeding materials is now rela-
tively inexpensive but phenotyping costs have 
remained the same. One method to increase gene 
mapping power is to use genome-wide genetic 
markers to combine existing phenotype data for 
multiple populations into a unified analysis. We 
combined data from 15 biparental populations 
of maize (Zea mays L.) (>2500 individual lines) 
developed under the Water-Efficient Maize for 
Africa project to perform genome-wide associa-
tion analysis. Each population was phenotyped 
in multilocation trials under water-stressed and 
well-watered environments and genotyped via 
genotyping-by-sequencing. We focused on flow-
ering time and plant height and identified clear 
associations between known genomic regions 
and the traits of interest. Out of ~380,000 sin-
gle-nucleotide polymorphisms (SNPs), we found 
115 and 108 that were robustly associated with 
flowering time under well-watered and drought 
stress conditions, respectively, and 143 and 120 
SNPs, respectively, associated with plant height. 
These SNPs explained 36 to 80% of the genetic 
variance, with higher accuracy under well-
watered conditions. The same set of SNPs had 
phenotypic prediction accuracies equivalent to 
genome-wide SNPs and were significantly bet-
ter than an equivalent number of random SNPs, 
indicating that they captured most of the genetic 
variation for these phenotypes. These methods 
could potentially aid breeding efforts for maize 
in Sub-Saharan Africa and elsewhere. The meth-
ods will also help in mapping drought tolerance 
and related traits in this germplasm. We expect 
that analyses combining data across multiple 
populations will become more common and we 
call for the development of algorithms and soft-
ware to enable routine analyses of this nature.
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Africa [http://wema.aatf-africa.org/ (accessed 27 June 
2016); Beyene et al. 2015; Zhang et al. 2015]. Water-Effi-
cient Maize for Africa has generated 35 biparental maize 
populations from tropical-adapted germplasm for marker-
assisted selection and has mapped quantitative trait loci 
(QTLs) for drought-related traits. Several of these popula-
tions were included in an earlier meta-analysis (Semagn 
et al. 2013) that combined data from low-density SNP 
markers to gain power across populations. Our objective 
in this study was to use high-density genotyping to com-
bine the populations for the identification of QTLs with 
improved power and resolution.

Unlike structured populations such as nested associa-
tion mapping (NAM; McMullen et al. 2009) or Multipar-
ent Advanced Generation Inter-Cross (MAGIC; Kover et 
al. 2009) populations, the WEMA populations were not 
designed to be analyzed together. Each population com-
prises a separate dataset and many of the controls used to 
help unify NAM or MAGIC populations—planting the 
same fields, using common reference lines, having shared 
parents, etc.—are lacking. Determining the appropriate 
statistical framework to unify these populations was thus 
a major aim of this study. We focus our analysis on two 
traits: plant height and flowering time (days to anthesis). 
These traits have been extensively studied in temperate 
maize material, providing a basis for comparison with our 
results. Also, since the WEMA populations are largely 
tropical in origin, they may contain novel QTLs that pre-
vious studies (performed mostly with temperate material) 
have not detected.

In maize, flowering time is a highly polygenic trait 
(Buckler et al. 2009). Among landraces it can vary from 2 
to 11 mo (Kuleshov 1933). Proper flowering time is a cru-
cial component of adapting maize to local conditions, as 
improper flowering can cause large yield losses, especially 
in conjunction with drought (Bolaños & Edmeades 1996). 
Most maize flowering time QTLs have small individual 
effects (Buckler et al. 2009). Despite the large number of 
QTLs identified in mapping studies, relatively few have 
been cloned to individual genes. The best studied of these 
is Vgt1, a natural variant linked to the insertion of a min-
iature inverted-repeat transposable element (MITE) in an 
enhancer ~70 kb upstream of the gene ZmRap2.7 (Vlăduţu 
et al. 1999, Salvi et al. 2007). Another is ZmCCT, caused 
by a CACTA-like transposon insertion in the promoter 
region that affects both flowering time and photoperiod 
sensitivity, especially in tropical maize (Yang et al. 2013).

Maize plant height is also a highly polygenic trait 
(Wang et al. 2006, Peiffer et al. 2014) that appears to 
closely follow the infinitesimal model, meaning it is con-
trolled by a large number of loci of small effect. Large-
effect mutations for height have been found at over 40 
maize loci (Wang et al. 2006) and many of these have 
been traced to individual genes [MaizeGDB (Andorf et al. 

2015)]. Most of these are involved in plant hormone sig-
naling, transportation, or synthesis, especially of gibber-
ellins and brassinosteroids (Salas Fernandez et al. 2009). 
Some of the better characterized proteins include Dwarf3, 
which is involved in gibberellin synthesis (Winkler and 
Helentjaris 1995); nana plant1, which affects brassino-
steroid synthesis (Hartwig et al. 2011); Brachytic2, which 
influences polar auxin transport in the stalk (Multani et al. 
2003) and Dwarf8 and Dwarf9, which cause insensitiv-
ity to gibberellins by mutations in DELLA proteins (Salas 
Fernandez et al. 2009).

Here, we present here the results of combining data-
sets across 15 of the WEMA populations to map QTLs 
for plant height and flowering time. We use multiple 
mapping approaches, including a standard joint genome-
wide association (GWAS), a Bayesian analysis that treats 
each population independently, and a recently developed 
model selection algorithm, FarmCPU (Liu et al. 2016). 
From these, we identify a set of SNPs associated with each 
phenotype under either drought or well-watered condi-
tions and we use genomic prediction models to confirm 
that they identify the genetic regions that are important 
for phenotypic control.

MATERIALS AND METHODS
Plant Materials and Phenotyping
We initially selected 19 (out of 35) WEMA populations with 
extensive genetic and phenotypic data. However, four popu-
lations were later dropped from the study because of issues 
related to genotypic data (see the Results section for details). 
Brief descriptions of the 15 populations have been given in 
Table 1. Details on population development and phenotyp-
ing were described previously (Semagn et al. 2013, Beyene et 
al. 2015). In brief, the populations were derived from crosses 
between CIMMYT drought-tolerant donors and CIMMYT 
inbred lines currently in commercial use in eastern and south-
ern Africa. The F1 generation was advanced to the F2, BC1, or 
BC1F2 generation (Table 1). These plants were selfed and their 
progeny (F2:3 or BC1F2 families) were crossed with a single-
cross tester from a complementary heterotic group. Test-crosses 
of each population, together with five commercial checks, were 
planted in a-lattice designs with two replications and evaluated 
for multiple traits under four to five well-watered environments 
and two to four managed drought stress environments at vari-
ous field stations in Kenya, Zimbabwe and Zambia during 2010 
and 2011 (Supplemental Fig. S1). The relationships among pop-
ulations are complex, with most sharing at least 1 parent with 
another population (Supplemental Fig. S2).

The test-cross hybrids were planted in a-lattice design 
trials with two replications per location. At all locations, entries 
were planted in two-row plots (5 m long), with a spacing of 
0.75 m between rows and 0.25 m between hills. Two seeds 
per hill were planted and thinned to one plant per hill 3 wk 
after emergence to achieve a final population density of 53,333 
plants ha-1. Fertilizers were applied at the rate of 60 kg N ha–1 
and 60 kg P2O5 ha–1 as recommended for the area. Nitrogen 
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pipeline (Glaubitz et al. 2014). The GBS version 2.7 “tags on 
physical map” file downloaded from Panzea (www.panzea.org, 
accessed 27 June 2016) was used to anchor reads to the Maize 
AGPv2 genome for SNP calling at 955,690 total sites.

Each population was genotyped in two sets, with the 
first set consisting of 95 lines and the second set containing 
all remaining lines. The raw GBS data consisted of 955,690 
sites but had large amounts of missing data. Three methods 
to impute missing data were empirically compared: BEAGLE4 
(Browning & Browning 2007), FSFHap (Swarts et al. 2014), and 
FILLIN (Swarts et al. 2014). Imputation accuracy was assessed 
on the first set (95 lines per population) while waiting for the 
second to be processed. The donor haplotype files required by 
FILLIN were downloaded from Panzea (http://www.panzea.
org, accessed 27 June 2016) and consisted of the anonymized 
GBS 2.7 haplotypes made from 8000-site windows.

To gauge imputation accuracy, all genotype calls in the 
WEMA dataset with exactly seven sequencing reads were iden-
tified and a random 1% of these were masked using custom 
scripts (included in Supplemental File S2). The three algorithms 
were then run on the masked data and the resulting genotype 
calls for the masked sites were compared with their original 
calls. Accuracy was assessed as described by Swarts et al. (2014) 
and was defined as the Pearson correlation coefficient between 
the original and imputed datasets when major alleles are scored 
as 0, minor alleles as 1, and heterozygous calls as 0.5.

Heritability Estimation
Broad-sense heritability (H2) was estimated by fitting a mixed 
linear model in R with the lme4 package (Bates et al. 2015). 
Station–year combination was fitted as a fixed effect and 
population and line as random effects. Heritability (H2) was 
determined as the proportion of total phenotypic variance 
explained by the combined line and population terms:
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was split-applied at planting and 6 wk after emergence. Fields 
were kept free of weeds by hand weeding. Managed drought 
stress trials were conducted during the dry season by withdraw-
ing irrigation 2 wk before flowering and withholding irrigation 
throughout harvest. In well-watered experiments, supplemen-
tal irrigation was provided as needed to avoid moisture stress. 
Commercial checks were included in each experiment, although 
only two checks (WH504 and WH505) were included across 
all experiments. These checks are commercial hybrids from 
Western Seed Company (Kitale, Kenya)

Anthesis date was measured as the number of days from 
planting to when 50% of the plants had shed pollen. Plant height 
was measured as the distance from the base of the plant to the 
height of the first tassel branch. Raw phenotype data were first 
converted to field-wise best linear unbiased predictors (BLUPs) 
to correct for within-field spatial effects using CIMMYT’s 
FieldBook software (http://dtma.cimmyt.org/index.php/infor-
mation-tools/software-download, accessed 27 June 2016). These 
data were then cleaned by removing outliers and other spurious 
data through automatic scripts and manual inspection of the data. 
Both the raw and cleaned data are available in Supplemental File 
S1; cleaning scripts are included in Supplemental File S2.

For Bayesian GWAS analysis, the within-field BLUPs were 
used. For joint GWAS, experiment-wide BLUP values were 
calculated using the lme4 package in R (Bates et al. 2015) to fit 
a linear model with environment (station–year combination) as 
a fixed effect and line and specific field as random effects. The 
resulting BLUPs are in Supplemental File S1 and the R script 
used to generate these is included in Supplemental File S2.

Genotype Generation and Imputation
We first selected 19 WEMA biparental populations for which 
extensive genetic and phenotypic information was available. 
For the lines in each family, equal amounts of leaf tissue from 
15 F2:3 plants were bulked and extracted with a DNeasy 96 
Plant kit (Qiagen Inc., Valencia, CA). Purified DNA was sent to 
the Genomic Diversity Facility at Cornell University for geno-
typing-by-sequencing (GBS; Elshire et al. 2011). Raw flowcell 
output was processed to genotype calls using the TASSEL-GBS 

Table 1. Details of the 15 WEMA biparental maize populations used in the study.

Population code Population type Initial cross Tester
Population size  
(after filtering)

6x1008 F2 CML505 × CZL00009 CML395 × CML444 187

6x1015 F2 CZL04003 × CZL00009 CML395 × CML444 187

6x1016 F2 CZL99017 × CZL00009 CML395 × CML444 179

6x1017 F2 CML539 × CZL00009 CML395 × CML444 169

6x1018 F2 CML505 × CZL99017 CML395 × CML444 188

6x1019 F2 CZL04008 × CZL0719 CML395 × CML444 186

6x1020 F2 CZL0723 × CZL0724 CML395 × CML444 180

6x1021 F2 CZL0723 × CZL0719 CML395 × CML444 182

6x1023 F2 CZL0618 × VL062655 CML395 × CML444 169

6x1028 F2 CZL074 × VL062645 CML395 × CML444 170

6X1114 BC1–F2 CZL00003 × CKL09001 CML312 × CML442 182

6x1115 BC1–F2 VL062655 × CZL00003 CML312 × CML442 175

6x1117 BC1 CML444 × CKL09007 CML312 × CML442 113

6x1118 BC1 CML444 × CKL09001 CML312 × CML442 141

6x1120 F2 CML395 × CKL09008 CML312 × CML442 169
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where Vl is the variance explained by the individual lines, Vp 
is the variance explained by the population term, and Vt is the 
total phenotypic variance.

Narrow-sense heritability (h2) was determined within each 
environment (experiment) by calculating a kinship matrix for 
each population in TASSEL (Bradbury et al. 2007) and apply-
ing it to a mixed linear model with a single dummy SNP. 
Narrow-sense heritability was estimated as the proportion of 
total variance explained by the kinship matrix:
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where Vg is the genetic variance and Vr is the residual variance. This 
same calculation was attempted across the entire dataset but proved 
infeasible because of the excessive computing time required.

Joint GWAS
Only SNPs with an allele frequency of ³ 0.05 across the entire 
dataset (380,530 SNPs) were included in the GWAS analysis. 
Joint GWAS was performed in R 3.1.2 (R Core Team 2015) 
across all populations by running a single-SNP scan across the 
genome with the following model:

Y = �Population + PC1–13  
+ Additive:Population  
+ Dominance:Population, 		            [3]

where Y is the matrix of genotypes, Population is a factor identi-
fying the 15 WEMA populations, PC1–13 is the first 13 principal 
coordinates, and Additive:Population and Dominance:Population 
are the additive and dominance genetic terms, respectively, nested 
within the Population term. Both population and principal 
coordinates were included to account for the strong population 
structure in WEMA (Fig. 1, Supplemental File S3). Principal 
coordinates were calculated with the cmdscale() (classic multi-
dimensional scaling) function in R on a distance matrix created 
in TASSEL across all of the families. We chose to use 13 princi-
pal coordinates in the association model because additional ones 
explained negligible amounts of variance (Supplemental Fig. S3). 
Additive and dominance terms were nested within population 
to allow associations to have a different effect in each popula-
tion; this was done on the basis of the results in the maize NAM 
population, where QTLs at the same locus can have different 
sizes or even directions of effect in different populations (e.g., 
Buckler et al. 2009). P-values were determined by performing a 
log-likelihood test between the full model (above) and a model 
with just the population and principal coordinate terms.

Bayesian GWAS
Bayesian GWAS was performed in a similar manner to joint 
GWAS, except that each field was first analyzed separately, so that 
the linear models included only additive and dominant genetic 
terms (no population or principal coordinates). The R package 
BayesFactor (Version 0.9.11–1, Morey & Rouder 2015) was used 
to calculate a Bayes factor for each SNP. The log10 of each Bayes 
factor was then taken; those with negative values were set to 0. 
Functionally, this means that data from a given field can only 
increase the probability that a SNP is associated with a trait. We 

set this minimum because keeping negative values would allow 
fields where a causal SNP is not segregating to degrade the signal 
from those where it is (Supplemental Fig. S4).

We then took advantage of the ability to use the poste-
rior probability from one field as the prior probability for the 
next to simply add the log-Bayes factors together across fields 
to generate a unified Bayes factor for each population and for 
the entire WEMA population. The advantage of this approach 
is that each field could be run separately and the resulting Bayes 
factors combined at the end without the need to unify pheno-
types across different environments.

FarmCPU Model Selection  
and Bootstrapping
To identify high-confidence SNPs through model selection, 
100 bootstraps on each phenotype were performed, each time 
randomly setting 10% of the phenotypic values within each pop-
ulation as missing. Model selection was subsequently performed 
using FarmCPU (Liu et al. 2016) on each bootstrapped dataset. 
The resample model inclusion probability (RMIP; Valdar et al. 
2009) value for each SNP is the fraction of bootstraps in which 
it was among the top 30 most significant SNPs identified by 
the model, based on initial tests that identified this as a good 
compromise between including signal and reducing noise. Only 
FarmCPU SNPs with RMIP ≥ 0.05 (5 out of 100 iterations) are 
discussed in the text because of their greater resolution.

Variance Explained
To determine the amount of variance explained by the identified 
SNPs, a model was fitted that included a population term, the first 
13 genetic principal coordinates, and interactions between the 
population term and all additive and dominance terms derived 
from identified SNPs. Since missing genotypes would disrupt 
this model, missing genotype calls were set to the mean within 
each population; if an entire population was missing genotypes at 
a site, all such calls were set to the major allele (defined across the 
entire dataset). The variance explained by the resulting model 
(Table 2) is the adjusted R2 value; the proportion of genetic vari-
ance explained is the adjusted R2 divided by H2.

Candidate Genes
Candidate genes for flowering time were identified from the 
literature (Danilevskaya et al. 2008, Dong et al. 2012, Hirsch et 
al. 2014). Plant height candidate genes were compiled by mining 
the MaizeGDB database (http://maizegdb.org/, accessed 28 
June 2016) for known height mutants and searching the maize 
genome annotations on Phytozome Version 9 (http://www.
phytozome.net, accessed 28 June 2016) for genes annotated with 
the terms “auxin,” “brassinosteroid,” and/or “gibberellin.”

Genome-wide Prediction
Genome-wide prediction was performed using the rrBLUP pack-
age for R (Endelman 2011; R Core Team 2015). Genotypes 
used for prediction consisted of three sets: (i) 10,000 randomly 
selected SNPs from across the genome to sample the entire 
genome but also to incur a much smaller computational burden 
than using all ~380,000 segregating SNPs; (ii) the SNPs identi-
fied from FarmCPU model selection for each trait; and (iii) an 
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equal number of random SNPs that have the same coverage and 
allele frequencies as the model-selected SNPs but that are at least 
5 Mbp away from any hit. All models were run with 100 cross-
validations, in which 10% of phenotypes were randomly masked. 
The resulting predictions were compared to the masked (true) 
values to generate a prediction accuracy estimate, measured using 
a Pearson correlation coefficient. P-values for the differences in 
distributions of correlations were determined via a two-sided 
t-test.

RESULTS AND DISCUSSION
Imputation Accuracy
The proportion of missing sites within population in 
the raw GBS data varied from 65.6 to 77.1% (Table 3). 
Of the three methods tested to impute this missing data, 
BEAGLE4 (Browning & Browning 2007) imputed the 
largest number of polymorphisms but provided the lowest 
accuracy (r2 = 0.917), probably because it forces all sites to 
be imputed (Supplemental Fig. S5). FSFhap (Swarts et al. 
2014) showed the highest accuracy (0.949) but the lowest 

Fig. 1. Multidimensional scaling of the 15 Water-Efficient Maize for Africa (WEMA) biparental maize populations. The 15 WEMA populations 
that passed quality filtering are shown in a multidimensional scaling plot (principal coordinate analysis). The F2 lines are colored according to 
population; gray dots show the parental lines. The populations separate into roughly four main clusters, of 6x1008–6x1015, 6x1019–6x1021, 
6x1114 and 6x1115, and all others. An interactive three-dimensional version of this plot is included in Supplemental File S3.

Table 2. Genome-wide association summaries of FarmCPU hits.

Trait Treatment
FarmCPU  

SNPs† Lines (n)

Population–
environment 

combinations (n) Heritability‡
Variance 

explained§

Proportion of 
genetic variance 

explained

Anthesis date Well-watered 115 2795 61 0.47 0.37 0.80

Anthesis date Drought 108 2789 49 0.83 0.30 0.36

Plant height Well-watered 143 2795 59 0.72 0.47 0.65

Plant height Drought 120 2789 48 0.56 0.27 0.49

† SNP, single-nucleotide polymorphism.

‡ Broad-sense heritability (H2) based on combined data from all environments.

§ Adjusted R2 based on fitting a linear model with 13 principal coordinates, a population term, additive and dominance effects, and interactions between the population and 
additive and dominance effects.

Table 3. Genotype statistics before and after imputation

Population 
code

Raw data
Imputed and  
cleaned data

MAF† Missing
Hetero-
zygosity MAF Missing

Hetero-
zygosity

6x1008 0.37 0.71 0.03 0.37 0.04 0.29

6x1015 0.41 0.70 0.04 0.46 0.02 0.49

6x1016 0.19 0.70 0.01 0.45 0.02 0.47

6x1017 0.33 0.71 0.02 0.43 0.01 0.48

6x1018 0.40 0.66 0.06 0.35 0.04 0.25

6x1019 0.41 0.70 0.04 0.45 0.02 0.47

6x1020 0.40 0.71 0.04 0.42 0.03 0.40

6x1021 0.41 0.71 0.05 0.45 0.02 0.45

6x1023 0.38 0.71 0.03 0.46 0.01 0.47

6x1028 0.42 0.67 0.05 0.45 0.01 0.45

6x1114 0.23 0.69 0.03 0.23 0.02 0.23

6x1115 0.25 0.66 0.03 0.26 0.02 0.25

6x1117 0.18 0.67 0.03 0.26 0.02 0.50

6x1118 0.20 0.68 0.03 0.26 0.02 0.48

6x1120 0.40 0.71 0.04 0.47 0.04 0.45

Combined 0.18 0.77 0.01 0.19 0.08 0.12

† MAF, minor allele frequency
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percent imputed, largely because of its inability to handle 
backcross populations at the time. FILLIN (Swarts et al. 
2014) appears to be a good compromise for the WEMA 
data, as its imputation accuracy was nearly as good as 
FSFHap (0.942) while still imputing over 80% of the 
masked sites; for this reason, FILLIN was chosen to impute 
the full genotype dataset. After imputation, the proportion 
of missing sites within each population varied from 1.2 to 
8.3%. Summary statistics for each population’s genotype 
data before and after imputation are given in Table 3.

Multiple filtering steps were performed to remove 
low-quality genotypic data. Four of the original 19 popu-
lations selected for our study showed high levels of errant 
genotypes, probably because of contamination, mistaken 
parental identity, or an incorrect pollination method 
during their creation; these were excluded from all analy-
ses (Supplemental Fig. S6). Some other populations (e.g., 
6x1018) showed several genome segments that distorted 
the overall allele frequencies or heterozygosity levels, to the 
point that the genome-wide averages no longer matched 
their expected population type (F2, BC1, or BC1F2; see 
Table 1), even though most of the genome segregated as 
expected (Supplemental Fig. S7). These probably resulted 
from incomplete inbreeding of the founder lines, lead-
ing to segregation of more than two haplotypes at some 
genomic locations. All genotype data (raw, imputed, and 
cleaned) are available from Panzea (http://www.panzea.
org, accessed 28 June 2016).

Phenotypes and Heritability
Phenotype data were collected by CIMMYT at multiple 
field stations (locations) in eastern and southern Africa, 
under both well-watered and managed drought stress 
conditions (Supplemental Fig. S1). No single location 
contained data for all of the 15 populations; additionally, 
the relative positions of each population within a loca-
tion were not available, rendering each population–loca-
tion combination effectively a separate experiment. Data 
from each location were checked and outlier phenotypes 
were discarded, together with one experiment that had an 
obvious entry error (Supplemental Fig. S8). The pheno-
typic variance differed greatly among environments (Fig. 
2) and correlations across environments were generally 
low (Supplemental Fig. S9). Both raw and cleaned pheno-
type data are available in Supplementary File S1.

The H2 for each trait across all populations within 
each treatment (well-watered or managed drought) varied 
from 0.47 to 0.83 (Table 2). Plant height was more herita-
ble under well-watered conditions (H2 = 0.72) than under 
drought conditions (H2 = 0.56), the same pattern that was 
seen in these materials for grain yield and anthesis-silking 
interval (Semagn et al. 2013; Beyene et al. 2015). Days to 
anthesis, however, showed higher H2 under drought con-
ditions (0.83) than under well-watered conditions (0.47), 

although the GWAS analyses still explained more genetic 
and total variation under well-watered conditions despite 
the lower H2 (Table 2). It may be that the drought stress 
exposed more differences among genotypes but most of 
the genes underlying these differences had too small of an 
individual effect to be detected.

To estimate mapping power more directly, h2 values 
for each field location were also calculated (Fig. 3; see 
Supplemental Fig. S10 for distributions within individual 
populations). Calculation of mapping power across all field 
locations simultaneously would have been computation-
ally prohibitive. Average h2 ranged from 0.27 to 0.49, with 
higher values under well-watered conditions for both traits.

Genome-wide Association
Two algorithms for GWAS were performed for each 
phenotype and condition: a “normal” joint analysis and 
a Bayesian analysis. The joint GWAS used BLUPs from 
across all environments, whereas Bayesian analysis treated 
every population–environment combination indepen-
dently and unified them only at the end.

The results of these analyses are shown in Fig. 4 and Fig. 
5 for days to anthesis and plant height, respectively. Despite 
the different statistical frameworks, both methods yielded 
highly similar results. Several major genomic regions asso-
ciated with each phenotype were detected; these were 
largely consistent across both treatment conditions. For 
days to anthesis, the largest associations were located on 
chromosomes 2, 5, 7, and 8, with treatment-specific peaks 
appearing on chromosome 6 (well-watered) and chromo-
some 10 (managed drought). For plant height, the stron-
gest associations were found on chromosomes 2, 5, and 8, 
with some potential treatment-specific signals detected on 
chromosomes 3 and 7. Although linkage disequilibrium 
overall decays rapidly in WEMA (Supplemental Fig. S11), 
large linkage blocks result from variants present in only 
a few families. These blocks spread the association signal 
out, such that it was often not possible to pinpoint a specific 
genomic region at the core of each association.

Because of the relatively low resolution of the initial 
analyses, an additional analysis using bootstrapped phe-
notypes and model selection was performed using Farm-
CPU (Liu et al. 2016) to refine the location of associated 
SNPs (Fig. 4 and Fig. 5). This method of model selection 
is conceptually similar to the NAM GWAS method used 
previously for mapping within the US NAM population 
(Wallace et al. 2014), another large collection of biparental 
populations. Model selection improves GWAS results by 
identifying groups of individual SNPs that best explain 
the variance in the model (e.g., Wang et al. 2011; Segura 
et al. 2012). In practice, this results in higher resolution 
because it reduces association peaks to one or only a few 
specific sites. For this reason, we focus on the model-
selected SNPs for the remainder of the paper.
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Flowering Time Associations
The results of analyses for flowering time are shown in 
Fig. 4. In total, we found 115 SNPs with significant asso-
ciations with flowering time under well-watered condi-
tions and 108 SNPs under managed drought conditions, 
explaining 80 and 36% of the genetic variance, respec-
tively. A full list of associated SNPs and candidate genes 
is given in Supplemental File S1 but some of the strongest 
associations are highlighted below.

One of the strongest associations under both well-
watered and drought conditions is near Vgt1/ZmRap2.7 
(chromosome 8). Vgt1 is among the largest flowering time 
loci in maize (Buckler et al. 2009) and results from a MITE 
insertion that decreases expression of ZmRap2.7, a flower-
ing time-related transcription factor 70 kb downstream 
(Salvi et al. 2007). Whether the same MITE insertion is seg-
regating in the tropical maize populations is unknown but 
can be determined once whole-genome sequencing of the 

Fig. 2. Phenotypic variance across the 15 Water-Efficient Maize for Africa (WEMA) biparental maize populations and conditions. The 
distribution of phenotypes is shown for both days to anthesis (A) and plant height (B), divided by treatment condition and further by 
population. Note that since all well-watered trials were performed during the wet season and all drought trials during the dry season, the 
differences between conditions probably have additional factors (light quality, cumulative heat units, etc.) contributing to them beyond 
just water availability.
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founder parents of the 15 populations (currently underway) 
is completed.

We also found several associations near genes related 
to the circadian clock, including ZmPRR37 and its para-
log, ZmPRR37.1 (chromosomes 7 and 2, respectively). 
Both of these genes are part of the core oscillator in maize 
and are homologs of the Arabidopsis thaliana (L.) Heynh. 
gene PRR3 (Hayes et al. 2010; Dong et al. 2012). In A. 
thaliana, PRR3 regulates the circadian clock by stabiliz-
ing another core circadian gene, TOC1, though PRR3 
expression appears to be limited to the vasculature (Para et 
al. 2007). A minor association on chromosome 8 may tag 
Gigz1a, an ortholog of A. thaliana GIGANTEA, shown to 
be involved in photoperiod sensing in maize (Miller et al. 
2008; Dong et al. 2012). This signal is detected primar-
ily from the raw GWAS data; however, when FarmCPU 
model selection is applied, the position of the strongest 
SNP shifts and instead tags ZCN14 (see below).

Two strong associations were found with the phos-
phatidylethanolamine-binding protein population kinases, 
ZCN14 and ZCN18 (chromosomes 8 and 2, respectively). 
Phosphatidylethanolamine-binding protein population 
kinases are transcription factors involved in the control of 
flowering time, with the best studied members being the A. 
thaliana genes FLOWERING LOCUS T (FT) and TER-
MINAL FLOWER 1 (Danilevskaya et al. 2008). ZCN14 
is the most highly conserved member of the population 

relative to FT, although its expression pattern is very dif-
ferent: A. thaliana FT is limited to the leaf blade, whereas 
maize ZCN14 expression occurs in reproductive primordia 
and thus after the transition to reproductive growth (Dani-
levskaya et al. 2008). The discovery of a strong association 
signal near ZCN14 implies that ZCN14 still has some func-
tion in flowering time control. Less is known about ZCN18, 
which is expressed mostly in stems and (to a lesser extent) in 
leaves. Although a signal is also found near ZCN8, another 
phosphatidylethanolamine-binding protein kinase popula-
tion member involved in flowering time, FarmCPU did 
not identify it as a major association; instead, it identifies the 
SNPs around Vgt1 mentioned earlier.

Another strong association occurs near zfl1 (chromo-
some 10), a homolog of the A. thaliana LEAFY gene. zfl1 
is thought to be an upstream regulator of conserved floral 
identity genes. Loss-of-function mutants of zfl1 and its 
paralog, zfl2, display a variety of defects in floral develop-
ment (Bomblies et al. 2003).

Two MADS-box proteins with known functions in 
floral development, Zap1b and ZmM5 (chromosomes 7 
and 9), are also located near strong association signals. 
Zap1b (also called ZmMADS1) is adjacent to a cluster of 
identified SNPs, one of which shows strong association 
under drought conditions, whereas ZmM5 (ZmMADS3) 
is near a consistently strong association under both well-
watered and drought conditions. Ectopic expression of 
Zap1b results in severe developmental defects in transgenic 
maize lines (Heuer et al. 2001), including defects in flower 
development. Less is known about ZmM5, although it has 
similar expression patterns to Zap1b (embryo, develop-
ing flowers, and stem nodes) (Heuer et al. 2001) and so 
is probably involved in similar developmental programs.

Lastly, we found a weak association near PhyA2 (chro-
mosome 5), a phytochrome gene. Phytochromes sense 
light quality, with phytochrome A sensing far-red light 
(Quail 2002) and often being involved in the photoperiod 
response. However, rice (Oryza sativa L.) PhyA mutants 
show a normal photoperiod response (Takano et al. 2001), 
indicating that maize PhyA2 may influence flowering 
time through a different mechanism.

Interestingly, we found no signal around the Dwarf8 
locus on chromosome 1. This region is near several flow-
ering time candidate genes and has been implicated in 
flowering time before (Thornsberry et al. 2001), yet none 
of our three methods detected any significant signal here 
(Fig. 4). Although the link between Dwarf8 itself and flow-
ering time has been called into question (Larsson et al. 
2013), it is still surprising that none of the candidate genes 
in this region associated with flowering-time effects in 
these tropical maize populations.

We also found several associations that did not appear 
to be associated with candidate genes, specifically on chro-
mosomes 5, 6, and 8 (Fig. 4). These may represent novel 

Fig. 3. Distribution of narrow-sense heritability of maize within treat-
ment. Boxplots show the distribution of heritabilities within each 
experimental field for each trait under well-watered and drought 
conditions, with the median value indicated within each box.
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genes that are not known to play a role in flowering 
time. Alternatively, some might be explained by 
structural variation in the maize genome (Chia et 
al. 2012), resulting in annotated genes from the ref-
erence genome actually being in different genomic 
locations within the WEMA tropical maize popu-
lations, thus putting the association peaks in new 
locations. For developing Africa-adapted improved 
tropical maize germplasm with drought tolerance, 
identifying the nature or exact location of these 
genes is perhaps less important than finding the 
significant marker associations that can be used to 
introgress favorable alleles through marker-assisted 
breeding. Both novel loci and well-characterized 
ones will continue to be mined for useful alleles in 
tropical-adapted germplasm that might be useful 
for breeding applications.

Plant Height Associations
We found 143 SNPs associated with plant height 
under well-watered conditions and 120 SNPs 
under drought conditions, explaining 65 and 49% 
of the total genetic variance, respectively. The loci 
identified for plant height show more variation 
than for flowering time, in that more hits appear 
to demonstrate stronger effects (as measured by –
log10 P-values) under one treatment condition than 
the other. In addition, since there were many more 
previously known candidate genes for plant height 
than for flowering time, many of the hits in this 
study were relatively close to multiple candidates.

The strongest SNP associations were located 
near several auxin-related genes. Auxin is one of 
the major regulators of plant growth and architec-
ture (Gallavotti 2013); therefore, it is not surprising 
to find strong associations near genes related to it. 
The most robust signal is auxin response factor-transcrip-
tion factor 20 (chromosome 5), which was identified 
by FarmCPU in 90% of bootstrap iterations under 
well-watered conditions and 84% under managed 
drought conditions. Auxin response factor popula-
tion proteins directly bind to auxin to initiate down-
stream signaling by binding to conserved auxin 
response elements that modulate the expression of 
downstream genes (Guilfoyle et al. 1998). Under 
well-watered conditions, we also found an associa-
tion near GRMZM2G108851 (chromosome 8). This 
gene has been annotated as both a putative auxin-
responsive gene and a cytochrome b561 or ferric 
reductase transmembrane protein, indicating that 
it is a membrane-bound electron shuttle (INTER-
PRO domain IPR006593). Since such electron car-
riers participate in a wide variety of biochemical 
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functions, its potential role in height determination 
(beyond responding to auxin) is unknown.

Under well-watered conditions, we found an 
extremely robust association (RMIP = 0.98) on 
chromosome 2 near two auxin-related genes: Pin11 
and GRMZM2G479596. Pin11 is a member of the 
PIN-FORMED auxin transporter population, the 
members of which are involved in shuttling auxin 
across cellular membranes (Křeček et al. 2009). 
GRMZM2G479596 is a putative (and uncharacter-
ized) auxin-response factor. Under drought condi-
tions, however, this locus exhibited reduced signal 
and the strongest signal (RMIP = 0.96) was on 
chromosome 7 instead. Several candidate genes 
could be found near this hit, though the closest 
was GRMZM2G089854, which has homology to 
a putative auxin-independent growth promoter in 
rice. Other nearby genes include the cyclin gene 
asc1 and another putative auxin-responsive protein, 
GRMZM2G021049. Although little is known about 
the latter, mutations of asc1 are known to result in 
short, infertile plants (Brooks et al. 2009).

In addition to auxin-related genes, an asso-
ciation near the beginning of chromosome 2 is 
located near two brassinosteroid-related genes, 
GRMZM2G045398 and GRMZM2G318408. 
Brassinosteroids are plant hormones related to 
growth, and mutants defective in brassinosteroid syn-
thesis exhibit strong dwarfing phenotypes across sev-
eral species (Bishop and Koncz 2002). Both proteins 
exhibit homology to A. thaliana BRH1 (brassino-
steroid-responsive RING-H2). Downregulation of 
BRH1 in A. thaliana does not affect plant height (but 
does affect stem and leaf morphology), whereas over-
expression mutants showed no distinct phenotype 
(Molnár et al. 2002), so it is unknown what effect 
these genes may have in maize. An association was 
also found near gras45 (GRMZM2G028039), a GIB-
BERELLIC ACID-INSENSITIVE, REPRESSOR 
of GA1, and SCARECROW population transcrip-
tion factor localized to the end of chromosome 9. 
GRAS-population transcription factors are involved 
in several aspects of plant signaling, including gibber-
ellic acid signaling and phytochrome A signal trans-
duction (Hirsch & Oldroyd 2009), both of which 
have potential for involvement in plant height.

A strong association (RMIP = 0.76) on chromo-
some 3 under well-watered conditions had no nearby 
candidate gene. As with flowering time, this could 
represent a genuinely novel association or it could 
also be an alignment mismatch between the WEMA 
materials and the B73 reference genome. Again, 
identifying the exact gene responsible for each asso-
ciation is less important than the ability to use these 
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GWAS hits as tags for loci that could be potentially used to 
improve tropical maize germplasm.

Genome-wide Prediction
To confirm the utility of the identified SNPs, genome-
wide prediction was performed both across and within 
the WEMA populations. Although the prediction accu-
racy was modest (average correlations of 0.3–0.4), the 
SNPs selected from GWAS had the same accuracy as 
those found by using a genome-wide SNP set and were 

significantly more accurate than an equivalent number of 
random SNPs (Fig. 6). The only time this did not occur 
was for plant height under well-watered conditions, where 
the difference within populations and within fields fol-
lowed a similar pattern but was not statistically significant.

CONCLUSIONS
Both plant height and flowering time are important agro-
nomic traits that are significantly impacted by drought 
stress. Several hits near candidate genes known to 

Fig. 6. Genome-wide prediction of maize phenotypes. Phenotypic prediction was performed across the entire Water-Efficient Maize for 
Africa (WEMA) dataset in 100 cross-validations using either genome-wide single-nucleotide polymorphisms (SNPs), the model-selected 
SNPs, or an equivalent number of random SNPs matched for allele frequencies and coverage. Each panel (A–D) shows the distribution 
of raw correlations across the entire WEMA dataset (top), the mean correlations within each family (middle), and the mean correlations 
within each field (bottom). P-values from comparing distributions via a two-sided t-test are shown to the right of each plot.
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control these traits were identified, along with discovery 
of a number of novel loci. Some of the alleles at these loci 
could be unique to tropical maize germplasm, since tropi-
cal germplasm generally has higher diversity than temper-
ate germplasm in maize. The next step is to extend this 
analysis to other important drought-related traits, then to 
move desirable loci into elite breeding lines through, for 
example, marker-assisted selection or genomic selection. 
The regions identified in these populations are likely to 
be shared with other maize varieties, but given the high 
diversity of tropical maize, only a subset is likely to be 
shared with any given inbred or landrace accession.

A major aim of this analysis was to determine methods 
to unify data across the diverse WEMA populations and, 
more generally, across similar datasets containing mul-
tiple populations, testing locations, and treatment condi-
tions. Toward this end, three methods were compared: 
a joint GWAS analysis, a Bayesian GWAS approach, and 
a model selection approach. Both the joint GWAS and 
FarmCPU model selection approaches relied on BLUPs 
made by unifying the phenotypes across environments. 
This sort of unification frequently uses common check 
lines to account for environment-specific effects; two such 
checks were present in all environments in this study but 
this is not always the case in ad hoc breeding datasets. 
In contrast, the Bayesian approach handles each environ-
ment separately and has no such constraint. Additionally, 
the Bayesian GWAS is modular, such that environments 
can be added or dropped with minimal computational 
overhead. Similar modifications of analysis models for the 
other two methods would require rerunning the analysis, 
often at great computational expense. Unfortunately, the 
higher resolution gained by model selection is not avail-
able for the Bayesian approach; consequently, no single 
approach evaluated is completely superior to the others.

Genome-wide prediction results indicated that the loci 
identified underlie the majority of the genetic variation 
for traits evaluated in this germplasm. Although our pre-
diction accuracy agreed with previous analyses in maize 
(reviewed in Lin et al. 2014), higher accuracy is always the 
goal. One way to potentially improve prediction accuracy 
across populations would be to include genotype × envi-
ronment (G × E) interaction terms in the model (Lopez-
Cruz et al. 2015). This was not performed in the current 
analysis, primarily because the large number of separate 
environments caused by the lack of location data would 
have led to a massive number of model terms. Including all 
such terms would not only raise the computational burden 
exponentially but also overparameterize many of the 
models. Nonetheless, we can identify locations where G × 
E interactions occurred by using the Bayesian association 
analysis, which includes it implicitly by mapping in each 
field separately (Supplemental Fig. S12). A previous analysis 
of these materials that treated each field station as a unified 

environment found that including G × E interactions 
increased genomic prediction accuracy for whole-genome 
SNPs (Zhang et al. 2015), implying that the same would 
probably hold true for these model-selected SNPs. More 
generally, the different reactions of plants under drought 
versus well-watered conditions are a type of G × E. This 
interaction is apparent in the different heritabilities of the 
traits under well-watered and drought conditions (Table 
2). It also probably explains other systematic differences 
between the two conditions; for example, the raw asso-
ciations for plant height (Fig. 5) have –log10 P-values and 
cumulative Bayes factors that are roughly twice as high 
under well-watered conditions as under drought. Some of 
this is caused by the lower heritability, but some may also 
be a result of the signal being spread across more loci, thus 
making each of them appear less significant overall.

Many groups are working to increase the speed and 
efficiency of phenotypic data collection, especially at the 
field level (Prasanna et al., 2013; Araus and Cairns, 2014). 
These efforts take various forms, from entering data 
directly into databases with tablet computers to mounting 
sensors on tractors or unmanned aerial vehicles (drones) 
to scan entire fields rapidly. Nonetheless, for the foresee-
able future, phenotyping will remain a major bottleneck 
for plant breeding and therefore efforts to maximize the 
utility of information from existing phenotype data will 
become increasingly valuable. Even with high-throughput 
phenotyping methods, the ability to unify ever larger and 
more disparate datasets will still be important, so the devel-
opment of user-friendly and robust statistical methods and 
software packages to process and analyze such large and 
complex datasets efficiently is extremely important. Efforts 
to improve genomic prediction and to decrease the length 
of breeding cycles—another key constraint to improving 
genetic gain—are also underway. The combination of these 
methods should enable faster, more powerful applied breed-
ing to meet the needs of a global 21st-century population.

Acknowledgments
We thank Sara Miller for editing the manuscript, Alberto 
Romero and Cinta Romay for their compiled list of flower-
ing time candidate genes, and members of the Buckler lab for 
general feedback. This work was supported by National Sci-
ence Foundation grant IOS-1238014, the USDA – Agricultural 
Research Service (USDA-ARS), the University of Georgia, 
Consultative Group for International Agricultural Research 
Program MAIZE, Cornell–CIMMYT Genomic Selection 
project financed by the Bill and Melinda Gates Foundation, and 
the WEMA project funded by the Bill & Melinda Gates Foun-
dation, the Howard G. Buffett Foundation, and the United 
States Agency for International Development.

References
Andorf, C.M., E.K. Cannon, J.L. Portwood, J.M. Gardiner, L.C. 

Harper, M.L. Schaeffer, et al. (2015) MaizeGDB 2015: New 



crop science, vol. 56, september–october 2016 	  www.crops.org	 13

tools, data, and interface for the maize model organism data-
base. Nucleic Acids Res. 44(D1): D1195–D1201. doi:10.1093/
nar/gkv1007 

Araus, J.L., and J.E. Cairns. 2014. Field high-throughput phenotyp-
ing: The new crop breeding frontier. Trends Plant Sci. 19:52–61. 
doi:10.1016/j.tplants.2013.09.008

Bates, D., M. Mächler, B.M. Bolker, and S.C. Walker. 2015. Fitting 
linear mixed-effects models using lme4. J. Stat. Software 67(1). 
doi:10.18637/jss.v067.i01

Beyene, Y., K. Semagn, S. Mugo, A. Tarekegne, R. Babu, B. Meisel, 
et al.. 2015. Genetic gains in grain yield through genomic selec-
tion in eight bi-parental maize populations under drought stress. 
Crop Sci. 55(1): 154–163. doi:10.2135/cropsci2014.07.0460

Bishop, G.J., and C. Koncz. 2002. Brassinosteroids and plant steroid 
hormone signaling. Plant Cell 14(Suppl):S97–S110.

Bolaños, J., and G.O. Edmeades. 1996. The importance of the 
anthesis-silking interval in breeding for drought tolerance in 
tropical maize. F. Crop. Res. 48(1):65–80. doi:10.1016/0378-
4290(96)00036-6

Bomblies, K., R.-L. Wang, B. Ambrose, R.J. Schmidt, R.B. Mee-
ley, and J. Doebley. 2003. Duplicate FLORICAULA/LEAFY 
homologs zfl1 and zfl2 control inflorescence architecture and 
flower patterning in maize. Development 130(11):2385–2395. 
doi:10.1242/dev.00457

Bradbury, P.J., Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ram-
doss, and E.S. Buckler. 2007. TASSEL: Software for association 
mapping of complex traits in diverse samples. Bioinformatics 
23(19):2633–2635. doi:10.1093/bioinformatics/btm308

Brooks, L., J. Strable, X.L. Zhang, K. Ohtsu, R.L. Zhou, A. 
Sarkar, et al. 2009. Microdissection of shoot meristem functional 
domains. PLoS Genet. 5(5):E1000476. doi:10.1371/journal.
pgen.1000476

Browning, S.R., and B.L. Browning. 2007. Rapid and accurate 
haplotype phasing and missing-data inference for whole-genome 
association studies by use of localized haplotype clustering. Am. 
J. Hum. Genet. 81(5):1084–1097. doi:10.1086/521987

Buckler, E.S., J.B. Holland, P.J. Bradbury, C.B. Acharya, P.J. 
Brown, C. Browne, et al. 2009. The genetic architecture of 
maize flowering time. Science 325(5941):714–718. doi:10.1126/
science.1174276

Chia, J.M., C. Song, P.J. Bradbury, D. Costich, N. de Leon, J. 
Doebley, et al. 2012. Maize HapMap2 identifies extant vari-
ation from a genome in flux. Nat. Genet. 44(7):803–807. 
doi:10.1038/ng.2313

Danilevskaya, O.N., X. Meng, Z. Hou, E.V. Ananiev, and C.R. 
Simmons. 2008. A genomic and expression compendium of the 
expanded PEBP gene population from maize. Plant Physiol. 
146(1):250–264. doi:10.1104/pp.107.109538

Dong, Z., O. Danilevskaya, T. Abadie, C. Messina, N. Coles, and 
M. Cooper. 2012. A gene regulatory network model for floral 
transition of the shoot apex in maize and its dynamic modeling. 
PLoS One 7(8):E43450. doi:10.1371/journal.pone.0043450

Elshire, R.J., J.C. Glaubitz, Q. Sun, J. Poland, K. Kawamoto, E.S. 
Buckler, et al. 2011. A robust, simple genotyping-by-sequencing 
(GBS) approach for high diversity species. PLoS One 6(5):E19379. 
doi:10.1371/journal.pone.0019379

Endelman, J.B. 2011. Ridge regression and other kernels for genomic 
selection with R package rrBLUP. Plant Genome 4:250–255. 
doi:10.3835/plantgenome2011.08.0024

Gallavotti, A. 2013. The role of auxin in shaping shoot architecture. 
J. Exp. Bot. 64(9):2593–2608. doi:10.1093/jxb/ert141

Glaubitz, J., T. Casstevens, and F. Lu. 2014. TASSEL-GBS: A high 
capacity genotyping by sequencing analysis pipeline. PLoS One 
9(2):E90346. doi:10.1371/journal.pone.0090346

Guilfoyle, T.J., T. Ulmasov, and G. Hagen. 1998. The ARF fam-
ily of transcription factors and their role in plant hormone-
responsive transcription. Cell. Mol. Life Sci. 54(7):619–627. 
doi:10.1007/s000180050190

Hartwig, T., G.S. Chuck, S. Fujioka, A. Klempien, R. Weizbauer, 
D.P.V. Potluri, et al. 2011. Brassinosteroid control of sex deter-
mination in maize. Proc. Natl. Acad. Sci. USA 108(49):19814–
19819. doi:10.1073/pnas.1108359108

Hayes, K.R., M. Beatty, X. Meng, C.R. Simmons, J.E. Habben, and 
O.N. Danilevskaya. 2010. Maize global transcriptomics reveals 
pervasive leaf diurnal rhythms but rhythms in developing ears 
are largely limited to the core oscillator. PLoS One 5(9):E12887. 
doi:10.1371/journal.pone.0012887

Heuer, S., S. Hansen, J. Bantin, R. Brettschneider, E. Kranz, H. 
Lörz, et al. 2001. The maize MADS box gene ZmMADS3 affects 
node number and spikelet development and is co-expressed 
with ZmMADS1 during flower development, in egg cells, and 
early embryogenesis. Plant Physiol. 127(1):33–45. doi:10.1104/
pp.127.1.33

Hirsch, C.N., J.M. Foerster, J.M. Johnson, R.S. Sekhon, G. Mut-
toni, B. Vaillancourt, et al. 2014. Insights into the maize pan-
genome and pan-transcriptome. Plant Cell 26(1):121–135. 
doi:10.1105/tpc.113.119982

Hirsch, S., and G.E.D. Oldroyd. 2009. GRAS-domain transcrip-
tion factors that regulate plant development. Plant Signal. Behav. 
4(8):698–700. doi:10.4161/psb.4.8.9176

Kover, P.X., W. Valdar, J. Trakalo, N. Scarcelli, I.M. Ehrenreich, 
M.D. Purugganan, et al. 2009. A multiparent advanced gen-
eration inter-cross to fine-map quantitative traits in Arabidop-
sis thaliana. PLoS Genet. 5(7):E1000551. doi:10.1371/journal.
pgen.1000551

Křeček, P., P. Skůpa, J. Libus, S. Naramoto, R. Tejos, J. Friml, et 
al. 2009. The PIN-FORMED (PIN) protein family of auxin 
transporters. Genome Biol. 10(12):249. doi:10.1186/gb-2009-
10-12-249

Kuleshov, N.N. 1933. World’s diversity of phenotypes of maize. J. 
Am. Soc. Agron. 25:688. doi:10.2134/agronj1933.00021962002
500100006x

Larsson, S.J., A.E. Lipka, and E.S. Buckler. 2013. Lessons from 
Dwarf8 on the strengths and weaknesses of structured associa-
tion mapping. PLoS Genet. 9(2):E1003246. doi:10.1371/journal.
pgen.1003246

Lin, Z., B.J. Hayes, and H.D. Daetwyler. 2014. Genomic selection 
in crops, trees and forages: A review. Crop Pasture Sci. 65:1177–
1191. doi:10.1071/CP13363

Liu, X.L., M. Huang, B. Fan, E.S. Buckler, and Z.Z. Zhang. 2016. 
Iterative usage of fixed and random effect models for power-
ful and efficient genome-wide association studies. PLoS Genet. 
12(2):E1005767. doi:10.1371/journal.pgen.1005767

Lopez-Cruz, M., J. Crossa, D. Bonnett, S. Dreisigacker, J. Poland, 
J.-L. Jannink, et al. 2015. Increased prediction accuracy in 
wheat breeding trials using a marker × environment interaction 
genomic selection model. G3 (Bethesda) 5(4): 569–582.

McMullen, M.D., S. Kresovich, H.S. Villeda, P. Bradbury, H.H. 
Li, Q. Sun, et al. 2009. Genetic properties of the maize nested 
association mapping population. Science 325(5941):737–740. 
doi:10.1126/science.1174320



14	 www.crops.org	 crop science, vol. 56, september–october 2016

Miller, T.A., E.H. Muslin, and J.E. Dorweiler. 2008. A maize 
CONSTANS-like gene, conz1, exhibits distinct diurnal expres-
sion patterns in varied photoperiods. Planta 227(6):1377–1388. 
doi:10.1007/s00425-008-0709-1

Molnár, G., S. Bancoş, F. Nagy, and M. Szekeres. 2002. Characteri-
sation of BRH1, a brassinosteroid-responsive RING-H2 gene 
from Arabidopsis thaliana. Planta 215(1):127–133. doi:10.1007/
s00425-001-0723-z

Morey, R. D., Rouder, J. N. (2015). BayesFactor: Computation of 
Bayes factors for common designs. R package version 0.9.12–2. R 
Foundation for Statistical Computing. https://cran.r-project.org/
web/packages/BayesFactor/index.html (accessed 1 July 2016).

Multani, D.S., S.P. Briggs, M.A. Chamberlin, J.J. Blakeslee, A.S. 
Murphy, and G.S. Johal. 2003. Loss of an MDR transporter in 
compact stalks of maize br2 and sorghum dw3 mutants. Science 
302(5642):81–84. doi:10.1126/science.1086072

Para, A., E.M. Farre, T. Imaizumi, J.L. Pruneda-Paz, F.G. Har-
mon, and S.A. Kay. 2007. PRR3 is a vascular regulator of TOC1 
stability in the Arabidopsis circadian clock. Plant Cell 19(11): 
3462–3473.

Peiffer, J.A., M.C. Romay, M.A. Gore, S.A. Flint-Garcia, Z.W. 
Zhang, M.J. Millard, et al. 2014. The genetic architecture of 
maize height. Genetics 196(4):1337–1356. doi:10.1534/genet-
ics.113.159152

Prasanna, B.M., J.L. Araus, J. Crossa, J.E. Cairns, N. Palacios, B. 
Das, et al. 2013. High-throughput and precision phenotyping 
for cereal breeding programs. In: P.K. Gupta and R.K. Varsh-
ney, editors, Cereal genomics II. Springer-Verlag, Dordrecht. p. 
341–374. 

Quail, P.H. 2002. Phytochrome photosensory signalling networks. 
Nat. Rev. Mol. Cell Biol. 3(2):85–93. doi:10.1038/nrm728

R Core Team. 2015. R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing. https://
www.R-project.org/ (accessed 28 June 2016).

Salas Fernandez, M.G., P.W. Becraft, Y. Yin, and T. Lübberstedt. 
2009. From dwarves to giants? Plant height manipulation for 
biomass yield. Trends Plant Sci. 14(8):454–461. doi:10.1016/j.
tplants.2009.06.005

Salvi, S., G. Sponza, M. Morgante, D. Tomes, X. Niu, K.A. Fen-
gler, et al. 2007. Conserved noncoding genomic sequences asso-
ciated with a flowering-time quantitative trait locus in maize. 
Proc. Natl. Acad. Sci. USA 104(27):11376–11381. doi:10.1073/
pnas.0704145104

Segura, V., B.J. Vilhjálmsson, A. Platt, A. Korte, Ü. Seren, Q. Long, 
et al. 2012. An efficient multi-locus mixed-model approach for 
genome-wide association studies in structured populations. Nat. 
Genet. 44(7):825–830. doi:10.1038/ng.2314

Semagn, K., Y. Beyene, M.L. Warburton, A. Tarekegne, S. Mugo, 
B. Meisel, et al. 2013. Meta-analyses of QTL for grain yield and 

anthesis silking interval in 18 maize populations evaluated under 
water-stressed and well-watered environments. BMC Genomics 
14(1):313. doi:10.1186/1471-2164-14-313

Swarts, K., H.H. Li, J.A.R. Navarro, D. An, M.C. Romay, S. Hearne, 
et al. 2014. Novel methods to optimize genotypic imputation 
for low-coverage, next-generation sequence data in crop plants. 
Plant Genome 7(3): doi:10.3835/plantgenome2014.05.0023.

Takano, M., H. Kanegae, T. Shinomura, A. Miyao, H. Hirochika, 
and M. Furuya. 2001. Isolation and characterization of rice phy-
tochrome A mutants. Plant Cell 13(3):521–534. doi:10.1105/
tpc.13.3.521

Thornsberry, J.M., M.M. Goodman, J. Doebley, S. Kresovich, D. 
Nielsen, and E.S. Buckler. 2001. Dwarf8 polymorphisms associ-
ate with variation in flowering time. Nat. Genet. 28(3):286–289. 
doi:10.1038/90135

Valdar, W., C.C. Holmes, R. Mott, and J. Flint. 2009. Mapping in 
structured populations by resample model averaging. Genetics 
182(4):1263–1277. doi:10.1534/genetics.109.100727

Vlăduţu, C., J. McLaughlin, and R.L. Phillips. 1999. Fine mapping 
and characterization of linked quantitative trait loci involved in 
the transition of the maize apical meristem from vegetative to 
generative structures. Genetics 153(2):993–1007.

Wallace, J.G., P.J. Bradbury, N. Zhang, Y. Gibon, M. Stitt, and 
E.S. Buckler. 2014. Association mapping across numerous traits 
reveals patterns of functional variation in maize. PLoS Genet. 
10(12):E1004845. doi:10.1371/journal.pgen.1004845

Wang, D., K.M. Eskridge, and J. Crossa. 2011. Identifying QTLs 
and epistasis in structured plant populations using adaptive mixed 
LASSO. J. Agric. Biol. Environ. Stat. 16(2):170–184. doi:10.1007/
s13253-010-0046-2

Wang, Y., J. Yao, Z. Zhang, and Y. Zheng. 2006. The comparative 
analysis based on maize integrated QTL map and meta-anal-
ysis of plant height QTLs. Chin. Sci. Bull. 51(18):2219–2230. 
doi:10.1007/s11434-006-2119-8

Winkler, R.G., and T. Helentjaris. 1995. The maize Dwarf3 gene 
encodes a cytocrhome p450-mediated early step in gibberellin 
biosynthesis. Plant Cell 7:1307–1317. doi:10.1105/tpc.7.8.1307

Yang, Q., Z. Li, W.Q. Li, L.X. Ku, C. Wang, J.R. Ye, et al. 2013. 
CACTA-like transposable element in ZmCCT attenuated pho-
toperiod sensitivity and accelerated the postdomestication spread 
of maize. Proc. Natl. Acad. Sci. USA 110(42):16969–16974. 
doi:10.1073/pnas.1310949110

Zhang, X., P. Perez-Rodriguez, K. Semagn, Y. Beyene, R. Babu, 
M.A. Lopez-Cruz, et al. 2015. Genomic prediction in biparental 
tropical maize populations in water-stressed and well-watered 
environments using low-density and GBS SNPs. Heredity 
114:291–299. doi:10.1038/hdy.2014.99


