Adequate management of permanent beds with residue retention provides yields roughly on a par with those for conventionally-tilled beds + incorporation of residues, but the farmer’s income increases significantly due to reduced costs (Figure 6).

The role of farm implements
Access to the right machinery is essential for the adoption of conservation agriculture. A lack of suitable implements, particularly sowing equipment, has limited the extension and adoption of the permanent bed planting system, particularly for small grains like wheat and for small-to-medium-scale farmers in developing countries. CIMMYT has focused on developing multi-crop/multi-use implements that can easily be reconfigured to reform beds, for basal or post-emergence fertilizer applications, and for sowing small- or large-grain crops (Figure 7). Use of this type of planter markedly reduces farmers’ production costs. A prototype developed in Mexico is ready for production by local machinery manufacturers.

CIMMYT and conservation agriculture worldwide: Examples
• During 1994–2001, CIMMYT helped promote zero-tillage and crop rotations in Bolivia and organized, with local partners, a network of research institutions, farmer associations, and progressive farmers. By 2000, farmers were using the new practices on 300,000 hectares.
• More than 300 million people in South Asia depend on the rice-wheat system for food and livelihoods. Through the efforts of the CIMMYT-led Rice Wheat Consortium for the Indo-Gangetic Plains, as of 2004 farmers on more than two million hectares were using zero-tillage systems, with a net profit of more than USD 100 million that year.
• In sub-Saharan Africa, CIMMYT is helping smallholder maize farmers in Malawi, Mozambique, Zambia and Zimbabwe to test and adopt conservation agriculture practices through participatory demonstration plots and machinery evaluations, meetings to sensitize communities, and training for extension agents and researchers.

Suggested reading
Global agriculture faces major challenges. In large areas, soil erosion and the loss of fertility progressively reduce crop yields and can lead to land being abandoned and turning to desert. Households, industries, and growing urban areas compete with agriculture for increasingly scarce water supplies. Rising fuel and fertilizer prices hike up production costs.

Conservation agriculture (CA) provides sustainable ways to address these and other challenges. CA crop management systems are based on three principles: (1) minimum soil movement (for example, no soil inversion by tillage), (2) a soil surface cover of crop residues and/or living plants, and (3) use of crop rotations to avoid build-ups of pests and diseases.

The principles of CA appear to have wide adaptation, and CA systems are used for numerous crops in diverse soil types and environments. Nevertheless, the techniques to apply the principles depend heavily on local conditions: climate, soil characteristics, and farmer's circumstances such as wealth, land size, the availability of labor or a tractor, to name several factors. Expected benefits from CA include:

- Reduced frequency/intensity of moisture stress: CA increases infiltration; cuts run-off and evaporation from the soil surface.
- Savings in irrigation water and energy for pumping.
- Reduced erosion.
- Higher, more stable crop yields.
- Reduced labor/tractor use for land preparation, saving fuel, cutting costs.
- Increased soil organic matter content, resulting in better soil structure, higher cation exchange capacity and nutrient availability, and greater water-holding capacity.
- Improved biological soil fertility and pest control.

Research and extension

Effective development and extension of complex, multi-component, locally-relevant CA practices best occurs through “innovation systems,” in which researchers, farmers, input supply companies, extension workers, and farm implement manufacturers, among others, test and share ideas and products. To foster such arrangements for the maize- and wheat-based farming systems and agro-ecological zones where CIMMYT works, the center is establishing decentralized learning “hubs,” modelled after those operated by international airline carriers. At such hubs, the different airline routes come together and there is intense contact and exchange of information, before passengers and planes head for particular destinations. The CA hubs are intended to serve a similar organizational aim: technology development and extension activities are concentrated in a few defined locations representative of certain farming systems, rather than pursuing less intensive, wide-scale efforts. Each hub provides:

- Benchmark sites for research on the impacts of CA on crops and the environment in prevalent cropping systems of a region.
- A focal point for regional (agro-ecological) capacity-building and scaling-out of research and innovation systems. Through research and training, regional CA networks are established to foster CA innovation systems and research on extension of technologies.
- A setting for multiple actors in a production system (farmers, scientists, machine builders, decision makers, input suppliers, among others) to work and learn together, allowing subsequent, intensive scaling out.
- Working examples of CA systems that help break down the culture of the plow.

Hubs link to a strategic science platform in Mexico (Figure 1), fostering a shared, global understanding of CA and its adaptability in different environments, cropping systems, and farmer circumstances. Hubs are operational or under development in Mexico (wheat irrigated intensive systems, highland mixed systems), Uzbekistan (cotton-wheat based systems), the Indo-Gangetic Plains (rice-wheat based system), and Southern Africa (high-risk, rainfed maize-based systems).

Basic research: Results of long-term trials

As of 1990, CIMMYT conducts long-term sustainability trials comparing conservation agriculture and conventional practices at three experiment stations in Mexico (Figure 2): the Central Highlands (El Batán, 19°N, 2,240 meters above sea level, and Toluca, 19°N, 2,640 m, both in the state of Mexico) for mixed, rainfed systems; and Ciudad Obregón (27°N, 39 m), state of Sonora, in northwestern Mexico, for irrigated wheat-based systems.

With the same crop variety, fertilizer application, and weed control, different agroecosystem management can lead to enormous differences in the performance of wheat and maize crops, under rainfed conditions. Surface retention vs removal of crop residues is the key factor: conservation agriculture practices result in high and stable yields, compared with the conventional practices of heavy tillage and removal of crop residues; with zero-tillage, removing all residues eventually causes the system to collapse (Figures 3-4).

Conservation agriculture is a viable option for large-scale, irrigated farming. Long-term trials in northwestern Mexico showed no significant differences in wheat yields during the first five years (10 crop cycles), among practices (Figure 5). However, from the sixth year on, the use of permanent beds + the burning of all residues at the beginning of each crop cycle caused a dramatic drop-off in yields. The application of irrigation seems to eliminate or postpone yield losses from soil degradation, as a result of burning residues. The improvement of sodium levels observed in permanent beds with residue retention is of great relevance for saline areas with irrigated agriculture.
Global agriculture faces major challenges. In large areas, soil erosion and the loss of fertility progressively reduce crop yields and can lead to land being abandoned and turning to desert. Households, industries, and growing urban areas compete with agriculture for increasingly scarce water supplies. Rising fuel and fertilizer prices hike up production costs.

Conservation agriculture (CA) provides sustainable ways to address these and other challenges. CA crop management systems are based on three principles: (1) minimum soil movement (for example, no soil inversion by tillage), (2) a soil surface cover of crop residues and/or living plants, and (3) use of crop rotations to avoid build-ups of pests and diseases.

The principles of CA appear to have wide adaptation, and CA systems are used for numerous crops in diverse soil types and environments. Nevertheless, the techniques to apply the principles depend heavily on local conditions: climate, soil characteristics, and farmer’s circumstances such as wealth, land size, the availability of labor or a tractor, to name several factors. Expected benefits from CA include:

- Reduced frequency/intensity of moisture stress: CA increases infiltration; cuts run-off and evaporation from the soil surface.
- Savings in irrigation water and energy for pumping.
- Reduced erosion.
- Higher, more stable crop yields.
- Reduced labor/tractor use for land preparation, saving fuel, cutting costs.
- Increased soil organic matter content, resulting in better soil structure, higher cation exchange capacity and nutrient availability, and greater water-holding capacity.
- Improved biological soil fertility and pest control.

Research and extension

Effective development and extension of complex, multi-component, locally-relevant CA practices best occurs through “innovation systems,” in which researchers, farmers, input supply companies, extension workers, and farm implement manufacturers, among others, test and share ideas and products. To foster such arrangements for the maize- and wheat-based farming systems and agro-ecological zones where CIMMYT works, the center is establishing decentralized learning “hubs,” modelled after those operated by international airline carriers. At such hubs, the different airline routes come together and there is intense contact and exchange of information, before passengers and planes head for particular destinations. The CA hubs are intended to serve a similar organizational aim: technology development and extension activities are concentrated in a few, well-defined locations representative of certain farming systems, rather than pursuing less intensive, wide-scale efforts. Each hub provides:

- Benchmark sites for research on the impacts of CA on crops and the environment in prevalent cropping systems of a region.
- A focal point for regional (agro-ecological) capacity-building and scaling-out of research and innovation systems. Through research and training, regional CA networks are established to foster CA innovation systems and research on / extension of technologies.
- A setting for multiple actors in a production system (farmers, scientists, machine builders, decision makers, input suppliers, among others) to work and learn together, allowing subsequent, intensive scaling out.
- Working examples of CA systems that help break down the culture of the plow.

Hubs link to a strategic science platform in Mexico (Figure 1), fostering a shared, global understanding of CA and its adaptability in different environments, cropping systems, and farmer circumstances. Hubs are operational or under development in Mexico (wheat irrigated intensive systems, highland mixed systems), Uzbekistan (cotton-wheat based systems), the Indo-Gangetic Plains (rice-wheat based system), and Southern Africa (high-risk, rainfed maize-based systems).

Basic research: Results of long-term trials

As of 1990, CIMMYT conducts long-term sustainability trials comparing conservation agriculture and conventional practices at three experimental stations in Mexico (Figure 2): the Central Highlands (El Batán, 19°N, 2,240 meters above sea level, and Toluca, 19°N, 2,640 m, both in the state of Mexico) for mixed, rainfed systems; and Ciudad Obregón (27°N, 39 m), state of Sonora, in northwestern Mexico, for irrigated wheat-based systems.

With the same crop variety, fertilizer application, and weed control, different agronomic management can lead to enormous differences in the performance of wheat and maize crops, under rainfed conditions. Surface retention vs removal of crop residues is the key factor; conservation agriculture practices result in high and stable yields, compared with the conventional practices of heavy tillage and removal of crop residues; with zero-tillage, removing all residues eventually causes the system to collapse (Figures 3-4).

Conservation agriculture is a viable option for large-scale, irrigated farming. Long-term trials in northwestern Mexico showed no significant differences in wheat yields during the first five years (10 crop cycles), among practices (Figure 3). However, from the sixth year on, the use of permanent beds + the burning of all residues at the beginning of each crop cycle caused a dramatic drop-off in yields. The application of irrigation seems to eliminate or postpone yield losses from soil degradation, as a result of burning residues. The improvement of sodium levels observed in permanent beds with residue retention is of great relevance for saline areas with irrigated agriculture.
Global agriculture faces major challenges. In large areas, soil erosion and the loss of fertility progressively reduce crop yields and can lead to land being abandoned and turning to desert. Households, industries, and growing urban areas compete with agriculture for increasingly scarce water supplies. Rising fuel and fertilizer prices hike up production costs.

Conservation agriculture (CA) provides sustainable ways to address these and other challenges. CA crop management systems are based on three principles: (1) minimum soil movement (for example, no soil inversion by tillage), (2) a soil surface cover of crop residues and/or living plants, and (3) use of crop rotations to avoid build-ups of pests and diseases.

The principles of CA appear to have wide adaptation, and CA systems are used for numerous crops in diverse soil types and environments. Nevertheless, the techniques to apply the principles depend heavily on local conditions: climate, soil characteristics, and farmer’s circumstances such as wealth, land size, the availability of labor or a tractor, to name several factors. Expected benefits from CA include:

- Reduced frequency/intensity of moisture stress: CA increases infiltration; cuts run-off and evaporation from the soil surface.
- Savings in irrigation water and energy for pumping.
- Reduced erosion.
- Higher, more stable crop yields.
- Reduced labor/tractor use for land preparation, saving fuel, cutting costs.
- Increased soil organic matter content, resulting in better soil structure, higher cation exchange capacity and nutrient availability, and greater water-holding capacity.
- Improved biological soil fertility and pest control.

Research and extension

Effective development and extension of complex, multi-component, locally-relevant CA practices best occurs through “innovation systems,” in which researchers, farmers, input supply companies, extension workers, and farm implement manufacturers, among others, test and share ideas and products. To foster such arrangements for the maize- and wheat-based farming systems and agro-ecological zones where CIMMYT works, the center is establishing decentralized learning “hubs,” modelled after those operated by international airline carriers. At such hubs, the different airline routes come together and there is intense contact and exchange of information, before passengers and planes head for particular destinations. The CA hubs are intended to serve a similar organizational aim: technology development and extension activities are concentrated in a few, defined locations representative of certain farming systems, rather than pursuing less intensive, wide-scale efforts. Each hub provides:

- Benchmark sites for research on the impacts of CA on crops and the environment in prevalent cropping systems of a region.
- A focal point for regional (agro-ecological) capacity-building and scaling-out of research and innovation systems. Through research and training, regional CA networks are established to foster CA innovation systems and research on / extension of technologies.
- A setting for multiple actors in a production system (farmers, scientists, machine builders, decision makers, input suppliers, among others) to work and learn together, allowing subsequent, intensive scaling out.
- Working examples of CA systems that help break down the culture of the plow.

Hubs link to a strategic science platform in Mexico (Figure 1), fostering a shared, global understanding of CA and its adaptability in different environments, cropping systems, and farmer circumstances. Hubs are operational or under development in Mexico (in bold).

- Benchmark sites for research on the impacts of CA on crops and the environment in prevalent cropping systems of a region.
- A focal point for regional (agro-ecological) capacity-building and scaling-out of research and innovation systems. Through research and training, regional CA networks are established to foster CA innovation systems and research on / extension of technologies.
- A setting for multiple actors in a production system (farmers, scientists, machine builders, decision makers, input suppliers, among others) to work and learn together, allowing subsequent, intensive scaling out.
- Working examples of CA systems that help break down the culture of the plow.

Hubs link to a strategic science platform in Mexico (Figure 1), fostering a shared, global understanding of CA and its adaptability in different environments, cropping systems, and farmer circumstances. Hubs are operational or under development in Mexico (in bold).

Basic research: Results of long-term trials

As of 1990, CIMMYT conducts long-term sustainability trials comparing conservation agriculture and conventional practices at three experiment stations in Mexico (Figure 2): the Central Highlands (El Batán, 19°N, 2,240 meters above sea level, and Toluca, 19°N, 2,640 m, both in the state of Mexico) for mixed, rainfed systems; and Ciudad Obregón (27°N, 39°m), state of Sonora, in northwestern Mexico, for irrigated wheat-based systems.

With the same crop variety, fertilizer application, and weed control, different agronomic management can lead to enormous differences in the performance of wheat and maize crops, under rainfed conditions. Surface retention vs removal of crop residues is the key factor: conservation agriculture practices result in high and stable yields, compared with the conventional practices of heavy tillage and removal of crop residues, with zero-tillage, removing all residues eventually causes the system to collapse (Figures 3-4).

Conservation agriculture is a viable option for large-scale, irrigated farming. Long-term trials in northwestern Mexico showed no significant differences in wheat yields during the first five years (10 crop cycles), among practices (Figure 3). However, from the sixth year on, the use of permanent beds + the burning of all residues at the beginning of each crop cycle caused a dramatic drop-off in yields. The application of irrigation seemed to eliminate or postpone yield losses from soil degradation, as a result of burning residues. The improvement of soil levels observed in permanent beds with residue retention is of great relevance for saline areas with irrigated agriculture.
Global agriculture faces major challenges. In large areas, soil erosion and the loss of fertility progressively reduce crop yields and can lead to land being abandoned and turning to desert. Households, industries, and growing urban areas compete with agriculture for increasingly scarce water supplies. Rising fuel and fertilizer prices hike up production costs.

Conservation agriculture (CA) provides sustainable ways to address these and other challenges. CA crop management systems are based on three principles: (1) minimum soil movement (for example, no soil inversion by tillage), (2) a soil surface cover of crop residues and/or living plants, and (3) use of crop rotations to avoid build-ups of pests and diseases.

The principles of CA appear to have wide adaptation, and CA systems are used for numerous crops in diverse soil types and environments. Nevertheless, the techniques to apply the principles depend heavily on local conditions: climate, soil characteristics, and farmer’s circumstances such as wealth, land size, the availability of labor or a tractor, to name several factors. Expected benefits from CA include:

- Reduced frequency/intensity of moisture stress: CA increases infiltration; cuts run-off and evaporation from the soil surface.
- Savings in irrigation water and energy for pumping.
- Reduced erosion.
- Higher, more stable crop yields.
- Reduced labor/tractor use for land preparation, saving fuel, cutting costs.
- Increased soil organic matter content, resulting in better soil structure, higher cation exchange capacity and nutrient availability, and greater water-holding capacity.
- Improved biological soil fertility and pest control.

Research and extension

Effective development and extension of complex, multi-component, locally-relevant CA practices best occurs through “innovation systems,” in which researchers, farmers, input supply companies, extension workers, and farm implement manufacturers, among others, test and share ideas and products. To foster such arrangements for the maize- and wheat-based farming systems and agro-ecological zones where CIMMYT works, the center is establishing decentralized learning “hubs,” modelled after those operated by international airline carriers. At such hubs, the different airline routes come together and there is intense contact and exchange of information, before passengers and planes head for particular destinations. The CA hubs are intended to serve a similar organizational aim: technology development and extension activities are concentrated in a few defined locations representative of certain farming systems, rather than pursuing less intensive, wide-scale efforts. Each hub provides:

- Benchmark sites for research on the impacts of CA on crops and the environment in prevalent cropping systems of a region.
- A focal point for regional (agro-ecological) capacity-building and scaling-out of research and innovation systems. Through research and training, regional CA networks are established to foster CA innovation systems and research on / extension of technologies.
- A setting for multiple actors in a production system (farmers, scientists, machine builders, decision makers, input suppliers, among others) to work and learn together, allowing subsequent, intensive scaling out.

- Working examples of CA systems that help break down the culture of the plow.

Hubs link to a strategic science platform in Mexico (Figure 1), fostering a shared, global understanding of CA and its adaptability in different environments, cropping systems, and farmer circumstances. Hubs are operational or under development in Mexico (wheat irrigated intensive systems, highland mixed systems), Uzbekistan (cotton-wheat based systems), the Indo-Gangetic Plains (rice-wheat based system), and Southern Africa (high-risk, rainfed maize-based systems).

Basic research: Results of long-term trials

As of 1990, CIMMYT conducts long-term sustainability trials comparing conservation agriculture and conventional practices at three experiment stations in Mexico (Figure 2): the Central Highlands (El Batán, 19°N, 2,240 meters above sea level, and Toluca, 19°N, 2,640 m, both in the state of Mexico) for mixed, irrigated systems; and Ciudad Obregón (27°N, 39 m), state of Sonora, in Northwestern Mexico, for irrigated wheat-based systems.

With the same crop variety, fertilizer application, and weed control, different agromonic management can lead to enormous differences in the performance of wheat and maize crops, under rainfed conditions. Surface retention vs removal of crop residues is the key factor: conservation agriculture practices result in high and stable yields, compared with the conventional practices of heavy tillage and removal of crop residues; with zero-tillage, removing all residues eventually causes the system to collapse (Figures 3-4).

Conservation agriculture is a viable option for large-scale, irrigated farming. Long-term trials in Northwestern Mexico showed no significant differences in wheat yields during the first five years (10 crop cycles), among practices (Figure 5). However, from the sixth year on, the use of permanent beds + the burning of all residues at the beginning of each crop cycle caused a dramatic drop-off in yields. The application of irrigation seems to eliminate or postpone yield losses from soil degradation, as a result of burning residues. The improvement of sodium levels observed in permanent beds with residue retention is of great relevance for saline areas with irrigated agriculture.
The role of farm implements

Access to the right machinery is essential for the adoption of conservation agriculture. A lack of suitable implements, particularly sowing equipment, has limited the extension and adoption of the permanent bed planting system, particularly for small grains like wheat and for small-to-medium-scale farmers in developing countries. CIMMYT has focused on developing multi-crop/multi-use implements that can easily be reconfigured to reform beds, for basal or post-emergence fertilizer applications, and for sowing small- or large-grain crops (Figure 7). Use of this type of planter markedly reduces farmers’ production costs. A prototype developed in Mexico is ready for production by local machinery manufacturers.

CIMMYT and conservation agriculture worldwide: Examples

- During 1994-2001, CIMMYT helped promote zero-tillage and crop rotations in Bolivia and organized, with local partners, a network of research institutions, farmer associations, and progressive farmers. By 2000, farmers were using the new practices on 300,000 hectares.
- More than 300 million people in South-Asia depend on the rice-wheat system for food and livelihoods. Through the efforts of the CIMMYT-led Rice Wheat Consortium for the Indo-Gangetic Plains, as of 2004 farmers on more than two million hectares were using zero-tillage systems, with a net profit of more than USD 100 million that year.
- In sub-Saharan Africa, CIMMYT is helping smallholder maize farmers in Malawi, Mozambique, Zambia and Zimbabwe to test and adopt conservation agriculture practices through participatory demonstration plots and machinery evaluations, meetings to sensitize communities, and training for extension agents and researchers.

Suggested reading

Figure 5. The effect of tillage and residue management on wheat grain yields (kg/ha at 12% H2O), CIMMYT long-term sustainability trial, Ciudad Obregón, Mexico, 1993-2006.

Figure 6. The effect of tillage and residue management on farmer income (MEXN$), CIMMYT long-term sustainability trial, Ciudad Obregón, Mexico.

Figure 7. The multi-crop/multi-use implement—in this case set up to reform permanent beds and perform a basal application of fertilizer (left), or to reform beds, fertilize, and sow maize (right).
Adequate management of permanent beds with residue retention provides yields roughly on a par with those for conventionally-tilled beds + incorporation of residues, but the farmer's income increases significantly due to reduced costs (Figure 6).

The role of farm implements

Access to the right machinery is essential for the adoption of conservation agriculture. A lack of suitable implements, particularly sowing equipment, has limited the extension and adoption of the permanent bed planting system, particularly for small grains like wheat and for small-to-medium-scale farmers in developing countries. CIMMYT has focused on developing multi-crop/multi-use implements that can easily be reconfigured to reform beds, for basal or post-emergence fertilizer applications, and for sowing small- or large-grain crops (Figure 7). Use of this type of planter markedly reduces farmers' production costs. A prototype developed in Mexico is ready for production by local machinery manufacturers.

CIMMYT and conservation agriculture worldwide: Examples

- During 1994-2001, CIMMYT helped promote zero-tillage and crop rotations in Bolivia and organized, with local partners, a network of research institutions, farmer associations, and progressive farmers. By 2000, farmers were using the new practices on 300,000 hectares.
- More than 300 million people in South-Asia depend on the rice-wheat system for food and livelihoods. Through the efforts of the CIMMYT-led Rice Wheat Consortium for the Indo-Gangetic Plains, as of 2004 farmers on more than two million hectares were using zero-tillage systems, with a net profit of more than USD 100 million that year.
- In sub-Saharan Africa, CIMMYT is helping smallholder maize farmers in Malawi, Mozambique, Zambia and Zimbabwe to test and adopt conservation agriculture practices through participatory demonstration plots and machinery evaluations, meetings to sensitize communities, and training for extension agents and researchers.

Suggested reading

Figure 5. The effect of tillage and residue management on wheat grain yields (kg/ha at 12% H2O), CIMMYT long-term sustainability trial, Ciudad Obregón, Mexico, 1993-2006.

Figure 6. The effect of tillage and residue management on farmer income (MXN/ha), CIMMYT long-term sustainability trial, Ciudad Obregón, Mexico.

Figure 7. The multi-crop/multi-use implement—in this case set up to reform permanent beds and perform a basal application of fertilizer (left), or to reform beds, fertilize, and sow maize (right).
Adequate management of permanent beds with residue retention provides yields roughly on a par with those for conventionally-tilled beds + incorporation of residues, but the farmer’s income increases significantly due to reduced costs (Figure 6).

Figure 5. The effect of tillage and residue management on wheat trial, Ciudad Obregón, Mexico, 1993-2006.

Figure 6. The effect of tillage and residue management on farmer income (MXN/ha), CIMMYT long-term sustainability trial, Ciudad Obregón, Mexico.

The role of farm implements
Access to the right machinery is essential for the adoption of conservation agriculture. A lack of suitable implements, particularly sowing equipment, has limited the extension and adoption of the permanent bed planting system, particularly for small grains like wheat and for small-to-medium-scale farmers in developing countries. CIMMYT has focused on developing multi-crop/multi-use implements that can easily be reconfigured to reform beds, for basal or post-emergence fertilizer applications, and for sowing small- or large-grain crops (Figure 7). Use of this type of planter markedly reduces farmers’ production costs. A prototype developed in Mexico is ready for production by local machinery manufacturers.

Figure 7. The multi-crop/multi-use implement—in this case set up to reform permanent beds and perform a basal application of fertilizer (left), or to reform beds, fertilize, and sow maize (right).

CIMMYT and conservation agriculture worldwide: Examples
• During 1994-2001, CIMMYT helped promote zero-tillage and crop rotations in Bolivia and organized, with local partners, a network of research institutions, farmer associations, and progressive farmers. By 2000, farmers were using the new practices on 300,000 hectares.
• More than 300 million people in South-Asia depend on the rice-wheat system for food and livelihoods. Through the efforts of the CIMMYT-led Rice Wheat Consortium for the Indo-Gangetic Plains, as of 2004 farmers on more than two million hectares were using zero-tillage systems, with a net profit of more than USD 100 million that year.
• In sub-Saharan Africa, CIMMYT is helping smallholder maize farmers in Malawi, Mozambique, Zambia and Zimbabwe to test and adopt conservation agriculture practices through participatory demonstration plots and machinery evaluations, meetings to sensitize communities, and training for extension agents and researchers.

Suggested reading