Show simple item record

Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat

Author: Bhatta, M.
Author: Baenziger, P.S.
Author: Waters, B.M.
Author: Poudel, R.
Author: Belamkar, V.
Author: Poland, J.
Author: Morgounov, A.I.
Year: 2018
ISSN: 1661-6596
URI: https://hdl.handle.net/10883/19670
Descriptors: Wheats
Descriptors: Hexaploidy
Descriptors: Genomes
Descriptors: Minerals
Abstract: Synthetic hexaploid wheat (SHW; Triticum durum L. × Aegilopstauschii Coss.) is a means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a potential genetic resource for improving grain mineral concentrations. We quantified 10 grain minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using an inductively coupled mass spectrometer in 123 SHWs for a genome-wide association study (GWAS). A GWAS with 35,648 single nucleotide polymorphism (SNP) markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) identified on the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to be used in the A and B genome along with the D-genome. Regression analysis identified a positive correlation between a cumulative number of favorable alleles at MTA loci in a genotype and grain mineral concentration. Additionally, we identified multi-traits and stable MTAs and recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, Fe, Mg, Mn, Ni, and Zn), a large number of favorable alleles compared to low ranking genotypes and checks that could be utilized in the breeding program for the genetic biofortification. This study will further enhance our understanding of the genetic architecture of grain minerals in wheat and related cereals.
Abstract: Synthetic hexaploid wheat (SHW; Triticum durum L. × Aegilops tauschii Coss.) is a means of introducing novel genes/genomic regions into bread wheat (T. aestivum L.) and a potential genetic resource for improving grain mineral concentrations. We quantified 10 grain minerals (Ca, Cd, Cu, Co, Fe, Li, Mg, Mn, Ni, and Zn) using an inductively coupled mass spectrometer in 123 SHWs for a genome-wide association study (GWAS). A GWAS with 35,648 single nucleotide polymorphism (SNP) markers identified 92 marker-trait associations (MTAs), of which 60 were novel and 40 were within genes, and the genes underlying 20 MTAs had annotations suggesting a potential role in grain mineral concentration. Twenty-four MTAs on the D-genome were novel and showed the potential of Ae. tauschii for improving grain mineral concentrations such as Ca, Co, Cu, Li, Mg, Mn, and Ni. Interestingly, the large number of novel MTAs (36) identified on the AB genome of these SHWs indicated that there is a lot of variation yet to be explored and to be used in the A and B genome along with the D-genome. Regression analysis identified a positive correlation between a cumulative number of favorable alleles at MTA loci in a genotype and grain mineral concentration. Additionally, we identified multi-traits and stable MTAs and recommended 13 top 10% SHWs with a higher concentration of beneficial grain minerals (Cu, Fe, Mg, Mn, Ni, and Zn), a large number of favorable alleles compared to low ranking genotypes and checks that could be utilized in the breeding program for the genetic biofortification. This study will further enhance our understanding of the genetic architecture of grain minerals in wheat and related cereals.
Language: English
Publisher: MDPI
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Article
Place: Basel, Switzerland
Journal issue: 10, art. 3237
Journal: International Journal of Molecular Sciences
Journal volume: 19
DOI: 10.3390/ijms19103237
Keywords: Aegilops Tauschii
Keywords: Marker-Trait Associations
Keywords: Genes
Keywords: Bread Wheat
Keywords: Genetic Biofortification
Keywords: Favorable Alleles
Audicence: Researchers
Agrovoc: TRITICUM DURUM
Agrovoc: AEGILOPS
Agrovoc: TRITICUM AESTIVUM
Agrovoc: GENES
Agrovoc: GENETIC GAIN


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Wheat
    Wheat - breeding, phytopathology, physiology, quality, biotech

Show simple item record