Identifying avenues for increases in HI whilst maintaining post-anthesis photosynthetic capacity in wheat

Carolina Rivera-Amado, Eliseo Trujillo-Negrellos, Roger Sylvester-Bradley, Gemma Molero, Matthew Reynolds and John Foulkes

Trigo (Wheat) Yield Potential Workshop
23rd and 24th March 2016
CENEB, Ciudad Obregon
Represents an actual set of elite material breeders would realistically use in their strategic crosses aiming to further raising yield potential.

- Older cultivars which represent landmarks in past genetic gains
- High-yielding elite cultivars
- Synthetic derived wheat material
- Lines derived from the most recent CIMMYT selection since 2000
Grain yield genetic gains associated to? Is sink size being increased optimally?

Year of release, 8 historic CIMMYT spring wheat cultivars
Similar results: Khaled et al, 2015 (12 historical CIMMYT cultivars).
Trade-off between biomass and HI

- Non-linear association between grain yield and HI
- Trade-off between biomass at harvest and harvest index
- Similar trends in HiBAP

Raised beds, 26 CIMCOG cultivars, 2011-2013
Suggestions for maximizing grain number and HI

Anthesis
- Spike ~ 25% (+7%)
- Leaf lamina ~ 20%
- Leaf sheath ~ 15%
- True stem ~ 40%
 - Lower SW/length of int 2/3
 - Increased spike WSC
 - No changes in stem WSC

Harvest
- 140 grains/g spike
 - Reduce specific rachis weight
- 75-85 cm tall & stronger stem bases
- HI ~ 0.6
 - Reduce structural stem DM
 - Reduce chaff
 - Maintain LS
 - Increase spike WSC pre-anthesis

Fruiting efficiency

Foulkes et al., 2011 and Rivera-Amado, et al., 2015
Objectives

• To quantify source-sink balance in the CIMCOG panel during grain filling.

• To estimate the extent of contribution of photosynthesis during grain filling from the lamina and/or leaf sheath to final grain growth.

• To investigate spike photosynthesis up-regulation in response to source manipulation treatments.
Field experiments

- Yaqui Valley
- 2011 to 2014 (Nov-Apr)
- Yield potential conditions
- 26 elite spring wheat cultivars
- Lattice field experiment design
- 2 subsets chosen for source manipulation treatments
Post-anthesis source and sink concepts

Sink = Storage capacity of the grains (PWG)

Source = Current photosynthetic capacity and assimilate stored to fill the grains (+10% inc. GW)

Co-limitation = limitation by sink and source (first and second half of grain fill)

De-graining treatments

Yield limited by source

Yield limited sink

Def/LS cov treatments

Give an estimation of the contribution of the organ to final GW
Source-sink manipulation treatments

- De-graining: 2011-2013 (26 cvs)
- Defoliation: 2012 and 2013 (10 cvs)
- LS covering: 2014 (4 cvs)

2 m length
4 rows
12 shoots/treatment
Source-sink manipulation treatments

Grain weight and number responses (%) to all treatments

Spike and flag leaf photosynthesis up-regulation/responses to defoliation/LS covering

• Anthesis+15 days
• Anthesis+25 days

GW and GN from treatments compared to the control

Gemma Molero
GW response to de-graining and grain yield

Modern high yielding CIMMYT cultivars may have co-limitation of grain growth by source and sink

- Variation in source-sink balance or response to de-graining
- Markers for GW response to de-graining 294 WAMI genotypes 2013 (9k SNP and 1,992 DArT markers)

Eliseo Trujillo and Sivakumar Sukumaran

2011 – 2013, 26 CIMCOG cultivars
Relatively small grain weight (GW) responses (10.2%) to defoliation in relation to ca. 40% reduction in LI indicated that source limitation is not entirely dependant on leaves and the potential contribution of photosynthesis from alternative organs such as spike and/or leaf sheath.
Leaf sheath (LS) photosynthesis inhibition reduced GW by 10.4%, indicating leaf sheath makes a significant contribution to grain growth during grain filling.
Photosynthesis up-reg. measurements

Spike photosynthesis

Trends for increased spike and flag leaf photosynthesis in the leaf sheath covering treatment compared to the control.

Flag leaf photosynthesis

4 CIMMYT spring wheat cultivars 2014, two stages averaged.
Leaf sheath after flowering

- It contributes to photosynthesis during grain filling and final GW, especially in source limited varieties.
- Considerable DM investment within stems.
- Leaf sheath stay-green
- Canopy architecture
- WSC transport role (12.1% at GS65+7 days)
- Stem support
Leaf sheath after flowering

- It contributes to photosynthesis during grain filling and final GW, especially in source limited varieties.
- Considerable DM investment within stems.
- Leaf sheath stay-green
- Canopy architecture
- WSC transport role (12.1% at GS65+7 days)
- Stem support

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Sheath % to straw Ant+7d</th>
<th>Sheath % to straw PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABAX/LR42</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>BECARD/KACHU</td>
<td>0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>SAUAL/WHEAR</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>CMH79A.955</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>CIRNO C 2008</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td>PAVON F 76</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>SERI M 82</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>TACUPETO F2001</td>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>UP2338*2</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>BECARD</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>Mean</td>
<td>0.23*</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Thanks for your attention!