Show simple item record

Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology

Author: Lopes, M.S.
Author: Reynolds, M.P.
Year: 2012
ISSN: 0022-0957
URI: http://hdl.handle.net/10883/2903
Abstract: The green area displayed by a crop is a good indicator of its photosynthetic capacity, while chlorophyll retention or ?stay-green? is regarded as a key indicator of stress adaptation. Remote-sensing methods were tested to estimate these parameters in diverse wheat genotypes under different growing conditions. Two wheat populations (a diverse set of 294 advanced lines and a recombinant inbred line population of 169 sister lines derived from the cross between Seri and Babax) were grown in Mexico under three environments: drought, heat, and heat combined with drought. In the two populations studied here, a moderate heritable expression of stay-green was found?when the normalized difference vegetation index (NDVI) at physiological maturity was estimated using the regression of NDVI over time from the mid-stages of grain-filling to physiological maturity?and for the rate of senescence during the same period. Under heat and heat combined with drought environments, stay-green calculated as NDVI at physiological maturity and the rate of senescence, showed positive and negative correlations with yield, respectively. Moreover, stay-green calculated as an estimation of NDVI at physiological maturity and the rate of senescence regressed on degree days give an independent measurement of stay-green without the confounding effect of phenology. On average, in both populations under heat and heat combined with drought environments CTgf and stay-green variables accounted for around 30% of yield variability in multiple regression analysis. It is concluded that stay-green traits may provide cumulative effects, together with other traits, to improve adaptation under stress further.
Abstract: The green area displayed by a crop is a good indicator of its photosynthetic capacity, while chlorophyll retention or ‘stay-green’ is regarded as a key indicator of stress adaptation. Remote-sensing methods were tested to estimate these parameters in diverse wheat genotypes under different growing conditions. Two wheat populations (a diverse set of 294 advanced lines and a recombinant inbred line population of 169 sister lines derived from the cross between Seri and Babax) were grown in Mexico under three environments: drought, heat, and heat combined with drought. In the two populations studied here, a moderate heritable expression of stay-green was found–when the normalized difference vegetation index (NDVI) at physiological maturity was estimated using the regression of NDVI over time from the mid-stages of grain-filling to physiological maturity–and for the rate of senescence during the same period. Under heat and heat combined with drought environments, stay-green calculated as NDVI at physiological maturity and the rate of senescence, showed positive and negative correlations with yield, respectively. Moreover, stay-green calculated as an estimation of NDVI at physiological maturity and the rate of senescence regressed on degree days give an independent measurement of stay-green without the confounding effect of phenology. On average, in both populations under heat and heat combined with drought environments CTgf and stay-green variables accounted for around 30% of yield variability in multiple regression analysis. It is concluded that stay-green traits may provide cumulative effects, together with other traits, to improve adaptation under stress further.
Language: English
Publisher: Oxford University Press
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Article
Region: Global
Pages: 10-14 pags
Journal issue: 10
Journal: Journal of Experimental Botany
Journal volume: 63
DOI: 10.1093/jxb/ers071
Keywords: Chlorophyll loss
Keywords: NDVI
Keywords: Maturity
Keywords: SPAD
Keywords: Triticum aestivum
Audicence: Researchers
Country of Focus: MEXICO


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Wheat
    Wheat - breeding, phytopathology, physiology, quality, biotech

Show simple item record