Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa

Malawi Country Report

SIMLESWA Team
Background

• Population is about 18 million
• 86.5% of Malawi’s population live in the rural areas
• 57% of total rural population is poor
• Agriculture contributes about 30% of GDP
• Farming systems- rain-fed maize-based (80% grows maize)

• Maize yield remains low at 1.8 ton/ha

• Maize is strategic crop

• Legumes provide income for women farmers
Alignment of SIMLESA with national agendas

<table>
<thead>
<tr>
<th>NAP PRIORITY AREAS</th>
<th>SIMLESA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable Irrigation Development</td>
<td></td>
</tr>
<tr>
<td>Mechanization of Agriculture</td>
<td></td>
</tr>
<tr>
<td>Agricultural Market Development, Agro-processing and Value Addition</td>
<td>✓</td>
</tr>
<tr>
<td>Food and Nutrition Security</td>
<td>✓</td>
</tr>
<tr>
<td>Agricultural Risk Management</td>
<td>✓</td>
</tr>
<tr>
<td>Empowerment of Youth, Women and Vulnerable Groups in Agriculture</td>
<td>✓</td>
</tr>
<tr>
<td>Institutional Development, Coordination and Capacity Strengthening</td>
<td>✓</td>
</tr>
</tbody>
</table>

- SIMLESA fits well in 3 pillars of ASWAP
SIMLESA project sites

- Mid-altitude agro-ecology
 - Kasungu District
 - Mchinji District
 - Lilongwe District
- Low-altitude agro-ecology
 - Ntcheu District
 - Balaka District
 - Salima District
Success Approaches

• Scaling-out approaches (Innovations platforms, FDs, farmer exchange visits, ICT etc)

• Public private partnerships

• Influence of traditional leaders

• Political will

• Feedback mechanism- Adoption monitoring

• Constant technical backstopping by CIMMYT
Outcome level achievements
Increase in yields by 30% and reduction in downside risk by 30%

- CA system increase maize yields
 - 19% - mid altitude
 - 37% low altitude agro-ecological zones
- CA led to a 16% decrease in downside risk.
Characterized farming systems and established benchmarks for adoption and impact assessment

- 11 communities characterized
- Established 36 on-farm exploratory trials
- Long term trial at Chitala research station
- Six Innovation platforms
- Baseline study (892 HH, 144 FHH)
Four typologies identified based on livelihood strategies
Market and value chains analysis

Key opportunities & constraints

<table>
<thead>
<tr>
<th>Actors</th>
<th>Opportunities</th>
<th>Constraints</th>
<th>Required Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importers (Fertilizer)</td>
<td>High demand for inputs</td>
<td>Monopoly in the input market</td>
<td>Strengthening of small seed agribusiness and encouraging women entrepreneur</td>
</tr>
<tr>
<td>Distributers, seed producers, chemical suppliers</td>
<td></td>
<td>Increased erratic rainfall and drought</td>
<td></td>
</tr>
<tr>
<td>Farmers</td>
<td></td>
<td>Lack of credit to buy inputs</td>
<td></td>
</tr>
</tbody>
</table>

- Increased erratic rainfall and drought
- Lack of credit to buy inputs

Actors
- Importers
- Distributers, seed producers, chemical suppliers
- Farmers
Disaster risk and mitigation measures in Malawi

Map Showing Normal Against 2015/2016 Observed Seasonal Rainfall

Legend
- Lakes
- District Boundaries
- Rainfall Distribution
 - <508.0000
 - 508.0001 - 800.0000
 - 800.0001 - 1200.0000
 - 1200.0001 - 1600.0000
 - 1600.0001 - 2000.0000
 - 2000.0001 - 2255.9000

SIMLESWA impact districts
Adaptation strategies

Ex-ante adaptation strategies

- Tillage system diversification
- Various forms of CA
- Crop diversification
- Drought tolerant crop varieties
- Spatial diversity

Annual Rainfall 2015/2016, Bazale EPA, Balaka

- Total rainfall: 534mm
Adoption monitoring of technologies/practices

- Estimated number of farmers who have adopted the SI technologies (2010-2017) is 51,097 against target 46,000
- At baseline adoption rate of SI was 4%
- Currently it is at 35%
Major Drivers of technology adoption

- Enhanced extension services (ratio, frequency, extension models & different platforms)
- Market access
- Participatory development of technologies
- IPs
Constraints to adoption in low-altitude agro-ecologies

Reasons for non-adoption in low-altitude (%)

- Lack of skill to use technologies
- Told by fellow farmers that it is not increasing yields
- Lack of cash for herbicides
- Lack of equipment (DS, rippers)
- Labour shortage
Constraints to adoption in the mid-altitude agro-ecologies

Reasons for non-adoption in Mid-altitude (%)

- Lack of skill to use technologies
- Told by fellow farmers that it is not increasing yields
- Lack of cash for herbicides
- Lack of equipment (DS, rippers)
- Labour shortage

Kasungu Male
Lilongwe Female
Lilongwe Male
Mchinji Female
Mchinji Male
Constraints to adoption of SI technologies promoted under SIMLES A in 2013

<table>
<thead>
<tr>
<th>Major Reasons for not adopting</th>
<th>Percent</th>
<th>Minor Reasons for not adopting</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of cash</td>
<td>28.5</td>
<td>Lack of inputs such as herbicides</td>
<td>2.7</td>
</tr>
<tr>
<td>Lack of seed</td>
<td>23.3</td>
<td>Told by other farmers that it is not effective in increasing yield</td>
<td>1.9</td>
</tr>
<tr>
<td>Just learnt about the technology</td>
<td>12.9</td>
<td>Livestock feed shortage</td>
<td>1.8</td>
</tr>
<tr>
<td>Lack of equipment</td>
<td>12.5</td>
<td>The though is that it is for fields along the road only</td>
<td>0.9</td>
</tr>
<tr>
<td>Shortage of labor</td>
<td>4.6</td>
<td>Fear of destroying soil fertility</td>
<td>0.3</td>
</tr>
<tr>
<td>Not interested</td>
<td>3.6</td>
<td>See no benefits</td>
<td>0.5</td>
</tr>
<tr>
<td>Shortage of crop residues</td>
<td>2.9</td>
<td>Increase in pest and diseases</td>
<td>0.3</td>
</tr>
<tr>
<td>Lack of technical know how</td>
<td>2.8</td>
<td>Theft</td>
<td>0.1</td>
</tr>
<tr>
<td>Lack of land</td>
<td>2.8</td>
<td>Total N</td>
<td>989</td>
</tr>
</tbody>
</table>
Gender responsive

Decision making by men and women in married households in 2017

<table>
<thead>
<tr>
<th>Name of District</th>
<th>Female %</th>
<th>Men %</th>
<th>Both %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balaka</td>
<td>38.57</td>
<td>20.62</td>
<td>51.54</td>
</tr>
<tr>
<td>Ntcheu</td>
<td>12.85</td>
<td>35.48</td>
<td>35.48</td>
</tr>
<tr>
<td>Lilongwe</td>
<td>4.28</td>
<td>25</td>
<td>69.64</td>
</tr>
<tr>
<td>Mchinji</td>
<td>2.85</td>
<td>6.34</td>
<td>90.47</td>
</tr>
<tr>
<td>Kasungu</td>
<td>14.28</td>
<td>22.23</td>
<td>59.25</td>
</tr>
<tr>
<td>Salima</td>
<td>11.42</td>
<td>22.41</td>
<td>63.79</td>
</tr>
<tr>
<td>Average</td>
<td>14</td>
<td>22</td>
<td>62</td>
</tr>
</tbody>
</table>

Adoption monitoring survey, 2017
Gender responsive transformation
AGRONOMY: To increase yield productivity and develop scalable technologies

• Exploratory trials compared locally adapted CA systems (no till, planting methods, residues, herbicides, cropping system) with conventional practices (i.e. ridges, no residues).

• Baseline yield: Maize - 1777 kg/ha, with hybrid - 1935 kg/ha, OPV- 1539 kg/ha and local variety 1434 kg/ha.
Increases in yield productivity

Average maize yields (kg/ha) by cropping system in the low-altitude districts

<table>
<thead>
<tr>
<th>Cropping System</th>
<th>Overall 4 year mean</th>
<th>% yield increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional practice</td>
<td>2397</td>
<td></td>
</tr>
<tr>
<td>CA Basins Maize - pigeon pea intercrop</td>
<td>2824</td>
<td>18</td>
</tr>
<tr>
<td>CA Dibble stick Maize-pigeon pea intercrop</td>
<td>2628</td>
<td>9</td>
</tr>
<tr>
<td>CA Dibble Maize sole</td>
<td>2718</td>
<td>12</td>
</tr>
<tr>
<td>CA Dibble stick Maize-groundnut rotation</td>
<td>3286</td>
<td>37</td>
</tr>
</tbody>
</table>
Approaches in scaling out seed production and delivery systems

• **Formal**
 – Seed grower contracts by seed companies
 – Production Basic/pre-basic seed) at DARS (govt) stations
 – Seed Revolving (ICRISAT and IITA projects)
 – Farmer Associations (NASFAM, ASSMAG, GALA)

• **Informal**
 – Pass-on programs by NGOs
 – Community based seed banks
 – Farmer Research Groups – early generation seed
Maize and legume released varieties

- 10 hybrid maize
- 7 groundnut
- 1 Soybean
- 3 pigeon pea
Scalable technologies

<table>
<thead>
<tr>
<th>Agroecology</th>
<th>Technology Preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low altitude</td>
<td>✓ Use of planting basins
✓ Use of stress tolerant crop varieties
✓ Maize-groundnuts Rotation
✓ Maize-pigeon pea intercrop</td>
</tr>
<tr>
<td>Mid altitude</td>
<td>✓ Maize-Soybean Rotation including inoculation
✓ Improved maize and legume varieties that withstand multiple stresses
✓ Flat planting</td>
</tr>
</tbody>
</table>
Maize and legumes for scaling

<table>
<thead>
<tr>
<th>Crop</th>
<th>Technology (varieties)</th>
<th>Ecology</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundnuts</td>
<td>Chitala, Kakoma Nsinjiro, CG 7, ICGV-SM 01514, 99551, 99556, 01724, 01731, 08503, 08501</td>
<td>Low-Mid Altitude areas</td>
<td>Peacock Seeds, Museco, Funwe, Ex-Agris, NASFARM</td>
</tr>
<tr>
<td>Pigeon pea</td>
<td>Mwaiwathualimi, Chitedze pp1,2</td>
<td>Low-High Altitude areas</td>
<td>MUSECO, NASFARM, WASA</td>
</tr>
<tr>
<td>Soy bean</td>
<td>Makwacha, Tikolare, Nasoko</td>
<td>Low-High Altitude areas</td>
<td>MUSECO, NASFARM</td>
</tr>
</tbody>
</table>
Farmer Preferred traits

<table>
<thead>
<tr>
<th>Crop</th>
<th>Variety</th>
<th>Rank</th>
<th>Reasons of preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>MH26</td>
<td>1</td>
<td>- High yielding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Flint</td>
</tr>
<tr>
<td></td>
<td>MH31</td>
<td>2</td>
<td>- Flint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Comparatively high yielding</td>
</tr>
<tr>
<td></td>
<td>DKC8053</td>
<td>3</td>
<td>- Low yielding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Flint</td>
</tr>
<tr>
<td>G/nuts</td>
<td>Kakoma</td>
<td>1</td>
<td>- Early maturity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Comparatively high yielding</td>
</tr>
<tr>
<td></td>
<td>Chitala</td>
<td>2</td>
<td>- Disease resistant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Early maturing</td>
</tr>
</tbody>
</table>
Innovation platforms established in Malawi

<table>
<thead>
<tr>
<th>Name of platform</th>
<th>Number of farmers</th>
<th>Year established</th>
<th>Activities</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitundu AIP</td>
<td>146</td>
<td>2010</td>
<td>Marketing, Input acquisition and Out scaling activities (demos, trophies, field days)</td>
<td>Most Successful</td>
</tr>
<tr>
<td>Chamama AIP</td>
<td>83</td>
<td>2012</td>
<td>Out scaling activities (demos, field days) Input acquisition</td>
<td>Successful (requires support on marketing)</td>
</tr>
<tr>
<td>Nsipe AIP</td>
<td>52</td>
<td>2013</td>
<td>Out scaling activities (demos, field days)</td>
<td>Requires more support</td>
</tr>
<tr>
<td>Tembwe AIP</td>
<td>152</td>
<td>2012</td>
<td>Out scaling activities (demos, field days) Input acquisition</td>
<td>Successful (well organized but requires support on marketing)</td>
</tr>
<tr>
<td>Kapiri AIP</td>
<td>60</td>
<td>2012</td>
<td>Out scaling activities (demos, field days)</td>
<td>Requires more support since it has not reached the sustainable stage</td>
</tr>
<tr>
<td>Rivirivi AIP</td>
<td>45</td>
<td>2013</td>
<td>Out scaling activities (demos, field days)</td>
<td>Requires more support since it has not reached the sustainable stage</td>
</tr>
</tbody>
</table>

There are about 538 farmers affiliated to the platforms, 2016 assessment
Innovation platforms

Lilongwe
1. Farmers World
2. Kulima Gold
3. Export Trading Company
4. TLC
5. Agri -Trading Company
6. Pannar seed company

Kasungu
1. CADECOM
2. TLC
3. K2 TASO
4. NASFAM

Mchinji
1. Clinton (CDI)
2. TLC
3. NASFAM
4. CADECOM
5. Farmers Hum
6. Action Aid
7. Chisaka Alimi

Achievement of IPs:
- Facilitated identification of out scaling farmers

Balaka
1. Concern Universal
2. FAO
3. NASFAM
4. MINELELA
5. FIDP

Ntcheu
1. TLC
2. NASFAM
3. Africa Rise Project
4. Concern universal

Salima
1. Malawi Lake Basin
2. TLC
3. Environmental Africa
4. Agro-dealers
5. PANA-seed company

Achievement of IPs:
- Facilitated acquisition of inputs e.g. Mitundu =1 million Malawi Kwacha or 2439 USD
Drivers to farmer adoption of the IPs

- Market access
- Storage opportunities

Needs good facilitating institution to drive the platform
SIMLESA competitive grantees in Malawi

<table>
<thead>
<tr>
<th>Name of institution</th>
<th>Farm Radio Trust</th>
<th>NASFAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main scaling approach</td>
<td>Participatory radio</td>
<td>Club model</td>
</tr>
<tr>
<td>Scaling pathways</td>
<td>Via radio, field and mobile (ICT)</td>
<td>National network of farmer groups</td>
</tr>
<tr>
<td>Number of farmers reached out</td>
<td>200,000</td>
<td>40,245</td>
</tr>
</tbody>
</table>
Individual capacity building initiatives by SIMLESA Programme since 2010

<table>
<thead>
<tr>
<th>Type of training</th>
<th>Key skills/knowledge advanced</th>
<th>Number of personnel</th>
<th>Proportion of women</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhDs</td>
<td></td>
<td>2</td>
<td>50%</td>
</tr>
<tr>
<td>MScs</td>
<td>Agronomy & economics</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>Short course</td>
<td>Gender mainstreaming (TOTs)</td>
<td>5</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>Gender mainstreaming (project implementers)</td>
<td>18</td>
<td>44%</td>
</tr>
<tr>
<td></td>
<td>Agronomy</td>
<td>4</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Conservation agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APSIM modelling</td>
<td>5</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>CA, Soil health and Innovation Platform skills</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>Workshops</td>
<td>Scientific writing</td>
<td>3</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>APSIM modelling and use of ODK</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Coordination</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Field exchange visits</td>
<td>CA-based sustainable intensification</td>
<td>93</td>
<td>45%</td>
</tr>
</tbody>
</table>
What worked well in SIMLESA

- Strong government commitment to support the programme
- Integration of the project to ASWAp
- Good Public Private Partnerships
- Enhanced adoption of SI by farmers
- Rigorous socio-econs studies were conducted which could inform policies
- Purchasing of scientific equipment
- Capacity building of scientists, extension workers as well as farmers
- A suite of technological innovations
- Institutional innovations, especially AIPs, that improve the enabling environment for adoption of SI practices
Soft benefits

• SIMLES A yielded inception of other brother projects
 – SAPP and APPSA all focus on SI
GAPS in SIMLESA

- Knowledge management and dissemination Publications
- The IPs needs to be out-scaled
- Reliance on ADMARC as an output market
- GAP remain in marketing of commodities- maybe a model like that of ICRISAT is also needed
- Integration of farmers into the value chains was minimal
Key lessons

1. Need for systemic research, going beyond disciplinary approach
2. The technologies made available are not silver bullets but a shopping basket for farmers depending on their environment
3. Rigorous research to develop marketing model with farmers integrated into the value chains is vital
4. “If a tree fell in the forest and no one is there to hear it, did it make a sound?” Knowledge management is key
5. There need for innovative institutional arrangement and policy alignment to transform agriculture in Malawi
6. Enhanced PPP has facilitated adoption of SI technologies
Acknowledgement

- ACIAR
- CIMMYT
- QAAFI
- CG partners
- Farmers and farmer organizations
- DARS
Thank you for your interest!

ZIKOMO!!