Show simple item record

13C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils

Author: Gannon, B.
Author: Pungarcher, I.
Author: Mourao, L.
Author: Davis, C.R.
Author: Simon, P.W.
Author: Pixley, K.V.
Author: Tanumihardjo, S.A.
Year: 2016
URI: http://hdl.handle.net/10883/17150
Descriptors: Retinol
Descriptors: Maize
Descriptors: Provitamins
Abstract: Background: Crops such as maize, sorghum, and millet are being biofortified with provitamin A carotenoids to ensure adequate vitamin A (VA) intakes. VA assessment can be challenging because serum retinol concentrations are homeostatically controlled and more sensitive techniques are resource-intensive. Objectives: We investigated changes in serum retinol relative differences of isotope amount ratios of 13C/12C (d13C) caused by natural 13C fractionation in C3 compared with C4 plants as a biomarker to detect provitamin A efficacy from biofortified (orange) maize and high-carotene carrots. Methods: The design was a 2 3 2 3 2 maize (orange compared with white) by carrot (orange compared with white) by a VA fortificant (VA+ compared with VA2) in weanling male Mongolian gerbils (n = 55), which included a 14-d VA depletion period and a 62-d treatment period (1 baseline and 8 treatment groups; n = 527/group). Liver VA and serum retinol were quantified, purified by HPLC, and analyzed by GC combustion isotope ratio mass spectrometry for 13C. Results: Treatments affected liver VA concentrations (0.048 6 0.039 to 0.79 6 0.24 mmol/g; P < 0.0001) but not overall serum retinol concentrations (1.3860.22 mmol/L). Serum retinol and liver VA d13C were significantly correlated (R2 = 0.92; P < 0.0001). Serum retinol d13C differentiated control groups that consumed white maize and white carrots (227.1 6 1.2 d13C&) from treated groups that consumed orange maize and white carrots (221.6 6 1.4 d13C&; P < 0.0001) and white maize and orange carrots (230.6 6 0.7 d13C&; P < 0.0001). A prediction model demonstrated the relative contribution of orange maize to total dietary VA for groups that consumed VA from mixed sources. Conclusions: Provitamin A efficacy and quantitative estimation of the relative contribution to dietary VA were demonstrated with the use of serum retinol d13C. This method could be used for maize efficacy or effectiveness studies and with other C4 crops biofortified with provitamin A carotenoids (e.g., millet, sorghum). Advantages include no extrinsic tracer dose, 1 blood sample, and higher sensitivity than serum retinol concentrations alone.
Abstract: Crops such as maize, sorghum, and millet are being biofortified with provitamin A carotenoids to ensure adequate vitamin A (VA) intakes. VA assessment can be challenging because serum retinol concentrations are homeostatically controlled and more sensitive techniques are resource-intensive. Objectives: We investigated changes in serum retinol relative differences of isotope amount ratios of 13C/12C (d13C) caused by natural 13C fractionation in C3 compared with C4 plants as a biomarker to detect provitamin A efficacy from biofortified (orange) maize and high-carotene carrots. Methods: The design was a 2 3 2 3 2 maize (orange compared with white) by carrot (orange compared with white) by a VA fortificant (VA+ compared with VA2) in weanling male Mongolian gerbils (n = 55), which included a 14-d VA depletion period and a 62-d treatment period (1 baseline and 8 treatment groups; n = 527/group). Liver VA and serum retinol were quantified, purified by HPLC, and analyzed by GC combustion isotope ratio mass spectrometry for 13C. Results: Treatments affected liver VA concentrations (0.048 6 0.039 to 0.79 6 0.24 mmol/g; P < 0.0001) but not overall serum retinol concentrations (1.3860.22 mmol/L). Serum retinol and liver VA d13C were significantly correlated (R2 = 0.92; P < 0.0001). Serum retinol d13C differentiated control groups that consumed white maize and white carrots (227.1 6 1.2 d13C&) from treated groups that consumed orange maize and white carrots (221.6 6 1.4 d13C&; P < 0.0001) and white maize and orange carrots (230.6 6 0.7 d13C&; P < 0.0001). A prediction model demonstrated the relative contribution of orange maize to total dietary VA for groups that consumed VA from mixed sources. Conclusions: Provitamin A efficacy and quantitative estimation of the relative contribution to dietary VA were demonstrated with the use of serum retinol d13C. This method could be used for maize efficacy or effectiveness studies and with other C4 crops biofortified with provitamin A carotenoids (e.g., millet, sorghum). Advantages include no extrinsic tracer dose, 1 blood sample, and higher sensitivity than serum retinol concentrations alone.
Language: English
Publisher: America Society for Nutrition
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Article
Country: Mongolia
Place: USA
Pages: 1290-1297
Journal: The Journal of Nutrition
Journal volume: 146
DOI: 10.3945/jn.116.230300
Audicence: Researchers
Country of Focus: MONGOLIA


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Genetic Resources
    Genetic Resources including germplasm collections, wild relatives, genotyping, genomics, and IP

Show simple item record