Bunt and Smut Diseases of Wheat
Concepts and Methods of Disease Management

Technical Editors
Roy D. Wilcoxson
Eugene E. Saari

Chapter Authors
Barbara Ballantyne
Peter A. Burnett
Guillermo Fuentes Davila
Blair J. Goates
Omar F. Mamluk
Jens Nielsen
Eugene E. Saari
Percy Thomas

Editors/Coordinators
Gene P. Hettel
Alma McNab

CIMMYT
Sustainable Maize and Wheat Systems for the Poor
CIMMYT is an internationally funded, nonprofit scientific research and training organization. Headquartered in Mexico, the Center is engaged in a worldwide research program for maize, wheat, and triticale, with emphasis on improving the productivity of agricultural resources in developing countries. It is one of 16 nonprofit international agricultural research and training centers supported by the Consultative Group on International Agricultural Research (CGIAR), which is sponsored by the Food and Agriculture Organization (FAO) of the United Nations, the International Bank for Reconstruction and Development (World Bank), and the United Nations Development Programme (UNDP). The CGIAR consists of some 40 donor countries, international and regional organizations, and private foundations.

CIMMYT receives core support through the CGIAR from a number of sources, including the international aid agencies of Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Finland, France, India, Germany, Italy, Japan, Mexico, the Netherlands, Norway, the Philippines, Spain, Switzerland, the Republic of Korea, the United Kingdom, and the USA, and from the European Union, Ford Foundation, Inter-American Development Bank, OPEC Fund for International Development, UNDP, and World Bank. CIMMYT also receives non-CGIAR extra-core support from the International Development Research Center (IDRC) of Canada, the Rockefeller Foundation, and many of the core donors listed above.

Responsibility for this publication rests solely with CIMMYT.

AGROVOC descriptors: Wheats, Triticum, plant diseases, Ustilaginales, Tilletia, Urocystis, Ustilago, epidemiology, natural distribution, disease control, disease resistance, genetic inheritance

AGRIS category codes: H20; F30

Dewey decimal classification: 632.427

Design and layout: Miguel Mellado E., Eliot Sanchez P., Marcelo Ortiz S. and Antonio Luna A.

Printed in Mexico.
CHAPTER 4.
LOOSE SMUT
33 History
33 Distribution and Importance
33 Hosts
34 Pathogen
34 Taxonomy
34 Physiologic Specialization
36 Teliospore Germination and Culture of Isolates
37 Infection and Disease Cycle
37 Infection
37 Symptoms
38 Association with Other Diseases
38 Influence of Environment
39 Control Strategies
39 Physiologic Resistance
41 Morphological Resistance
41 Seed Treatment
42 Other Methods
42 Techniques for Study
42 Evaluation of Fungicide Efficacy
42 Determination of Incidence in the Field
43 Inoculum Preparation
43 Inoculation Procedures
46 Collecting Field Isolates of Smut
46 Working with Races
47 Obtaining Haploid Hyphae

CHAPTER 5.
FLAG SMUT
48 History
48 Distribution and Importance
48 Hosts
49 Pathogen
49 Taxonomy
49 Teliospores and Spore Balls
50 Physiologic Specialization
52 Infection and Disease Cycle
52 Infection Process
53 Dissemination
53 Symptoms and Other Effects
53 Association with Other Diseases
54 Influence of Environment
54 Variation in Infection Frequency and Expression
54 Control Strategies
54 Physiologic Resistance
55 Seed Treatment
55 Cultural Practices
56 Quarantine
56 Techniques for Study
56 Inoculation
56 Disease Rating Scales
57 REFERENCES
65 GLOSSARY
Abstract

Five bunt and smut diseases are regularly associated with wheat (Triticum spp.). These are: common bunt (Tilletia spp.), dwarf bunt (T. controversa), Karnal bunt (T. indica), loose smut (Ustilago tritici), and flag smut (Urocystis agropyri).

This fourth practical manual in CIMMYT's Wheat Disease Manual Series gathers together information necessary for understanding these diseases. It presents background information and concepts and methods that will help those not familiar with the bunts and smuts to correctly identify the different pathogens.

General principles and guidelines for disease management are presented to help breeders and pathologists in controlling the diseases and selecting for resistance. Comprehensive reviews of the literature focus attention on pertinent reports for each disease.

Other Manuals in This Series

Preface

Fourth in a series of wheat disease technical manuals being developed at CIMMYT, this publication is a much needed and timely reference concerning the bunt and smut diseases of wheat.

The first disease manual, the “Cereal Disease Methodology Manual,” published and distributed in 1986, was more general in scope. Shortly after its publication, a group of CIMMYT scientists conceived the idea of producing a whole series of technical manuals on specific wheat diseases, tailored for a developing country audience. Instrumental in getting the series started were Drs. H.J. Dubin, A.R. Klatt, J.M. Prescott, E.E. Saari, R.W. Stubbs, and E. Torres. Award-winning manuals on the septoria diseases and the rusts were published in 1987 and 1992, respectively. Now, in 1996, this manual on bunts and smuts gathers under one cover the accumulated wisdom of a select group of disease specialists. A fifth manual devoted to the bacterial diseases of wheat is slated to come out in the latter part of this year.

As evident from historic references, the bunts and smuts have had a long relationship with wheat and its relatives. For example, common bunt and loose smut have afflicted wheat cultivation since the beginning of recorded history. Besides those two diseases, this manual covers dwarf bunt, Karnal bunt, and flag smut. Although there are other bunts and smuts that attack wheat, their distribution and economic impact are relatively insignificant.

In preparing this manual we have tapped the expertise of Wheat Program pathologists and of outside specialists. We take this opportunity to express our special appreciation to Blair Goates (common and dwarf bunt), Jens Nielsen and Percy Thomas (loose smut), Barbara Ballantyne (flag smut), Peter Burnett and Omar Mamluk (overview of the diseases), and Roy Wilcoxson (overall technical editing), without whose contributions this manual would not have been possible.

The usefulness of this publication is enhanced by the extensive literature review of the subject matter (nearly 700 citations) and summary of practical information that it provides. Other publications and reviews are available, but no single reference describes relevant concepts and how to apply them to the management of these diseases as does this manual. Finally, while it is true that the information included here is intended for workers who have to deal with bunts and smuts in developing countries, we have no doubt it will be equally useful and well received in developed countries.

Sanjaya Rajaram
Director, CIMMYT Wheat Program
Wheat Bunts and Smuts

Eugene E. Saari, CIMMYT; Omar F. Mamluk, International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria; and Peter A. Burnett, Agriculture and Agri-Food Canada, Lacombe Research Centre, Lacombe, Alberta, Canada

Global Status and Importance

The Diseases

Five bunt and smut diseases are regularly associated with wheat (Triticum spp.) and related grasses: common bunt, dwarf bunt, Karnal bunt, loose smut, and flag smut (Fischer and Holton 1957, Holton 1967, Martens et al. 1984, Wiese 1987, Mathur and Cunfer 1993). There are a few other bunt diseases that are relatively insignificant in distribution and economic impact (Grasso 1968, Sharifnabi and Harrar 1957, Chapters 2 and 4 in this manual). Both diseases are widespread and are effectively perpetuated with seed, either on seed surfaces or as infections. Therefore, dispersal from the Near East center of origin was assured as seeds were carried to other parts of the world. Wind probably was not important in early dispersal of CB because of hand harvesting and threshing at a central site. However, wind may be important in modern agriculture because combine harvesting liberates teliospores, depositing them onto the surface of the field, releasing them into the atmosphere, where they may be carried long distances (Fischer and Holton 1957, Zadoks and Schein 1979, Bonde et al. 1987, Yarham 1993).

CB and LS fungi are well adapted to Near East environmental conditions and cause the most important diseases of wheat, after the rust diseases (Holton and Heald 1941, Fischer and Holton 1957, Stakman and Harrar 1957, Mamluk et al. 1990, Chapters 2 and 4 in this manual). Both diseases are widespread and are effectively perpetuated with seed, either on seed surfaces or as infections. Therefore, dispersal from the Near East center of origin was assured as seeds were carried to other parts of the world. Wind probably was not important in early dispersal of CB because of hand harvesting and threshing at a central site. However, wind may be important in modern agriculture because combine harvesting liberates teliospores, depositing them onto the surface of the field, releasing them into the atmosphere, where they may be carried long distances (Fischer and Holton 1957, Zadoks and Schein 1979, Bonde et al. 1987, Yarham 1993).

The CB pathogens survive between crops in soil for varying periods of time, especially if moisture is absent and monoculture is practiced (Fischer and Holton 1957, Line 1993b). This situation fits into the Mediterranean agricultural climate and pattern (Kassam 1988).

The LS pathogen, in contrast, survives in embryos and is favored by cool moist weather at flowering time. Consequently, LS is frequently more common at higher elevations where flowering periods are extended. This situation fits into areas of the Near East where elevations often exceed 1000 m, and cool nights and dews

A long association of bunts and smuts with wheat and wheat relatives is indicated because the bunt and smut fungi are obligate parasites, highly specialized in pathogenicity. Undoubtedly, these fungi originated in the same center—the Near East—as the wheats and wheat relatives. This concept is supported by the large number of host resistance genes identified from the Near East (Fischer and Holton 1957, Leppik 1970, Hoffmann 1982, Zohary and Hopf 1988).

CB and LS fungi are well adapted to Near East environmental conditions and cause the most important diseases of wheat, after the rust diseases (Holton and Heald 1941, Fischer and Holton 1957, Stakman and Harrar 1957, Mamluk et al. 1990, Chapters 2 and 4 in this manual). Both diseases are widespread and are effectively perpetuated with seed, either on seed surfaces or as infections. Therefore, dispersal from the Near East center of origin was assured as seeds were carried to other parts of the world. Wind probably was not important in early dispersal of CB because of hand harvesting and threshing at a central site. However, wind may be important in modern agriculture because combine harvesting liberates teliospores, depositing them onto the surface of the field, releasing them into the atmosphere, where they may be carried long distances (Fischer and Holton 1957, Zadoks and Schein 1979, Bonde et al. 1987, Yarham 1993).

The CB pathogens survive between crops in soil for varying periods of time, especially if moisture is absent and monoculture is practiced (Fischer and Holton 1957, Line 1993b). This situation fits into the Mediterranean agricultural climate and pattern (Kassam 1988).

The LS pathogen, in contrast, survives in embryos and is favored by cool moist weather at flowering time. Consequently, LS is frequently more common at higher elevations where flowering periods are extended. This situation fits into areas of the Near East where elevations often exceed 1000 m, and cool nights and dews

Common bunt and loose smut. These diseases have been associated with wheat cultivation since the beginning of recorded history (Fischer and Holton 1957, Stakman and Harrar 1957, Chapters 2 and 4 in this manual). In early historical writings, different diseases of wheat such as ruts, mildew, bunts, and smuts were not clearly differentiated until the microbial causes of plant diseases were discovered. Despite this, there seems to be no question that common bunt (CB) and loose smut (LS) have been present from the earliest agricultural experiences of man. The term “corn”, used in early writings, refers to wheat rather than to maize (Zea mays L.). However, today this fact is occasionally forgotten.

A long association of bunts and smuts with wheat and wheat relatives is indicated because the bunt and smut fungi are obligate parasites, highly specialized in pathogenicity. Undoubtedly, these fungi originated in the same center—the Near East—as the wheats and wheat relatives. This concept is supported by the large number of host resistance genes identified from the Near East (Fischer and Holton 1957, Leppik 1970, Hoffmann 1982, Zohary and Hopf 1988).
occur with high frequency (Tahir and Hayes 1988). The cool moist weather at anthesis in northern latitudes also favors loose smut.

Dwarf bunt. This pathogen is closely related to CB pathogens and undoubtedly originated in the Near East. However, in the Near East, it is restricted to higher elevations with extended snowcover (Parlak 1981; Özkan and Damgaci 1986; Bamdadian 1993a,b). Teliospores of the dwarf bunt (DB) fungus are capable of long-term survival in soil (Holton and Heald 1941, Fischer and Holton 1957, Line 1993a). The DB pathogen has a wider virulence spectrum than the CB pathogens (Hoffmann 1982, Line 1993a), which may be important in survival on *Triticum* species since sown wheat areas in mountain regions are scattered compared to the plains where common bunt prevails.

Flag smut. Flag smut (FS) is of uncertain origin, but it probably originated in Asia (Chapter 5 in this manual). Suggestions that it originated in Australia or the United States seem questionable, since wheat has been grown in these countries for a relatively short time and the evolution of a pathogen in this short period seems unlikely. The disease may have had its origin somewhere in Asia because pathogenic variability of the FS fungus seems to be most diverse in collections from China and India (Chapter 5). The life cycle of the fungus would have allowed for ready dispersal on seed and straw, especially with primitive threshing procedures. Survival of teliospores in soil for extended periods is another important factor (Line 1993c). The dry summer between crop seasons does not seem to be critical for extended survival. Our knowledge concerning origins of the FS fungus is still limited.

Karnal bunt. Karnal bunt (KB) was first recorded in the northern plains of India and Pakistan, where it has been endemic and most likely evolved (Bhatti and Ilyas 1986, Singh 1986, Warham 1986, Joshi et al. 1983, Agarwal et al. 1993a). Spread of KB from the Indian Subcontinent was not recognized until the 1970s, when it was confirmed in Mexico. Since then, spread of KB within India and Mexico has been documented with the widespread distribution of seed of susceptible cultivars produced in endemic areas (Singh et al. 1983, Singh 1986, Carreon Zuniga 1992, Lira Ibarra 1992, Agarwal et al. 1993a). Yet KB has been established only in certain areas. Recently, KB was reported from western Nepal (Singh et al. 1989), an area that probably lies within the natural range of the pathogen.

Thousands of tons of wheat seed were produced in the KB endemic area of north India and shipped to Bangladesh in late 1970s and early 1980s (Ahmed 1986). It is doubtful that all of this seed was free of KB. Yet there are no reports of KB in Bangladesh (Ahmed 1986). There are, however, reports of KB from countries other than the endemic areas (Lambat et al. 1983, Agarwal et al. 1993a). However, KB has not been confirmed by on-site inspections in the concerned countries. Contaminated seed lots from endemic areas were known to be trans-shipped through some of these countries.

The Pathogens

Common bunt. Two pathogen species are involved, and teliospores typical of both species are sometimes found in the same sorus. In earlier literature (reviewed by Holton and Heald 1941, Fischer and Holton 1957, Holton 1967), durum wheats were suggested to be more resistant to *T. tritici* and bread wheats more resistant to *T. laevis*. Sometimes the reverse was reported. Fischer and Holton (1957) suggested that these differences could be explained by physiological specialization, selection pressure, and pathogen hybrids showing the full range of teliospore types (Chapter 2 in this manual). More recently, Mamluk and Zahour (1993) indicated a strong selective advantage of bread wheat for *T. laevis* whereas durum wheat was equally infected by both CB species.

Topography may influence the presence of CB pathogen species. *Tilletia laevis* dominates collections from higher elevations, and *T. tritici* prevails at lower elevations (Holton and Heald 1941; Yirgou 1967, Niemann et al. 1980, Yüksel et al. 1980). Today, there is a resurgence of CB due to ineffective resistance, new cultivars that lack resistance, and inadequate seed treatments (Mamluk et al. 1990, Mamluk and Zahour 1993, Line 1993b).

Dwarf bunt. This pathogen occurs at higher elevations or locations where snowcover is persistent (Line 1993a). Snow insulates from freezing, which allows the pathogen and host-pathogen interaction to develop slowly. In endemic areas, serious losses have been recorded. This fungus is closely related to CB fungi (Russell and Mills 1993, Chapter 2 in this manual).

Loose smut. The LS fungus occurs wherever wheat is grown but incidence is lower in warmer, dry climates where the wheat plant cycle is short. LS can be controlled by resistant cultivars or effective seed treatment fungicides (Agarwal et al. 1993b). There is a resurgence of LS because cultivars are not resistant and seed treatments are either not used or carelessly used.

Flag smut. The distribution of FS is regionalized. It causes severe damage where it is endemic on susceptible cultivars. Interestingly, FS has not been reported from ancient wheat growing areas such as Saudi Arabia, Yemen and Ethiopia (Kamal and Al Agbari 1985, Hulluka et al. 1991, El-Meleigi et al. 1993). Resistant cultivars and effective seed treatment fungicides have controlled FS in a number of countries.

Karnal bunt. The pathogen is endemic in the Indian Subcontinent and Mexico (Anon 1989a, Singh 1986, Warham 1986).
Figure 1.1. Worldwide distribution of common bunt.

Figure 1.2. Worldwide distribution of dwarf bunt.
Figure 1.3. Worldwide distribution of Karnal bunt.

Figure 1.4. Worldwide distribution of loose smut.

Figure 1.5. Worldwide distribution of flag smut.
Reports from other countries have not been substantiated. However, it is possible that the KB fungus has a wider distribution than is currently recognized. Development of resistant cultivars has been a long difficult process. Chemical control procedures are available but are not completely effective (Chapter 3 in this manual).

Life cycles. The life cycles of the bunt and smut fungi are complex and detailed. Specific information is recorded in this manual, and life cycles are diagrammed in Figures 1.6-1.9.

Regional Distribution

West Asia and the Near East
The Near East is probably the center of origin for wheat and related species, as well as for CB, DB, and LS pathogens (Leppik 1970, Zohary and Hopf 1988). The KB fungus is clearly not endemic to this region (Warham 1986, Singh 1986, Agarwal et al. 1993a) and the FS fungus probably originated in Asia (Line 1993c, Chapter 5 in this manual).

In this region, CB and LS may be the most widespread and important wheat diseases, after the rusts (Fischer and Holton 1957, Iren 1981, Mamluk et al. 1990, Mamluk and Zahour 1993). They are, certainly, the most frequently reported bunt and smut diseases. Actual losses are not well documented, but yield losses of 1-7% are common (Mamluk 1992). In general, percentage yield loss due to LS and FS are roughly equal to the percentage infection of spikes or plants, whereas losses due to CB are somewhat lower because not all kernels in a spike are affected (Mamluk and Zahour 1993). Losses caused by CB were estimated at 5-7% in 1979 (Hoffmann 1982). Even when yield losses are minor, contamination of grain with CB is often sufficient to reduce quality and cause marketing problems (Williams 1983).

In Turkey, bunt and smut diseases of wheat rival rusts in importance (Finci 1981, Iren 1981, Paralak 1981, Finci et al. 1983, Bicici et al. 1991). Early surveys established that about 10% of the wheat fields carried some level of CB, and some individual fields had 60-90% infected plants (Paralak 1981). *T. laevis* was the most common pathogen in Turkey, accounting for almost 88% of the identifications, whereas *T. tritici* was dominant at lower elevations in southeastern Turkey (Yüksel et al. 1980, Iren 1981, Finci et al. 1983). A greater number of races of *T. laevis* than of *T. tritici* were identified from bunt collections (Finci 1981, Finci et al. 1983). Production losses have been estimated at 10-20%, depending on the year and the authority (Yüksel et al. 1980, Iren 1981, Paralak 1981). Further, only 40-50% of the seed is treated, so bunt incidence quickly increases in susceptible cultivars. A number of newer cultivars are susceptible to CB (Atac 1988), and more recently 15%
In Syria, CB was "...the most important disease of wheat..." some 30 years ago (Mulder 1958) and continues to be hazardous (Mamluk et al. 1989, 1990; Mamluk 1992). The disease was recorded in 50% of wheat fields surveyed in three of four production zones (Mamluk et al. 1990). In this survey, neither T. laevis nor T. tritici predominated, but their presence was correlated with the host species. Only 3% of samples tested contained a mixture of both pathogens. The highest severity was a 60% incidence in the bread wheat cultivar Mexipak and a 33% incidence in the durum wheat landrace cultivar Shyhani.

In northern Syria, 83% of grain samples delivered to commercial flour mills were heavily contaminated with CB teliospores (Williams 1983), indicating heavy infection in fields where grain originated or in adjacent fields. Some of the widely grown cultivars (Mexipak, Cham 1 and Cham 3) are susceptible in Syria (O.F. Mamluk, unpubl.).

In Iran, bunt and smut are the most important diseases of wheat after the rusts (Zad 1972, Khazra and Bamdadian 1974, Sharif and Bamdadian 1974, Akbari and Zolghadri 1988, Mardoukhi 1989). CB causes losses of 25-30% in parts of Iran (Bamdadian 1993a,b). This disease is found throughout the country, but it is concentrated in the northern and northwestern regions (Akbari and Zolghadri 1988; Bamdadian 1993a,b). Five species of Tilletia are described in Iran. In one study, T. laevis was most common, being in 94 % of 729 samples analyzed (Sharifnabi and Hedjaroude 1991), and T. controversa was second most common, being present in 4.5% of the samples. T. tritici was present in only 0.1% of the samples. T. triticoides and T. intermediata two new species for Iran,
were relatively rare, are restricted in distribution and may be hybrids of more common species (Fischer and Holton 1957, Chapter 2 in this manual). The reported dominance of *T. laevis* may also reflect the predominance of bread wheats in the area and at higher elevations of northern crop areas.

In Afghanistan, CB is second in importance to the rusts (Shah Samin 1969). *T. laevis* is the dominant species (Gattani 1964, Osmanzai and Quayoun 1972). Losses have been estimated at 5% for the nation (Peterson et al. 1967) and up to 20% in some provinces (Gattani 1964). Cultivar Mexipak was highly resistant to CB collected from local cultivars from highland areas (Osmanzai and Quayoun 1972).

In northern Iraq, there is a large rainfed area, and CB is the major disease of wheat (Hermis and Hussain 1979). In one survey involving different wheat growing areas, *T. tritici*, *T. laevis* and *Tilletia* spp. were recovered. Cultivar Mexipak was resistant to all isolates from this survey (Ibrahim et al. 1985). In another study, a large number of hybrids between *T. tritici* and *T. laevis* were recorded among 4129 diseased spikes (Ibrahim 1988). In contrast, Tamimi (1986) analyzed 665 spike collections from different wheat locations in Iraq and found *T. tritici* to be the most common species from most locations.

In Lebanon and Jordan, the climate is arid with low rainfall, which minimizes some wheat diseases, but CB is widespread (Mazahreh 1981, Mamulk et al. 1984). Many farmers treat seed, so bunt incidence is relatively low (Ghosheh 1975). In Lebanon, only *T. laevis* has been identified (Weltzien 1963, Saad and Nienhaus 1969, Khatib et al. 1970). A high incidence of CB occurred in the northern Bekka Valley of Lebanon as a result of sowing susceptible CB-free cultivars without seed treatment. This experience suggests high levels of soilborne inoculum (E.E. Saari 1974, unpubl.).

In Egypt, CB occurs throughout the country, including the Sinai, on both bread and durum wheats, but is more common on bread wheats. Losses are small because of seed treatment but sometimes may be considerable (Abdel-Hak and Ghabrial 1969a, Anon. 1969).

In Saudi Arabia and Yemen, early surveys did not report CB (Martin 1970, Hindorf et al. 1978). However, a recent survey in central Saudi Arabia registered *Tilletia* spp. but did not quantify its presence (El-Meleigi et al. 1993). Another report indicated CB in local wheat near Abha (Asir Region), western Saudi Arabia, at 30-50% incidence (Hall 1975). *T. laevis* but not *T. tritici* was reported in Sanaa Governorate, Yemen, but it is a minor disease (Kamal and Al Agbari 1985).

DB has been reported from Turkey (Yüksel et al. 1980, Parlak 1981, Hoffmann 1982, Özkan and Dangaci 1986), Iran (Mardoukhi 1989, Bamdadian 1993a,b), and Iraq (Hoffmann 1982, Trione 1982). One of the most severely affected areas is eastern Anatolia, Turkey and northwest Iran at elevations of 1300-2000 m (Özkan and Dangaci 1986; Sharifnabi and Hedjaroude 1992; Bamdadian 1993a,b). The area infected with DB in Turkey is limited to about 1750 ha (Parlak 1981). Losses, however, are as high as 80% (Yüksel et al. 1980, Parlak 1981, Özkan and Dangaci 1986).

In Turkey, DB infects *Hordeum bulbosum*, *H. maritimum*, *H. marinum*, *Agropyrum repens*, and *Aegilops umbellulata* (Özkan and Dangaci 1986). This report has been confirmed, but cross inoculations to wheat have not finalized the role of these hosts in the epidemiology of the smut. The DB fungus is known to have a wide host range (Chapter 2 in this manual).

LS occurs in almost all locations of the West Asia and Near East Region, even in oasis areas (Anon. 1969, Waller and Bridge 1978, El-Meleigi et al. 1993). A high incidence has been reported from many countries, especially on old landrace cultivars, but also on more recently released high yielding cultivars. LS is often overlooked and its importance underestimated due to its early occurrence in the life cycle of the wheat plant.

In Turkey, LS incidence ranges from 0.1 to 20%, depending on the cultivar and year (Iren 1981). Surveys in 1972-74 reported LS in 32% of the fields. Maximum LS incidence was 40% in eastern Turkey, 27% in Central Anatolia, and 15% in the Marmara Region (Parlak 1981). Overall incidence was calculated at 16% in infected fields. In a more recent survey covering the Central Anatolian Plateau, almost every field of cultivar Gerek 79 had some LS, with maximum incidence at 33% (E.E. Saari and O.F. Mamulk, unpubl.). Gerek 79 was the most widely grown cultivar in the Central Plateau, with an estimated acreage exceeding 1 million hectares.

In Egypt, LS has been known for many years, though its importance has been minor because resistant cultivars were grown and certified seed was extensively used (Anon. 1969). In the early 1980s, susceptible cultivars such as Sakha 6l and Sakha 69 were associated with a marked
increased in recent years among durum wheats, which are more susceptible than bread wheats, which were immune (Abdel-Hak and Ghobrial 1969b). The highest incidence was 58%, but over-all, incidence was about 1% (El-Helaly 1948, Abdel-Hak and Ghobrial 1969b). The incidence of loose smut in farm yields (Shafik et al. 1990, Sherif et al. 1991). While the disease seemed to “disappear” in the 1960s, more recent surveys recorded it in 90% of Sahka 61 fields at 0.01-0.1% incidence (Bassouni et al. 1988).

In Iran, LS is widely dispersed, but is more prevalent in northern areas around the Caspian Sea (Shariff and Bamdadian 1974; Bamdadian 1993a,b). Incidence of disease ranges up to 2% in susceptible cultivars.

In Afghanistan, LS is widespread but of little importance. Losses are generally below 1%, except in Jalalabad and Laghman Provinces, where they may be greater (Peterson et al. 1967, Shah Samim 1969).

FS has been reported from Turkey (Parlak 1981), Iran (Bamdadian 1993a,b), Jordan (Mamluk et al. 1984) and Afghanistan (Shah Samim 1969) but is relatively minor in each of these countries. In Syria, FS occurs sporadically but may be increasing in importance (Mamluk et al. 1990). FS also occurs on Aegilops spp. in Syria (Mamluk et al. 1990) and on barley in Turkey.

In Egypt, FS has been known since 1923 and may have been introduced with large seed shipments from Australia after World War I (El-Helaly 1948). The disease was serious in the Southern Delta and Middle Egypt and less serious in Upper Egypt. Bread wheats were more susceptible than durum wheats, which were immune (Abdel-Hak and Ghobrial 1969b). The highest incidence was 58%, but over-all, incidence was about 1% (El-Helaly 1948, Abdel-Hak and Ghobrial 1969b). The disease is now of minor importance through the use of certified seed and resistant cultivars (Anon. 1969).

FS has not been reported from Saudi Arabia or Yemen.

KB has not been confirmed from the Middle East, Syria, Lebanon, or Turkey (Dieckmann 1987, Mamluk et al. 1990; E.E. Saari and O.F. Mamluk, unpubl.; B. Skovmand and H. Braun, 1986, unpubl.; Kianci, H. Braun, and E.E. Saari, 1990, unpubl.). It has been reported in seed from the above three countries (Lambat et al. 1983, Zillinsky 1983), but these findings have not been confirmed by reports from the field.

Conclusions. CB, DB, and LS are important diseases in the West Asia and Near East Region. Although bunts have been managed in the past, they are now regaining importance probably due to: 1) a relaxed attitude toward seed treatment, 2) the use of ineffective fungicides, 3) the possible insensitivity of bunt pathogens to seed-treatment chemicals, 4) the decreased use of resistant cultivars, and 5) the increased use of mechanized threshing equipment. Continuous wheat cropping, a lack of effective seed treatments, and decreased use of resistant cultivars may contribute to an increase in the importance of soilborne inoculum. The role of resistant cultivars in the evolution of bunt diseases and of new races of the pathogens requires careful evaluation. Mexipak illustrates the influence of a resistant cultivar, its positive effects, and its shortcomings when overcome by the pathogens.

South Asia
All bunt and smut diseases, except DB, are present in the Subcontinent (Goel et. al. 1977, Hafiz 1986, Ram and Arora 1986, Singh 1986). The center of origin for KB is presumed to be northern India and Pakistan. The bunts and smuts are collectively second in importance to rusts, and losses vary depending on the locality and year (Goel et al. 1977; Hafiz 1986; Bhatti and Ilyas 1986; Joshi et al. 1978, 1986). In Nepal, CB and LS are important, especially at higher elevations (E.E. Saari unpubl.). In Bangladesh, only LS has been reported (Ahmed 1986).

In Pakistan, CB is important in upland areas of Baluchistan, the foothills of the Punjab, Northwest Frontier Province (NWFP), Northern Territories, and Muree Hills (Ghafoor and Khan 1976, Minz and Khan 1983, Hafiz 1986, Jamil Khan et al. 1992). Both CB pathogens are present, with T. laevis being the most common (Hassan 1974). The disease is more important on local cultivars (Hashmi and Ghulam Ahmed 1988), but this may reflect the difference between introduced seeds and farmer-maintained seed. Infection incidence of 20-25% has been reported from hill areas, with 60-70% incidence in some individual fields (Hafiz 1986).

In India, CB is referred to as hill bunt because it is largely confined to northern hill regions. It has been sporadically reported in the plains, probably as a result of seed coming from the hills. The disease does not survive in the plains (Goel et al. 1977, Joshi et al. 1986, Singh 1986). Information on incidence and losses due to CB in the hills is limited. Some older reports suggest losses of 30-40% in some areas and in another report infection ranged from 10-96% (Singh 1986). In 1986, losses were 2-3% as a result of growing resistant cultivars (Singh 1986).

In India, LS is a damaging disease. Losses average 2-4% and in some areas of the plains they are as high as 5% (Joshi et al. 1986, Ram and Arora 1986). However, incidence can be 33% in the hills (Joshi et al. 1986). The disease declined in the late 1960s and early 1970s with the extensive cultivation of resistant cultivar Kalyansona in northern India. With the
release of susceptible cultivars, LS incidence has again increased (Sood 1988).

In Pakistan, LS is widely distributed throughout the country, with incidence ranging from a trace to 20% depending on the year (Hassan 1968, 1972; Khanzada and Aslam 1982; Hafiz 1986; Bhutta and Ahmed 1991). LS declined with extensive cultivation of resistant cultivar Mexipak, but is now increasing in importance in Pakistan as new susceptible wheat cultivars are widely adopted (Hassan 1974; Khanzada and Aslam 1982; Bhatti and Ilyas 1986; O.F. Mamluk, 1984, unpubl.).

In Pakistan, FS occurs in the foothill areas of northern Punjab and NWFP (Purdy 1965, Hassan 1972, Ghafoor and Khan 1976, Khan et al. 1984). The disease also occurs in adjacent Jalalabad, Afghanistan (Hassan 1970). Incidence is dependent upon climate and the cultivars that are grown (Hassan et al. 1979, Hafiz 1986). From 2 to 25% of fields carry diseased plants, with some fields carrying 60-70% infected plants (Hassan 1972, Hafiz 1986). A high incidence was associated with susceptible cultivars such as Barani 70 and Pothowar during the 1972-76 seasons (Hafiz 1986).

In India, FS is common in the northern foothills and at isolated locations in Rajasthan. It also occurs in Bihar, Delhi, Haryana, Himachal Pradesh, Madhya Pradesh, and Uttar Pradesh (Goel et al. 1977, Ram and Arora 1986). Disease incidence can be as high as 80% in local cultivars, although severe infection also occurs on newly released susceptible cultivars. In general, FS incidence is low in India.

In Pakistan, KB is most common in foothill districts of the north, especially in Sialkot and Gujranwala Districts (Hassan 1968, 1970, 1972, 1974). It is now found in central Punjab and NWFP (Hassan et al. 1979, Bhatti and Ilyas 1986, Ahmad and Attaudin 1991) where incidence averages 2-5% and occasionally 20% (Hassan 1974, Hafiz 1986). A survey for KB in certified seed lots from different areas of Pakistan indicated that infected kernels increased from 10% in 1982 to 19% in 1983 to 28% in 1984 (Begum and Mathur 1989). Washing tests found KB teliospores in 30% of seedlots that were visually free of KB. Seedlots from southern and western Pakistan were free of KB infection and teliospores.

In India, KB has increased in importance since 1975 (Singh 1986). Prevalence remains high in northwestern regions, notably in Punjab and western Uttar Pradesh. In 1981, KB was recorded in 93% of wheat samples collected from Punjab (Joshi et al. 1986, Singh 1986). The percentage of kernels infected, however, has remained low for most cultivars, generally about 1%. However, it was significantly higher in susceptible cultivars such as WL 711, which averaged 9% infection and a maximum of 24% in the epidemic of 1982 (Joshi et al. 1983, Singh 1986). KB incidence has gradually declined in recent years, which may reflect, in part, release of cultivars that are less susceptible and weather less favorable for KB development. KB is sensitive to unfavorable environmental conditions, which strongly influence disease development (Singh 1986, Nagarajan 1989, 1991).

Conclusion. Bunts and smuts of wheat are chronic in South Asia and in some areas cause severe losses. Seed treatment has not been consistently practiced at the farm level. Cultivation of susceptible cultivars has increased the importance of the bunt and smut diseases in cooler areas. In warmer areas of Bangladesh, India, and Nepal, the bunts and smuts, with exception of LS, have virtually disappeared. LS incidence is low in southern areas but continues to be economically important in the northern and hill areas of the Subcontinent.

North Africa

In Tunisia, FS ranks as a major disease of wheat. Seventeen percent of fields surveyed carried infected plants with the highest incidence at 40% infected plants (Kamel et al. 1987). In Morocco, 19% of durum wheat fields were infected with FS, but incidence was low (Lyamani 1990). The disease has also been reported from Libya (El-Zayat et al. 1977).

In Tunisia, Algeria, and Morocco, LS is common and widespread, but seldom severe (Anon. 1976, Rolli 1977, Kamel et al. 1987, Ezzahiri and Elyamani 1992, Lyamani 1990; O.F. Mamluk unpubl.). However, in Libya, in the Kufra Irrigation Project, up to 4% infection has been recorded on susceptible cultivars (El-Zayat et al. 1977).

In North Africa, DB has not been confirmed at present. It was reported from Libya (Anon. 1968), but accuracy of this report is questioned. Snow cover favors the biology of the pathogen and disease development, which raises doubts concerning the fungus presence in Libya.

Conclusion. The bunt and smut diseases of wheat can affect production and cause measurable losses in North Africa. Good control is feasible with seed treatments but many farmers are not willing to spend the money or effort required. The release of susceptible cultivars has increased the incidence of bunt and smut diseases in general.
East, West, and Southern Africa

Wheat is a new crop for most countries of Africa south of the Sahara Desert, except in Ethiopia and Sudan. Ethiopia is a center of diversity for durum wheat and barley (Zohary and Hopf 1988), and Sudan has cultivated wheat for centuries (Anon. 1969). The wheat crop in most of eastern, central and southern Africa was introduced in the past 100 to 200 years with European exploration and settlement.

In Ethiopia, most diseases of wheat are found, including the bunts and smuts, except for KB and DB (Yirgou 1967, Huluka et al. 1991). CB is serious at higher remote elevations on landrace wheats (Yirgou 1967, Niemann et al. 1980). Annual losses caused by CB are about 5% of production and in heavily infected areas they may be 10-20% (Niemann et al. 1980).

In South Africa, CB has been recorded (Scott 1990), but losses are nominal due to seed treatment. LS and FS are present, but are not serious, and FS may have been eradicated (Scott and Le Roux 1992).

In other countries of Africa that grow wheat, LS occurs but is not serious. The other smuts and bunts have not been registered in these countries. However, in the high eastern regions of Kivu, Zaire, CB incidence of 50% has been recorded (Mwitirwa 1988).

Conclusion. The bunt and smut diseases are not important factors in wheat production in many countries of the region, except Ethiopia, higher elevations of Zaire, and, possibly, South Africa.

Far East Asia

Knowledge of bunt and smut diseases of wheat in Far East Asia is limited. Relatively little wheat is grown in the countries concerned except China. China, however, is a major wheat producer with 10 production zones (He and Chen 1991). CB, LS, and FS occur on wheat in China, but DB and KB have not been recorded. The bunts and smuts were major diseases up to the 1950s (Fischer and Holton 1957, Johnson and Beemer 1977). However, today, these diseases are of minor importance because of extensive use of chemical seed treatments, resistant cultivars, and strong enforcement of seed health and quarantine principles.

In China, LS occurs to some extent in most wheat production zones, but is more important in the northern zone (Zone VII). CB is a persistent problem in the far western zones of the Qinghai-Tibetan Plateau (Zone I) and Xinjiang (Zone X). FS was a serious problem at one time, but presently is found only in traces (Fischer and Holton 1957, Purdy 1965).

Conclusion. Wheat is not extensively cultivated in Far East Asia except in China. In China, the bunts and smuts were important diseases in the past, but today strong seed health measures have reduced their importance. However, the potential of the bunts and smuts remains high, and in remote areas they undoubtedly continue to cause some losses.

Europe and Central West Asia

The bunts and smuts have been major diseases throughout Europe (Fischer and Holton 1957, Anon. 1991). Before chemical seed treatments were extensively used, losses caused by CB and LS were substantial. Incidence of CB was often more than 50% and sometimes the crop was destroyed (Fischer and Holton 1957, Cramer 1967, Jones and Clifford 1978). In general, the use of effective chemical seed treatments reduced CB incidence to less than 1% in the United Kingdom as well as in Europe in general (Cramer 1967, Jones and Clifford 1978, Johnsson 1991a, Yarham 1993).

The CB fungi are found throughout Europe and Central West Asia (Figure 1.1), but T. laevis has not been reported in Great Britain and Ireland (Anon. 1977).

CB occurs throughout the former Soviet Union, especially in the black soil regions of the Central Region, the north Caucasus Krasnodar region and the Ukraine (Zhivotkov et al. 1989).

DB is common throughout eastern and northern Europe, but is absent from the United Kingdom and Ireland (Anon. 1968, Tragner-Born and Kaspers 1981). It is present in Armenia, Azerbaijan, western Ukraine, Moldova, and northern Caucasus mountain areas (Gair et al. 1972, Zhivotkov et al. 1989).

LS is widely present and causes significant losses when susceptible cultivars are sown in environments favorable for infection. Up to 20% incidence has been recorded, but incidence is below 1% at present (Jones and Clifford 1978). The extensive use of certified seed, chemical seed treatments, and resistant cultivars has brought LS under control.

LS in the former Soviet Union is prevalent wherever wheat is grown. Incidence is highest in southern Kazakhstan (Baraev 1983) and Siberia (Zhivotkov et al. 1989).

FS occurs on grasses in many countries of Europe, but the pathogen form on wheat is not widely distributed (Purdy 1965, Anon. 1991, Line 1993c, Chapter 5 in this manual). Incidence of FS is not serious. In the former Soviet Union, FS distribution is limited to more southern regions of Georgia, Armenia, Azerbaijan, and some Central Asian republics (Zhivotkov et al. 1989).

KB has not been established in Europe (Warham 1986, Chapter 3 in this manual).
Conclusion. Extensive use of certified seed and chemical seed treatments has reduced the importance of bunts and smuts in much of Europe. In the republics of the former Soviet Union, the diseases cause significant losses, and in the future, the bunt and smut diseases and associated losses will probably increase in importance.

The Americas

In North America, information on bunts and smuts has been extensively reviewed (Fischer and Holton 1957, Martens et al. 1984, Wiese 1987, Mathur and Cunfer 1993). Information has been brought up to date in Chapters 2, 3, 4, and 5 of this manual.

In South America, CB occurs on bread wheats in most countries (Anon. 1977, 1990). In Argentina, it has historically been a major disease, causing serious losses (Fischer and Holton 1957, Mamluk and Zahour 1993), but durum wheats are resistant to CB (Antonelli 1983). In Brazil, CB is not a problem (Mehta 1993).

LS occurs in all South American countries that cultivate wheat (Fischer and Holton 1957, Anon. 1982). Generally, it is a minor disease, but extensive cultivation of highly susceptible cultivars has increased disease incidence in Argentina (Antonelli 1983). In Brazil, LS incidence is generally low, but susceptible cultivars show 6-12% infection (Mehta 1993).

FS has limited distribution in South America (Purdy 1965, Anon. 1991, Line 1993c). DB has been reported only from Argentina and Uruguay (Anon. 1968) and KB has not been established in South America (Warham 1986).

Conclusion. The importance of bunts and smuts in North America has been well documented. In South America, the diseases occur, and reasonable control measures and resistant cultivars are generally available to manage them. The release of susceptible cultivars and relaxing of seed treatment practices suggests that resurgence of the diseases is possible in some areas.

Oceania

In Australia, CB was a serious disease and caused significant losses before the extensive use of chemical seed treatments (Holton and Heald 1941, Fischer and Holton 1957). Today, losses have been reduced to very low levels (Brennen and Murray 1988). However, the potential importance remains high because soils are infested with low levels of inoculum from which epidemics can quickly develop (Andrews and Ballinger 1987, Murray and Brown 1987). The detection of CB teliospores in seed lots treated with seed dressings is cause for concern (Ballinger and Gould 1988).

LS is widespread in Australia, but currently, it causes little loss (Murray and Brown 1987, Brennen and Murray 1988). KB and DB are not registered in Australia.

FS was a disease of major importance (Purdy 1965, Line 1993c, Chapter 5 in this manual), but is now controlled through use of resistant cultivars and chemical seed treatments. Currently, losses are light (Brennen and Murray 1988). The disease still has potential to be serious when susceptible cultivars are sown (Murray and Brown 1987, Bailantynye 1993).

Conclusion. The bunt and smut diseases can cause damage but resistant cultivars and seed treatments have controlled them at present. Experience suggests that resurgence of the diseases will quickly occur if management practices are relaxed.

Control strategies

Chemical Control

Appropriate chemical seed treatments effectively control bunt and smut diseases of wheat. Several new systemic fungicides are highly effective against seed and soilborne inoculum. The major constraints are high cost of seed treatment and poor distribution of treated seed, especially in developing countries. In low-input agriculture areas with wheat as the sole crop, farmers seldom use treated certified seed every planting season. Further, they usually do not have seed treatment facilities. Currently, most private and public-sector seed companies that produce certified seed also treat seed with fungicides. Seed treatment chemicals are often unavailable or are not effective in developing countries, and benefits have not been felt in these countries. The use of chemicals in agriculture, even seed treatment chemicals, will likely decrease in the future because of the growing awareness of farmers of the problems associated with usage.

Resistant Cultivars

The most feasible approach for managing the bunt and smut diseases of wheat is to use resistant cultivars. Development of such cultivars is costly, but they directly benefit farmers, especially small farmers in developing countries, by assuring production. Because of the likely decrease in the use of chemical seed treatments, there is a growing need to increase development of disease resistant cultivars to combat the bunt and smut diseases of wheat.

A major deterrent in the development of bunt and smut resistant wheat cultivars is the lack of knowledge on genetic variability of bunt and smut pathogens. Such studies have been relatively few in comparison with such studies on pathogens of other diseases. This may be because of intense labor and large amounts of time required for determining races and biotypes of bunt and smut fungi. The lack of studies may also be due to the assumption that the bunts and smuts can be easily managed by resistant cultivars and seed treatments. The result has been a low research priority for the bunts and smuts in most countries.
CHAPTER 2

Common Bunt and Dwarf Bunt

Blair J. Goates, United States Department of Agriculture, Agricultural Research Service, National Small Grains Germplasm Research Facility, Aberdeen, Idaho, USA

History

Common bunt (CB), caused by *Tilletia laevis* Kühn and *T. tritici* (Bjerk.) Wint., and dwarf bunt (DB), caused by *T. controversa* Kühn, are two of the world’s most destructive wheat diseases. CB was used by Tillet (1755) in some of the earliest demonstrations of the cause and contagious nature of parasitic plant diseases. Tillet’s work, along with other classical studies on bunt disease, helped lay the foundations of modern plant disease science (Prévost 1807; Tulasne and Tulasne 1847, 1854; De Bary 1853; Brefeld 1883). In recognition of Tillet’s pioneering work, the genus of the bunt fungi was named *Tilletia*. The origin of the term “bunt” is obscure, but may have originated from a local pronunciation of “burnt” (Durán and Fischer 1961).

CB of wheat has been recognized since ancient times. DB escaped notice as a disease distinct from CB for many years, although DB of wheat was probably seen in 1847 in Europe, 1860 in North America (Harwood and Holden 1892) and 1907 in Europe (Todorova 1958). DB was observed in North America and Europe in the early 1930s (Fischer and Tyler 1952, Wagner 1948) and was called “short smut,” “stunt bunt,” “stubble smut,” “dwarf smut,” or “dwarf bunt.” Herbarium specimens provide evidence that the DB pathogen was present by 1847 in Europe, 1860 in North America (Fischer and Durán 1956b), and 1915 in South America (Lindquist et al. 1954).

DB was first officially recognized as distinct from CB in 1935 (Young 1935). For many years, the pathogen was thought to be a physiologic race of the CB organism *T. tritici*. However, this concept did not continue because unlike CB, DB teliospores did not produce infection after seed inoculations, and the disease was not controlled by seed treatments (Holton et al. 1949a, Warmbrunn 1952). Also, DB teliospores did not germinate at temperatures normally conducive to germination of *T. tritici* (Young 1935, Holton 1943). In addition, DB teliospores were distinct morphologically and survived for several years in soil, unlike those of CB. The DB pathogen was designated as a separate species in the early 1950s (Wagner 1950, Fischer 1952, Warmbrunn 1952).

During the first half of the 20th century, CB occasionally caused more losses in yield and quality in the USA than any other wheat disease (Fischer and Holton 1957). In many areas of the world, losses due to CB are surpassed only by those caused by rust diseases. CB virtually disappeared in the USA in the late 1950s after the widespread use of polychloronated benzene fungicides in areas with both seedborne and soilborne inocula and by the use of organic mercury fungicides in areas of seedborne inoculum. However, bunt was not eradicated and significant yield losses still occur when seed-treatment fungicides are improperly used (Mathre and Johnson 1976, Williams and Gough 1984, Ballinger and Gould 1989, Williams 1988). Hexachlorobenzene, one of the best fungicides for CB control, was abandoned due to environmental problems, but control of CB has been successful with other seed-treatment fungicides (Hoffmann and Waldher 1981). Efforts to control CB by means of resistant cultivars are important in many parts of the world.

In the USA, only a small percentage of the western winter wheat acreage is affected by DB, and the disease occurs sporadically and usually in low amounts. However, significant losses can occur when snowcover is continuous for approximately two months. In areas where the favorable environment occurs regularly, highly resistant wheat cultivars are commonly grown that have essentially eliminated yield and quality losses due to DB. Historically, resistance has occasionally been overcome (Hoffmann 1982) by virulent isolates present in low frequency in the pathogen population that have increased on resistant cultivars, or by the evolution of isolates with new virulence genes. Thus, a continual search for resistance sources and the development of resistant cultivars are required. The primary sources of resistance against DB in the USA have remained effective for the past 20 years.

Distribution and Importance

CB occurs on both spring- and winter-planted wheat and is present throughout the wheat growing regions of the world (Figure 1.1). See Chapter 1.

DB occurs on fall-planted wheat and is usually restricted to areas where snow cover provides favorable conditions for teliospore germination and infection. DB occurs primarily in the Americas, Europe, and West Asia (Niemann 1956; Fischer and Durán 1956a; Durán and Fischer 1956, 1961; Purdy et al. 1963; Anon. 1968) (Figure 1.2).

Bunt may infect more than 70% of the spikes when plants are not protected by resistance or chemicals and are grown in
disease-conducive environments where inoculum levels are high. DB reduces yield about 0.8% for every 1% infection of spikes (Slinkard and Elliot 1954, Hoffmann and Sisson 1987), but CB reduces yield about the same as the percentage of infection because it does not affect tillering as DB does. In addition to yield losses, prices are often reduced for contaminated grain due to decreased palatability of wheat products. Also, a quarantine placed on wheat contaminated with DB teliospores has restricted the importation of wheat into the People's Republic of China from areas where DB occurs (Trione 1982).

Hosts

Dwarf Bunt

In addition to *Triticum* spp., *T. controversa* also occurs on numerous grasses including species of *Aegilops*, *Agropyron*, *Agrostis*, *Alopecurus*, *Arrhenatherum*, *Beckmannia*, *Bromus*, *Dactylis*, *Elymus*, *Festuca*, *Holcus*, *Hordeum*, *Koeleria*, *Lolium*, *Poa*, *Secale*, and *Tritsetum* and *X Triticosecale* (Hardison et al. 1959, Schuhmann 1960, Durán and Fischer 1961, Hoffmann and Waldher 1964, Ozkan 1971). Many grass hosts were determined after artificial inoculation and are considered hosts only under exceptional circumstances. Even with artificial inoculation, disease incidence is very low for the majority of them. Cultivated winter barley, *Hordeum vulgare* L., is considered a host, but very few barley genotypes are susceptible, and even the most aggressive DB races are only weakly pathogenic on them (Dewey and Hoffmann 1975).

Common Bunt

In addition to *Triticum* spp., most grass species listed above that are susceptible to DB are also susceptible to one or more races of CB (Hardison et al. 1959; Durán and Fischer 1961).

Pathogens

Taxonomy

The CB and DB fungi are Heterobasidiomycetes in the order Ustilaginales and the family Tilletiaceae. *T. tritici* has a reticulate exospore that appears spiny when focused medially with a light microscope, whereas *T. laevis* has a smooth exospore. These two fungi are essentially identical except for differences in spore wall characteristics, which are controlled by very few genes (Fischer and Holton 1957). Natural morphological variants that have a full range of teliospore morphology between *T. tritici* and *T. laevis* have been observed (Flor 1933, Gassner 1938, Bremer et al. 1952, Holton 1954a) and occasionally they have been designated as separate species (Gassner 1938, Savulescu et al. 1942). The morphological intermediates probably represent hybrids. *T. tritici* and *T. laevis* have been hybridized and can produce a full range of morphological variants (Holton 1942).

Taxonomy is complicated by the fact that CB fungi hybridize with each other as well as with the DB organism (Holton 1954b, Holton and Kendrick 1956). Rare, apparently natural hybrids between *T. tritici* and *T. controversa* have been identified that have intermediate teliospore morphology, physiology, or effect on host plants (Holton and Kendrick 1956, Böning 1958, Kendrick et al. 1964).

Obviously, the CB and DB fungi are closely related. Several studies based on the biochemical and molecular biology of the organisms have failed to differentiate them or have shown only slight differences (M.R. Bonde, pers. comm.; Banowetz et al. 1984; Weber and Schauz 1985; Kawchuk et al. 1988; H. Leung, pers. comm.), whereas studies with these techniques have differentiated other pathogenic fungi to the species or subspecies level (Kim et al. 1982, 1984; Hellman and Christ 1991). Additionally, virulence of the CB and DB fungi is regulated in wheat by the same set of resistance genes (Holton et al. 1949b, Hoffmann and Metzger 1976, Metzger and Hoffmann 1978).

The close relatedness of these bunt fungi has led to the suggestion that they be treated as varieties of a single species (Holton and Kendrick 1956, Kawchuk et al. 1988). *Tilletia indica* (Mitra), which causes partial bunt or Karnal bunt of wheat, has some similarities to CB and DB fungi, but it is taxonomically and biologically distinct. Some authorities have placed *T. indica* in the genus *Neovossia*.

Common Bunt. In the recent past, accepted names for the CB fungi were *T. caries* and *T. foetida*; however, the use of the year 1753 as the starting date for the nomenclature of Ustilaginales, under the International Code of Botanical Nomenclature, rather than the old date of 1801, requires that official names revert to *T. tritici* and *T. laevis*, respectively.

Dwarf bunt. Soon after the discovery that *T. controversa* had a life cycle and biology distinct from that of *T. tritici*, a new species was proposed: *Tilletia tritici nanifica* in 1950 (Wagner 1950) and *T. brevifaciens* in 1952 (Fischer 1952). However, Conners (1954) determined that the fungus was the same organism described on *Agropyron* as *T. controversa* (Kühn 1874), thereby setting precedent. The spelling *contraversa* by Kühn, probably was an error because he used *contraversa* in later publications and the Latin derivation of *contraversa* is more sensible than *contraversa* (Niemann 1956, Savile 1962). Since 1960, spelling with an “o” has predominated, but spelling is still somewhat controversial (Johnsson 1991b).

Pathogenic Specialization

Well defined pathogenic races exist in DB and CB fungi (Hoffmann and Metzger 1976). Races of *T. tritici* are labeled “T”, races of *T. laevis* are labeled “L”, and races of *T. controversa* are labeled “D”.
Table 2.1. Virulence of common bunt races against wheat bunt (Bt) resistance genes. X indicates an infection level above 10%. From Hoffmann and Metzger, 1976; R.J. Metzger, per. comm.

<table>
<thead>
<tr>
<th>Race</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-2</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-3</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-4</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-5</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-6</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-7</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-8</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-9</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-10</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-11</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-12</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-13</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-14</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-15</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-16</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-17</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-18</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-19</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-20</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-21</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-22</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-23</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-24</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-25</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-26</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-27</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-28</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-29</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>T-30</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

The races are defined on the basis of their virulence/avirulence to host resistance genes (Tables 2.1 and 2.2; Hoffmann and Metzger 1976, Hoffmann 1982). In addition to numbered races, several other pathogenic types have been identified (Hoffmann 1982).

Wheat lines that are monogenic for individual bunt resistance genes that were previously identified (Briggs, 1926, 1930, 1933; Gaines and Smith 1933; Stanford 1941; Schaller et al. 1960) or developed by R.J. Metzger are included in a standard set of differential cultivars (Table 2.3). The virulence/avirulence against particular resistance genes can be determined by testing bunt isolates against the differentials.

Virulence of DB and CB fungi is regulated in wheat by the same resistance genes (Holton et al. 1949b, Hoffmann and Metzger 1976, Metzger and Hoffmann 1978). A cultivar that is resistant to a race of CB will also be resistant to a race of DB that has the same or fewer virulence genes. Breeders testing for DB resistance can initially screen for resistance with races of CB, which are easier to work with regarding inoculation and reliable environment for infection.

Table 2.2. Virulence of dwarf bunt races against wheat bunt (Bt) resistance genes. X indicates an infection level above 10%. From Hoffmann and Metzger, 1976; Hoffmann, 1982.

<table>
<thead>
<tr>
<th>Race</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-2</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-4</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-5</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-6</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-7</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-8</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-9</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-10</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-11</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-12</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-13</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-14</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-15</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-16</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-17</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* X indicates virulence to an Elgin/Hohenheimer cross. It was determined later that Bt-5 in this selection was not fully expressed, and that there is little virulence to the full Bt-5 gene of Hohenheimer.

Table 2.3. Differential cultivars used to determine pathogenic races. Resistance genes 1-15 are designated by “Bt.” All are winter wheats except the last two, which are spring types. Bt-11 through Bt-15 are informal designations.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Resistance gene</th>
<th>Cl or PI number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heines VII</td>
<td>Bt-0</td>
<td>PI 209794</td>
</tr>
<tr>
<td>Sel 2092</td>
<td>Bt-1</td>
<td>PI 554101</td>
</tr>
<tr>
<td>Sel 1102</td>
<td>Bt-2</td>
<td>PI 554097</td>
</tr>
<tr>
<td>Ridi</td>
<td>Bt-3</td>
<td>CI 6703</td>
</tr>
<tr>
<td>CI1558</td>
<td>Bt-4</td>
<td>CI 1558</td>
</tr>
<tr>
<td>Hohenheimer</td>
<td>Bt-5</td>
<td>CI 11458</td>
</tr>
<tr>
<td>Rio</td>
<td>Bt-6</td>
<td>CI 10061</td>
</tr>
<tr>
<td>Sel 50077</td>
<td>Bt-7</td>
<td>PI 554100</td>
</tr>
<tr>
<td>Pi 173438 x Elgin</td>
<td>Bt-8</td>
<td>PI 554120</td>
</tr>
<tr>
<td>Elgin X Pi 178383</td>
<td>Bt-9</td>
<td>PI 554099</td>
</tr>
<tr>
<td>Pi 178383 x Elgin</td>
<td>Bt-10</td>
<td>PI 554118</td>
</tr>
<tr>
<td>Elgin x PI 166910</td>
<td>Bt-11</td>
<td>PI 554119</td>
</tr>
<tr>
<td>Pi 119333</td>
<td>Bt-12</td>
<td>PI 119333</td>
</tr>
<tr>
<td>ThulII</td>
<td>Bt-13</td>
<td>PI 181463</td>
</tr>
<tr>
<td>Doubbi</td>
<td>Bt-14</td>
<td>CI 13711</td>
</tr>
<tr>
<td>Carleton</td>
<td>Bt-15</td>
<td>CI 12064</td>
</tr>
</tbody>
</table>

* X indicates virulence to an Elgin/Hohenheimer cross. It was determined later that Bt-5 in this selection was not fully expressed, and that there is little virulence to the full Bt-5 gene of Hohenheimer.
mixed races of CB has produced hybrids with new virulence gene combinations that have proven useful for identifying resistance genes (Metzger and Hoffmann 1978).

High disease levels develop only if complementary virulence genes of the pathogen exist for all the resistance genes of a particular host. For example, race T-16 possesses virulence against the resistance genes Bt-2, Bt-4, Bt-5, Bt-6, and Bt-7. If a plant has any resistance genes other than these, it will be resistant to race T-16. However, if the host carries only these resistance genes, or if it lacks one or more of them, it will be susceptible to race T-16. This is a good example of the classic gene-for-gene system (Flor 1947).

The taxonomy and identification of *Tilletia* spp. on wheat and grasses are based primarily on teliospore morphology, but host range and the environment required for teliospore germination are also important. There is often considerable variation in the depth of reticulations among teliospores isolated from individual sori, from different races, as well as from geographical areas (Holton and Kendrick 1956, Holton et al. 1968). There is an overlap of about 10% in the morphology of the reticulate species of wheat bunt fungi that makes positive identification of an individual teliospore difficult or impossible. However, when numerous teliospores are observed, species can almost always be correctly identified with light microscopy. Most of the overlap in morphology occurs because typically some *T. controversa* teliospores within individual sori have short reticulations like those of *T. tritici*, which have individual teliospores with a reticulation depth close to the average of *T. controversa*, are extremely rare. Deep reticulations and a prominent sheath that often expands beyond the reticulum in *T. controversa* are the best morphologic characters for differentiating this species from *T. tritici*

Below are technical descriptions of teliospores and sterile cells mounted in Shear’s mounting fluid, as described in the “Techniques for Study” section on page 21 (Durán and Fischer 1961).

Teliospore Morphology, Germination, and Physiology

Morphology. Teliospores of bunt fungi have relatively thick, three-layered walls (Hess and Gardner 1983, Hess and Trione 1986). Those of *T. controversa* and *T. tritici* have a net-like, reticulate exospore covered by a hyaline, gelatinoid sheath (Figures 2.1a,b and 2.2). The sheath is prominent in *T. controversa* but is relatively thin and inconspicuous in *T. tritici* when viewed with a light microscope. The exospore of *T. laevis* teliospores is smooth (Figure 2.3). The interior of dormant teliospores contains numerous spherical translucent lipid bodies. Among teliospores are hyaline, smooth-surfaced, thin-walled, spore-like, sterile cells that form during teliosporogenesis.

Figure 2.1a. Teliospores and sterile cells of *T. controversa*. Sterile cells lack pigment and ornamentation.

Figure 2.1b. Teliospores of *T. controversa* showing exopore morphology. (Courtesy W.M. Hess.)

Figure 2.2. Teliospores and sterile cells of *T. tritici*. Sterile cells lack pigment and ornamentation.

Figure 2.3. Teliospores and sterile cells of *T. laevis*. Sterile cells lack pigment and ornamentation.
• *Tilletia tritici*—Teliospores are light pale yellow to gray or reddish brown, generally globose, less frequently subglobose, occasionally ovoid, 14-23.5 µm in diameter, occasionally up to 25 µm. The exospore usually has polygonal reticulations 0.5-1.5 µm deep that vary in diameter and are occasionally somewhat cerebriform (Figure 2.2). Sterile cells are globose to subglobose, 9.8-18.2 µm in diameter, and hyaline to subhyaline.

• *Tilletia laevis*—Teliospores are light pale to dark olivaceous brown, globose, ovoid, occasionally elongate, and 14-22 µm in diameter, but occasionally smaller (13 µm). The exospore is smooth (Figure 2.3). Sterile cells are globose to subglobose, but occasionally irregularly shaped or contorted, 11-18 µm in diameter, and hyaline to subhyaline.

• *Tilletia controversa*—Teliospores are yellowish brown to reddish brown, mostly globose or subglobose, embedded in a hyaline gelatinoid sheath 1.5-5.5 µm thick and 19-24 µm in diameter, though occasionally 16.8-32.0 µm, including the sheath (Figure 2.1). The exospore usually has regular polygonal reticulations 1.5-3 µm deep, but are occasionally irregular to subcerebriform. Regular polygonal areolae are 3-5 µm in diameter. Sterile cells are regularly globose, 9-22 µm in diameter with smooth walls, hyaline or faintly greenish or brownish, and sometimes encased in a hyaline gelatinoid sheath 2-4 µm thick.

Germination. The process of teliospore germination is similar in the DB and CB fungi. The promycelium (basidium) grows through a hydrolyzed area of the spore wall and extends to a variable length depending on environment. On agar, the promycelium sometimes grows extensively before producing primary sporidia, but on soil, it is usually extremely short. Excessive moisture promotes long promycelia. Occasionally, the promycelium develops a branch, but this is more common in *T. controversa* than in the CB fungi. Filiform primary sporidia (basidiospores) grow from the tip of the promycelium to form a compact bundle (Figure 2.4). *T. controversa* typically has 14-30 primary sporidia, whereas CB fungi have 4-16 (usually 8-12). The cytoplasm of the teliospore passes into the promycelium and then into the primary sporidia. Septa form in the promycelium behind the migrating cytoplasm. Mature sporidia can be removed from the promycelium with a slight touch. There are usually two mating types within a given bundle of primary sporidia, which are arbitrarily designated by a (+) or a (-). Pairs of primary sporidia of opposite mating type within the bundle fuse with each other, usually near their mid-region, by means of short conjugation pegs (Kollmorgen et al. 1978, 1979). The structure formed by fusion of primary sporidia is called an H-body (Figure 2.5). Rarely, only one mating type occurs in a bundle and then fusion of sporidia does not occur. Although primary sporidia usually fuse in pairs, fusion between three or more sporidia has been observed.

Fused primary sporidia produce infection hyphae, vegetative hyphae, or secondary sporidia of allantoid or filiform type (Figures 2.6 and 2.7). Infection hyphae are usually more robust than vegetative hyphae and often have a sinuous curving growth habit. The allantoid secondary sporidia (secondary basidiospores) form on short sterigmata and are forcibly discharged (Goates and Hoffmann 1986). Secondary sporidia may produce infection hyphae, vegetative hyphae, or additional allantoid or filiform sporidia (Goates and Hoffmann 1979).

Physiology. The germination rate of the teliospores of *T. laevis* and *T. tritici* differs with isolates and/or pathogenic races (Lowther 1950) and occurs over a wide range of temperatures. Teliospores germinate most rapidly at 18-20°C, but most uniformly at 14-16°C. Germination occurs after 4-5 days at 15°C, and after 10-14 days at 5°C, under optimal laboratory conditions. Fewer primary sporidia are produced at 5°C than at 15°C.
Teliospore germination of the CB fungi is stimulated very little by light, unlike *T. controversa* (Gassner and Niemann 1954).

The geographical distribution of *T. controversa* is limited to areas that have a prolonged period of persistent snow cover. Snow insulates the ground and provides the stable low temperatures and high humidity needed for teliospore germination and infection.

T. controversa teliospores usually germinate within 3-6 weeks under optimal laboratory conditions, but the time varies considerably among isolates. Some European isolates require more time than North American isolates (Baylis 1958). Some isolates germinate uniformly, whereas others are erratic. Cardinal temperatures of germination are: -2 (minimum), 3-8 (optimum), and < 15°C (maximum) (Hoffmann 1982). Incubation at 5°C is recommended for routine work. Germination at above 19°C provides a quick way to differentiate *T. tritici* from *T. controversa*.

Germination of *T. controversa* teliospores is stimulated by low levels of light when supplied in environments conducive to germination (Baylis 1958, Gassner and Niemann 1954). Little or no germination occurs in darkness with some isolates (Pichler 1953, Aehl 1956). Light in the green range reduces germination, whereas that in the blue range increases it, compared to controls in white light (Ettel and Halbsguth 1964). Radiation between 400 and 600 nm is most effective at stimulating germination (Aehl 1956). For routine work, light may be supplied during incubation by two 40-watt cool white fluorescent lamps that are built into incubators.

Teliospores of *T. controversa* that are stored in the laboratory germinate readily in a favorable environment, but those in sori that stay in the field over the winter are dormant from March to June. Fewer than 1% of the teliospores germinate when sori are collected from the soil surface about May 1 (Zogg 1959, Hoffmann and Goates 1981, Hoffmann 1982). The dormancy may be induced by prolonged low temperature and moisture during the winter, and may be broken by warm temperatures and drying during spring and summer.

High germination percentages of CB and DB teliospores occur when pH is neutral to acidic, but germination is reduced at pH 7.8-8.2 (Baylis 1958). Soil type is not a critical factor of disease development (Holton et al. 1949a, Warmbrunn 1952, Baylis 1958).

Teliospores of *T. controversa*, *T. laevis*, and *T. tritici* may remain viable for more than 20 years when stored in a dry atmosphere at ambient temperature in the laboratory. Although the upper limits of *T. controversa* teliospore longevity in the field are not known, at least a low percentage of teliospores were viable for 10 years in soil under natural conditions (Tyler and Jensen 1958). The chemical trimethylamine, which is responsible for the fishy odor of bunt fungi, inhibits germination (Ettel and Halbsguth 1964). Other unidentified endogenous compounds of teliospores can also inhibit germination (Trione 1977). Teliospores that remain in sori do not germinate, probably because of high concentrations of self-inhibiting compounds.

In soil under natural field conditions, teliospores of the CB fungi are viable for about two years (Woolman and Humphrey 1924). Field nurseries will be free of viable teliospores when they have been out of wheat production at least two years and are located away from possible sources of windborne inoculum.

Nuclear Cycle

For all three pathogens, dormant teliospores contain a single diploid nucleus that undergoes meiosis and usually one or two synchronous post-meliotic divisions just prior to germination. After germination, the haploid nuclei pass into the promycelium with the cytoplasm and one nucleus migrates into each primary sporidium where it undergoes mitosis. Then one of the haploid nuclei returns to the promycelium. The nuclei left in the promycelium migrate into anucleate primary sporidia or degenerate (Goates and Hoffmann 1987). Thus primary sporidia are haploid. The pathogenic dikaryophase is initiated when primary sporidia of opposite mating type fuse to form H-bodies. Hyphae or secondary sporidia produced by H-bodies are dikaryotic and usually binucleate. However, they may contain variable numbers of nuclei (Goates and Hoffmann 1979).

The pathogen maintains the dikaryotic state throughout the period it resides in the host until karyogamy occurs during teliosporogenesis in nascent sori. However, dikaryotic nuclei may disassociate and reassociate before teliosporogenesis begins, as suggested by observations of uninucleate and multinucleate hyphae within the host or after isolation from the host (Dastur 1921; Churchward 1940; Trione 1964, 1974; Churchill and Mills 1985).
Infection and Disease Cycle

T. laevis and *T. tritici*

The life cycle of CB fungi is illustrated in Figure 1.6. Infection occurs below the soil surface, shortly after the seed germinates and prior to emergence. Teliospores on seed or in the soil germinate and eventually produce infection hyphae that penetrate the coleoptile. Hyphae become established initially in both resistant and susceptible cultivars (Hansen 1958, Swinburne 1963) but do not progress to the apical meristem of resistant plants. Hyphae must inhabit apical meristems before internode elongation or disease does not develop. After penetrating the coleoptile, hyphae enter the first leaf base and then go through successive leaf bases, or down the leaf base to the area directly beneath the apical meristem. Intercellular hyphae are present in the apical meristem by about the 5-leaf stage (Swinburne 1963). Further development of hyphae is the same as described below for DB.

Detection of hyphae in the apical meristem of seedlings can accurately predict disease development (Kollmorgen and Ballinger 1987). To check seedlings for hyphae, tissue is cleared by autoclaving in 30% potassium hydroxide, stained with 1% aqueous trypan blue, and examined with a microscope.

The incidence of CB is enhanced by seeding at a depth of 7 cm compared to 4 cm (Swinburne 1963). As soil depth increases, temperatures are more favorable for infection, but in addition, infection and establishment of hyphae in the apical meristem are enhanced because the formation of the crown node is delayed (Swinburne 1963).

CB incidence is high when soil moisture ranges from near the permanent wilting point to field capacity, but is optimum when moisture is midway between field capacity and the permanent wilting point (Purdy and Kendrick 1963). Infection is optimum at 5-10°C soil temperature, and slight infection occurs at 22°C (Purdy and Kendrick 1963). Infection occurs at higher soil temperatures with natural soilborne inoculum than it does with seedborne inoculum (Purdy and Kendrick 1963). This is because soil may contain germinated spores during planting, but with seedborne inoculum few spores will have germinated when the plants are at a susceptible growth stage.

Environmental conditions after infection can influence disease development. The resistance of some cultivars decreases if low temperatures (approximately 10°C) occur during early plant development (Smith 1932; Griffith et al. 1955; Zscheile 1955, 1966). Certain cultivars that are facultative for winter or spring habit are susceptible when planted in the fall, but resistant when planted in the spring. This indicates that the expression of certain resistance genes is temperature dependent. Photoperiod can also affect bunt infection. Plants given 14.5 to 16 hours of light per day have greater incidence of smut (Zscheile 1966). Other unknown environmental factors can also influence the expression of resistance. A particular race/cultivar combination can show either virulence or avirulence depending on geographical location, while in the same tests, other race/cultivar combinations are unaffected (Rodenhiser and Holton 1942).

CB and DB can occur in the same field, but only occasionally occur on the same plant. However, both pathogens have been observed in the same sorus (Fischer and Holton 1957). Competitive interactions between races and the species have been observed (Bamberg et al. 1947, Rodenhiser and Holton 1953).

Symptoms. Symptoms of CB may not be apparent until after heading, when sporulation begins in the very young ovary. Immature infected spikes are usually darker green, and remain green longer, than healthy spikes. Mature infected spikes are usually slightly lighter in color and often have a slight bluish-gray color when compared to uninfected spikes (Figure 2.8). Infected culms may be slightly stunted, but they are generally normal in height. Sori are generally kernel-shaped (Figure 2.9), but usually less spherical than those of DB. Florets are only slightly flared, but otherwise spikes have a near normal appearance (Figure 2.8). Wheat spikes from six healthy (left) and diseased (right) cultivars showing color and morphological changes associated with common bunt infection.
previously diseased crop, or that were deposited on soil by wind from adjacent areas. The disease is initiated when infection hyphae penetrate seedlings after teliospores germinate at or near the soil surface. High levels of disease incidence depend on a long period of stable, low temperature and moisture, which is provided by a deep persistent snow cover (Tyler and Jensen 1953, 1958). DB does not occur on spring-sown wheat because of the lack of this critical environment, in addition to the spring dormancy of teliospores discussed earlier. Infection from seedborne inoculum is rare even with extremely high levels of seed infestation (Holton et al. 1949a, Wagner 1949, Grey et al. 1986).

There are no detailed histological studies on initiation of natural infection by T. controversa; however, it is generally believed that infection hyphae penetrate the host through tiller initials. On artificially inoculated coleoptiles, hyphae grow systemically from leaf primordia to the leaf bases and then through the node to the apical meristem and tiller initials (Fernández et al. 1978). Hyphae are intercellular and move with the apical meristem during internode elongation. Although hyphae have been detected in certain resistant cultivars (Fernández et al. 1978), for an unknown reason they do not reach the apical meristem.

Teliosporogenesis occurs in ovarian tissue (Trione et al. 1989), which is almost completely consumed by the fungus. The ovary wall is modified and forms the exterior of the kernel-shaped sorus. Teliospores are released when the fragile ovary wall is ruptured during threshing or when spikes get very wet, causing the sorus to swell and rupture.

When snow cover is uninterrupted, infection can occur from December through April in the Pacific Northwest of the USA, but most infection occurs during late December through February (Purdy et al. 1963). Under natural conditions, plants are most susceptible when tillering begins or when only a few tillers are present (Hoffmann and Purdy 1967), although some infection occurs in plants that have many tillers, or in plants in the single-leaf stage. Plants are more susceptible when seeded at a shallow depth (1 cm) compared to deep seeding (6 cm) (Tyler and Jensen 1953, Meiners et al. 1956, Hoffmann and Purdy 1967). In addition, the incidence of DB is greater where soil is compacted, such as in tractor and drill wheel tracks (Holton et al. 1949a, Meiners et al. 1956).

Symptoms. After early spring growth, the first symptoms of DB infection may be seen on leaves as small, faint or distinct yellow spots and/or streaks (Figure 2.11a,b). The extent of flecking varies with host genotype, severity of infection, and to some extent with environment. Flecking occurs in resistant as well as in susceptible genotypes (Schuhmann 1960), but some highly susceptible genotypes show very little or no flecking. Infected plants produce an abnormally high number of tillers that are dwarfed (Figure 2.12). The culms of diseased heads are usually, but not always,
shortened and in some resistant genotypes, culms of diseased heads are close to normal height. The number of tillers in fully infected, susceptible plants usually exceeds the number in healthy plants by about 50% (Purdy et al. 1963). The anthers of infected florets fail to extrude, and the pollen is not viable; therefore, fertilization does not occur. The immature ovaries of infected florets are dark green, whereas those of healthy ovaries are very light green. The dark green color is usually apparent before sporulation is macroscopically visible. Teliosporogenesis begins near the center of young ovaries when they are about 1.5 mm long. As the ovary grows, hyphal growth and spore formation expands outward until almost all traces of host tissue inside the ovary wall are consumed. Fully developed sori are generally kernel-shaped, but are more spherical and often larger than normal kernels. This spreads the lemma and palea apart, giving the diseased spike its characteristic appearance (Figure 2.13). Mature sori (called bunt balls) consist almost entirely of teliospores and are covered by the thin, modified ovary wall (Figure 2.14). Typically, the sori of DB are more round than those of CB. Partially bunted kernels occur, but are uncommon (Figure 2.10) and have characteristics similar to Karnal bunt caused by \(T. \) \(\text{indica} \). Sori emit a strong odor, that is similar to that of rotting fish, which is caused by the chemical trimethylamine. One of the common names, stinking smut, is aptly applied.

The disease commonly occurs in only some of the tillers of infected plants. Usually all, or almost all, of the florets of an individual spike are smutted. However, partial smutting of heads, for example all or a portion of the kernels on one side of a spike, or just a few infected ovaries per spike, is common, particularly in resistant genotypes. Infected spikelets often have an increased number of floral primordia.

Often, the rachis of a bunt infected spike elongates further than in healthy spikes. This essentially converts club-type spikes into common-type spikes, and common-type spikes of certain genotypes become more lax. This characteristic is highly variable among wheat genotypes and is not expressed in some. Increased tillering, dwarthing, and other morphological changes of infected plants appear to be regulated by plant hormones (Trione and Sayavedra-Soto 1988).

Control Strategies

Resistance

The development of bunt-resistant cultivars may be the best method to control the disease when resistant sources are available. Fungicides are effective, but they are expensive and may present problems associated with toxicity, environmental hazards, and availability or distribution. Furthermore, chemicals may not control the disease as effectively as resistant cultivars.

Resistant cultivars have successfully controlled DB in the USA, especially in certain dryland areas of southern Idaho and northern Utah where winter wheat production would not otherwise be possible. In these areas, DB has been reduced to trace levels that are insignificant to production and quality. Resistance may be overcome by the selective increase of virulent races or by the development of new combinations of virulence genes in the bunt population (Holton and Vogel 1952, Kendrick and Holton 1961, Purdy et al. 1963). This requires that new sources of resistance be continually sought after and incorporated into cultivars. Intensive
screening of thousands of lines from the United States Department of Agriculture’s National Small Grains Collection has identified only a few lines of *Triticum aestivum* and *T. durum* that are highly resistant to races that have a broad based virulence.

PI 178383, originally collected in Turkey, is the principal source of DB resistance currently in use in the USA. PI 178383 has resistance genes *Bt-8*, *Bt-9*, and *Bt-10*, plus an unidentified factor. The resistance from PI 178383 has remained stable in the USA for more than 20 years, primarily because North American isolates lack virulence to *Bt-8*. However, a race that is highly virulent against the resistance genes of PI 178383 has been identified in European isolates of DB (Hoffmann 1982). This clearly demonstrates that potential sources of resistance depend highly on the virulence genes of bunt races that are present in a particular area.

Incorporation of resistance to CB into commercial cultivars in the USA and elsewhere has not had much attention due to adequate control with seed treatment fungicides. However, breeding for resistance to CB is a major part of breeding programs in many countries.

Genes. Resistance to CB and DB is regulated in wheat by the same genes. Thus far, 15 major resistance genes, *Bt-1* to *Bt-15*, have been identified (Hoffmann and Metzger 1976; R.J. Metzger, pers. comm.). The genes occur alone or in combinations in certain wheats. Wheat lines that are monogenic for each *Bt* gene (Table 2.3) are used for pathogenic race identification. An additional major resistance gene, *Bt-Z*, that originated from a translocation into wheat from *Agropyron intermedium*, has been useful for controlling CB in the Soviet Union (Singovets 1974, Mozgovoi et al. 1987, Varenitsa et al. 1987).

When bunt resistance genes were first identified, they were designated by the letters *M*, *H*, *T*, and *R*, based on the source cultivars Martin, Hussar, Turkey, and Rio, respectively (Briggs 1926, Schaller et al. 1960). However, these letter designations were replaced as follows: *Bt-1 = M*, *Bt-2 = H*, *Bt-4 = T*, *Bt-6 = R*, and *Bt-7 = M₂* (Metzger 1970). Heritable genes other than the major *Bt* genes have been identified that have a weak or modifying effect on host resistance (Smeltzer 1952, Baker 1967). Because the influence of these genes is slight, they have been ignored in resistance breeding programs.

Inheritance. Inheritance studies are complicated because all plants of susceptible genotypes often are not infected when tested, and resistant genotypes are rarely completely immune. In addition, weak modifying genes that are sometimes linked to major resistance genes can influence infection data. Also, many resistance genes show incomplete dominance, which requires testing beyond the F2 generation. Interaction of several resistance genes within a single host complicates the detection of inheritance of single genes. Nevertheless, a significant amount of information has been accumulated on the inheritance of resistance genes. With the exception of a single study (Woodward and Holton 1949), inheritance studies have used CB for screening. But the inheritance data apply to both diseases because DB and CB are controlled by the same resistance genes (Holton et al. 1949b, Woodward and Holton 1949, Hoffmann and Metzger 1976, Metzger and Hoffmann 1978).

The mode of inheritance has been established for genes *Bt-1* through *Bt-10*. *Bt-3* is probably recessive (Churchward 1931, Smith 1933, Taylor 1958), *Bt-1*, *Bt-
5, Bt-8, Bt-9, and Bt-10 have complete dominance (Briggs 1926; Gaines and Smith 1933; Taylor 1958; Sears et al. 1960; Waud and Metzger 1970; Metzger and Silbaugh 1971; Metzger et al. 1977, 1979; Singh and Chopra 1986, 1987), whereas Bt-2, Bt-4, Bt-6, and Bt-7 have partial dominance with approximately 50% penetrance of heterozygotes (Briggs 1930, 1933; Stanford 1941; Schaller et al. 1960; Schmidt et al. 1969).

Bunt resistance genes have been located on certain chromosomes by analysis of crosses with monosomic wheats, by linkage to morphological factors of known chromosome location, or by linkage to resistance genes where the chromosome location was determined with monosomic wheats (Sears et al. 1960, Metzger et al. 1963, Schmidt et al. 1969, Metzger 1970, Waud and Metzger 1970, Metzger and Silbaugh 1971, Metzger et al. 1979, Singh and Chopra 1987).

Chemical Control

Common bunt. Hyphae infect plants shortly after the seed germinates and before seedlings emerge, which makes control possible with fungicide seed treatments because a high concentration of the fungicide is placed directly in the infection court. Currently, seed treatment chemicals that contain carboxin or pentachloronitrobenzene are commonly used in the USA and provide excellent control of CB. However, both of these chemicals, at commonly used application rates, are less effective at controlling infection from high levels of soilborne inoculum (Hoffmann and Waldher 1981, Gaudet et al. 1989). Despite this, the continued use of fungicides that control seedborne inoculum has apparently reduced the number of soilborne teliospores to the extent that they are not presently a significant problem. CB may occur in trace amounts even where seed treatments are commonly used (Mathre and Johnson 1976, Ballinger and Gould 1989). This low incidence occasionally provides sufficient inoculum to produce significant disease when seed is not properly treated (Williams and Gough 1984, Gaudet et al. 1992).

Chemicals that are effective at controlling infection from both seedborne and soilborne inoculum include carboxin, etaconazole, hexachlorobenzene, thiabendazole, triadimefon, triadiminol, and pentachloronitrobenzene; those that control only seedborne inoculum include benomyl, chloroneb, fuberidazole, maneb, pyracarbolid, and TCMTB (Hoffmann and Waldher 1981, Gaudet et al. 1989). In tests with seedborne inoculum only, the triazole fungicide myclobutanil has given excellent control (Efthimiadis 1988, Gaudet et al. 1989). The effectiveness of certain fungicides such as maneb and carboxin varies with the environment (Gaudet et al. 1989). The systemic fungicide triadiminol (Baytan), which controls both seedborne and soilborne bunt, has been recently registered for use on wheat in the USA. Triadiminol has consistently given better control than the other fungicides mentioned above (Hoffmann and Waldher 1981, Gaudet et al. 1989, Wainwright and Morris 1989, Williams 1990). The manufacturer’s recommended application rates for triadiminol must be closely followed to reduce the effect of growth regulating properties. A promising new fungicide called difenoconazole gives almost complete control of both seedborne and soilborne inoculum at a very low application rate (Williams 1991).

Dwarf bunt. Although certain systemic seed treatment fungicides significantly reduce DB infection, they have not been widely utilized on a commercial basis in the USA because of their cost, phytotoxicity, erratic effectiveness, dependence on late seeding, and the availability of highly resistant cultivars. Chemical seed treatment requires sufficient concentration of an effective chemical in the plant during the extended winter period when infection occurs. Control with systemic seed treatments has been difficult and often unreliable (Hoffmann et al. 1983), apparently because the chemicals are diluted or metabolized by the plant prior to infection. For this reason, seed treatments are more effective when seed is planted late, so that relatively small seedlings go into winter (Hoffmann and Sisson 1987).

After extensive testing, only the systemic fungicides bitertanol, thiabendazole, triadimidinol, and etaconazole were effective (Hoffmann 1971, Tragner-born and Kaspers 1981, Hoffmann et al. 1983). However, each of these fungicides has deficiencies. Bitertanol and thiabendazole provide good control only in certain years and locations, and may cause yield reductions when bunt incidence is low (Hoffmann and Sisson 1987, Dewey and Albrechtsen 1974). Etaconazole and triadiminol are phytotoxic at effective rates. In recent tests, the new fungicide difenoconazole has shown remarkable control as a seed treatment at very low rates with no apparent phytotoxicity (Goates 1992, Sitton et al. 1993).

Cultural Practices

As discussed earlier, DB incidence can be reduced by deep sowing, or by very early or late planting to avoid the plant stages that are the most susceptible. However, these practices may not provide effective control and may reduce yields and cause plants to be more vulnerable to other diseases. In contrast, CB incidence may be reduced by seeding shallow and significantly reduced or controlled by seeding into warm soil (Purdy and Kendrick 1963, Gaudet and Puchalski 1990). The effects of timing and method of cultivation, no-till, and stubble burning on teliospore germination or survival, or incidence of DB and CB, have not been investigated.
Techniques for Study

Teliospore Morphology and Species Identification

Teliospores are typically mounted for viewing with light microscopy in Shear’s mounting fluid. This fluid consists of 30 ml 2% potassium acetate in 0.2M phosphate buffer pH 8, 12 ml glycerine, and 18 ml 95% ethanol (Graham 1959). After mounting, the slides are heated over an alcohol flame until boiling begins; this causes the reticulate exosporium and sheath to expand, which facilitates morphological examinations.

Most isolates of T. tritici and T. controversa can be identified by their teliospore morphology as discussed in the morphology section. However, two techniques can aid differentiation of the species. First, when teliospores are mounted in nonfluorescing immersion oil and epi-illuminated with blue light (485 nm excitation, 520 nm barrier filters) for approximately two minutes, the reticulate wall layer of most T. tritici teliospores does not autofluoresce, whereas the reticulate wall layer of most T. controversa teliospores autofluoresce (Stockwell and Trione 1986). Second, the walls of T. tritici teliospores frequently collapse inward when mounted in immersion oil, while wall collapse in T. controversa is infrequent (Stockwell and Trione 1986). The percentage of teliospores that autofluoresce or that collapse varies considerably among different isolates of the same species.

The only positive way to distinguish T. controversa from T. tritici is to germinate the teliospores. Teliospores of T. tritici germinate in 3-5 days at 17°C, whereas those of T. controversa will not germinate at this temperature. T. controversa typically germinates in 3-6 weeks at 5°C under low light intensity.

Germination Media

Teliospores of bunt fungi germinate on a variety of substrates. For CB fungi, each of the media described below—water agar, soil extract agar, nutrient agar, and soil plates—makes satisfactory germination substrates. For T. controversa soil extract agar is superior to water agar or nutrient agar (Meiners and Waldner 1959). On nutrient agars, contaminating organisms may be a problem.

Water agar. For 2% water agar, suspend 20 g of Difco bacto-agar in 1 L of distilled or deionized water in a 2-L flask and autoclave.

Soil extract agar. For 2% soil extract agar, filter 500 ml of boiling water through 75 g of soil and bring the volume of the filtrate up to 1 L with fresh water in a 2-L flask; add 20 g of Difco bacto-agar and autoclave. Pour the agars relatively deep (approximately 20 ml of medium per 9-cm dish) when preparing petri dishes for T. controversa prevent the agar from drying out during the extended period required for germination.

Soil plates. Mix a fine-textured soil with water to form a thick slurry and then pour it into petri dishes. Leave the dishes open until the free water evaporates from the soil surface. Spray a water suspension of teliospores as a fine mist onto the surface of the soil. Because the soil tends to dry out during long periods of incubation, occasionally add water to the plates without disturbing the soil surface. Add water through a short section of plastic straw that is placed upright in the center of the plate before adding the soil slurry.

Growth Media

Extended culture after teliospore germination requires solid or liquid nutrient substrates like potato sucrose agar and T-19 media described below. Generally, cultures of the CB fungi consist primarily of secondary sporidia, whereas those of T. controversa consist primarily of mycelium. Usually, in liquid media, filiform secondary sporidia are produced, and on solid media, allantoid secondary sporidia predominate. Isolates and monosporidial lines differ in production of hyphae or secondary sporidia. Cultures are routinely incubated at 15-20°C.

Potato sucrose agar and broth. Autoclave 200 g of diced potatoes in 500 ml distilled or deionized water and filter through two layers of cheese cloth into a 2-L flask; add 20 g of sucrose and 20 g of Difco bacto-agar; bring the volume up to 1 L and autoclave. Potato sucrose broth for liquid culture is made in the same manner, but the agar is excluded.

T-19. This medium has been used to grow bunt fungi through their entire life cycle in culture (Trione 1964). However, for an unknown reason, teliosporogenesis does not always occur after culture of dikaryons on this medium. For 1 L of medium, add the chemicals listed below to 1 L of water in a 2-L flask, adjust the pH to 6.0 and autoclave the solution. For a solid medium, add 20 g of Difco bacto-agar before autoclaving. A modified version of this medium includes additional amino acids, vitamins, and nucleic acid bases (Mills and Churchill 1988).

Chemicals and amounts for preparing T-19 media:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH2PO4</td>
<td>613 mg</td>
</tr>
<tr>
<td>MgSO4·7H2O</td>
<td>246 mg</td>
</tr>
<tr>
<td>K2HPO4·3H2O</td>
<td>114 mg</td>
</tr>
<tr>
<td>CaCl2</td>
<td>55.5 mg</td>
</tr>
<tr>
<td>Chelated Fe</td>
<td>20 mg</td>
</tr>
<tr>
<td>ZnSO4·7H2O</td>
<td>3.52 mg</td>
</tr>
<tr>
<td>CuSO4·5H2O</td>
<td>0.38 mg</td>
</tr>
<tr>
<td>MnSO4·H2O</td>
<td>0.031 mg</td>
</tr>
<tr>
<td>Na2MoO4·2H2O</td>
<td>0.025 mg</td>
</tr>
<tr>
<td>Thiamin-HCl</td>
<td>5 mg</td>
</tr>
<tr>
<td>L-Asparagine</td>
<td>3 g</td>
</tr>
<tr>
<td>Sucrose</td>
<td>20 g</td>
</tr>
</tbody>
</table>

Plating Teliospores

Teliospores can be dissected from the interior of sori (bunt balls) without contamination, but teliospores are routinely
surface-sterilized before plating. Suspend the teliospores in water after crushing the sori with a glass rod. Filter the suspension through cheese cloth to remove debris and centrifuge. Teliospores settle rapidly with minimal centrifugation. Place the teliospores in 0.25% aqueous solution of sodium hypochlorite (5% solution of household bleach) for 1 minute at room temperature and then immediately rinse twice in sterile water using centrifugation to remove the disinfectant and rinse water. Suspend the clean teliospores in sterile water to the desired concentration and spread (0.25-0.50 ml/9-cm petri dish) evenly with a sterile glass rod on the agar surface. Allow excess water on the agar surface to evaporate before incubating the plates. Problems associated with contamination by fungal spores can be reduced or eliminated by keeping the water-teliospore suspension at room temperature for 24 hours prior to the surface sterilization procedure. Most fungal spore contaminants will germinate in the water and be killed by the disinfectant. Typically, T. laevis and T. triticae incubated at 15°C; T. controversa incubated at 5°C supplemented with continuous light.

Inoculation

Seed inoculation—common bunt. Mixing teliospores with seed prior to planting is a simple and effective inoculation method. To inoculate large seedlots, gently mix about 1 g of teliospores per 100 g of seed until the seeds are uniformly covered, then screen off excess spores. Vigorous mixing fractures a high percentage of the teliospores. To inoculate 5-20 g seedlots, place teliospores and seed in envelopes that can be clipped together and shaken by hand.

Cross contamination during planting can be minimized in studies with different isolates by sticking the spores to the seeds using an aqueous solution of methylcellulose. Dissolve methylcellulose that has a viscosity rating of 1500 to 4000 centipoises in water and then dilute the solution until it is slightly more viscous than water but still sticky. Crush the sori in the methylcellulose solution to form a highly concentrated inky black teliospore suspension. Approximately 10 medium-sized sori are sufficient to inoculate 30 5-g seedlots. Place approximately 5 g of seed and two drops of the spore suspension in a 20- x 70-mm glass vial and mix it with a vortex test tube mixer until the seed is uniformly darkened. As an alternative, use a water suspension of teliospores to apply the spores to the seed, but spores will stick better with methylcellulose.

After inoculation, sow the seeds 4-7 cm deep in soil at 5-10°C. If a single isolate or a composite of isolates is used, seed can be machine-drilled in the field. Otherwise, seeding by hand is required. Bunt incidence of more than 90% is not uncommon when highly susceptible genotypes are inoculated and grown in an ideal environment. Infection is significantly reduced if the seeds are sown shallow in soil warmer than 15°C.

Soil inoculation—common bunt. Soil is inoculated primarily to evaluate fungicide seed treatments. To properly evaluate the efficacy of fungicides, both the seed and the soil must be inoculated because many fungicides that are effective against seedborne inoculum are not effective against soilborne inoculum (Hoffmann and Waldher 1981). Inoculate the soil by spraying a teliospore suspension into an open furrow prior to hand-seeding. Prepare the teliospore suspension as described in the DB section. Alternatively, mix the teliospores with soil (4 g spores/100 cc soil) and apply at a rate of 4 cc per meter of row (Gaudet et al. 1989). Fungicide studies are typically arranged so that half of the replicates have seedborne inoculum only and half have both seedborne and soilborne inoculum.

Field inoculation—dwarf bunt. To promote high and uniform levels of DB in field-planted nurseries, plant seed about 2 cm deep in the bottom of an 8-10 cm deep furrow with a deep-furrow drill equipped with weighted packer wheels. The seeding date is timed so that plants are in the susceptible 2-3 leaf stage when they become dormant in late fall. Nurseries are inoculated either immediately after seeding or after emergence. The inoculum is a water suspension of teliospores that is prepared by grinding bunted spikes, suspending the material in water, and then filtering through cheese cloth or wire mesh. Dilute the inoculum to a final concentration of 15-25 g spores/L and spray it onto the soil over the row at about 25 ml of inoculum per 1.5 m of row. Periodic agitation is necessary to keep the teliospores from settling. Under ideal conditions, more than 90% of the spikes of highly susceptible genotypes will be diseased.

When there is insufficient snowcover to promote infection, place a cover of vermiculite or straw over the plants to simulate snow (Dewey 1961, 1963). The cover must be removed in early spring to prevent plants from rotting.

Deep snow that lasts into early spring promotes snow mold disease caused by species of Typhula and Microdochium (= Fusarium) that can destroy nurseries. If snow is present in mid-March, it can be melted by dusting furnace ash or other dark colored substances onto the snow. Also, graphite suspended in either water or liquid fertilizer solutions can be sprayed onto the snow. The dark substance absorbs heat from the sun and causes relatively rapid snow melt.

Inoculation of DB in the laboratory. For pathogenic race studies or for increasing DB isolates, laboratory inoculation is required to prevent contamination from teliospores that may be present in the field or adjacent rows.

The inoculation of seed with germinated teliospores is effective but labor-intensive (Meiners 1959). Plate the teliospores on soil extract agar in 9-cm petri dishes at a
rate that covers approximately 10% of the agar surface with teliospores. When approximately 70% of the teliospores have germinated, place 4-5 g of seed and 5 ml of cold water (about 5°C) in the petri dish and mix it with a sanitized finger or sterile glass rod until the seed is wet and evenly covered with the fungus. The inoculum must be used before sporidia begin to lyse, which can be noted by the beaded appearance of individual sporidia. Sow the inoculated seed approximately 5 cm deep in moist vermiculite in a 12-cm diameter plastic pot and cover it with foil or plastic. Incubate pots at 10°C until the seedlings are well emerged. Divide the seedlings from each pot into four groups, transplant them into pots containing soil and grow them in a cool (10-15°C) greenhouse until the plants are established. Either grow the plants to maturity in the greenhouse or transplant them into the field. If using winter wheat, vernalize plants for 7-8 weeks at 5°C after transplanting into pots. Time the inoculation procedure so that transplanting into the field takes place during early spring.

Seedlings can be inoculated using a variation of the above method. Wash germinating teliospores from the petri dishes with a minimum amount of water and spray them onto seedlings that are in the one- to two-leaf stage. Immediately immerse the seed in an aqueous solution of formaldehyde (3 parts/thousand solution of 37% formalin) for 10 minutes, and then rinse it thoroughly in running water for 30 minutes. Dry the seed on cloth or paper in a warm greenhouse. Since formaldehyde is a carcinogen, the following method may be preferred. Immerse the seed in a 5% aqueous solution of laundry bleach (0.25% sodium hypochlorite) at 45°C for 6 minutes and then thoroughly rinse in running water and dry (J.L. Smilanick, pers. comm.). It is important to maintain the temperature during treatment.

For the purpose of race identification, an infection incidence above 10% of the spikes indicates virulence. Infection of the universally susceptible (Bl-0) line should be above 70% for adequate evaluation of the bunt isolate. When plants are mature, harvest diseased spikes from the differential cultivar that best discriminates the race from others.

CB or DB race tests are usually conducted in field nurseries in 1.5-m rows for each entry. Artificially inoculate and plant the differential cultivars as described in the inoculation section.

The soil used for CB race tests must be free of CB spores. Achieve this by using a field that has been out of wheat production for at least three years. CB teliospores are typically not viable after two years in the field under natural conditions.

When testing or increasing DB races, use the seed or seedling inoculation techniques described above because of the longevity of DB teliospores under natural field conditions, and also because of potential cross contamination when several races are tested adjacent to each other.

Inoculum Maintenance

For general disease screening, inoculum consists of a composite of races that are representative of those present in a particular area. When the crop is mature, bunted spikes are collected from susceptible and resistant cultivars to maintain composite variability. Store bunted spikes in a cool, dry place in the laboratory. Teliospores usually maintain high viability for 5-10 or more years. Spikes can be ground and sieved to remove most plant debris before storage, without loss of teliospore viability or longevity.

Data Collection

Common bunt. Disease incidence is usually expressed as the percentage of bunted spikes within a row. In some studies, it may be appropriate to express infection as the percentage of plants that show any infection. However, this may not be practical for routine disease screening. Recording the level of infection of individual spikes is useful to differentiate genotypes that have only a few infected florets per spike.

Dwarf bunt. Data are collected in the same manner as described above for CB. Although DB increases the total number of tillers, the percentage of bunted spikes provides a good indication of genotype reaction.
CHAPTER 3

Karnal Bunt of Wheat
Guillermo Fuentes-Davila, CIMMYT, Mexico

History

Karnal bunt (KB) or partial bunt is the most recently described smut disease of wheat (Mitra 1931, Mundkur 1943b, Bedi et al. 1949). It was first reported in 1931 in experimental wheats at the Botanical Station at Karnal, India (Mitra 1931) and was for many years known only in the plains of India and Pakistan. However, since 1974 it has been noted in many locations across northern India.

KB differs from other smuts of wheat in that the pathogen, *Tilletia indica*, infects during anthesis, unlike *T. caries*, *T. foetida*, *T. controversa*, and *Urocystis agropyri*, and it sporulates on the same generation of the host that it infects, unlike *Ustilago tritici*.

Distribution and Importance

Besides India and Pakistan, KB is known to occur in Mexico (Durán 1972) and Nepal (Singh et al. 1989; Figure 1.3). Although it is reported from Iraq (Mathur 1968), this report has not been confirmed by field incidence. A similar situation occurs for Afghanistan and Lebanon where the pathogen was found in wheat samples imported into the USA and India, respectively (Locke and Watson 1955, Nath et al. 1981).

Kernels with small lesions produce normal seedlings, whereas those with severe infection have poor germination and produce weak, distorted seedlings (Rai and Singh 1978, Singh 1980, Bansal et al. 1984b). Despite the fact that increases in disease severity result in proportional decreases in seed weight (Singh 1980, Bedi et al. 1981), yield losses are generally light (Munjal 1975, Brennan et al. 1990). Even during years when epidemics were most severe in India (some seed samples had about 89% infected kernels), losses were only 0.3 to 0.5% of production (Joshi et al. 1983).

KB may also reduce flour quality. In view of the importance of color, odor, and palatability of whole meal and chapatties, 1-4% infected kernels may be sufficient to render wheat grain unacceptable for human consumption (Mehdi et al. 1973, Sekhon et al. 1980, Amaya 1982, Medina 1985, Hussain et al. 1988). At 5% infection, quality distinctly deteriorates (Sekhon et al. 1980). There is also a loss in flour recovery and chemical changes in composition of flour and gluten content cause poor dough strength (Gopal and Sekhon 1988). If grains are washed and steeped, wheat lots with 7-10% infected grains are acceptable for consumption (Sekhon et al. 1981, Medina 1985, Hussain et al. 1988).

In northwestern Mexico, lots of grain with more than 3% infected kernels are rejected by the milling industry. However, they can be used for animal feed (Anon. 1983b). Further, a federal quarantine prohibits growing bread wheat in fields that have more than 2% KB infection. The movement of wheat grain from affected counties to other parts of Mexico is prohibited unless fumigated with methyl bromide. Seed grown for certification has a 0% infection tolerance and must be treated with a fungicide. Trucks, combines, and agricultural machinery cannot leave the quarantined areas unless cleaned and treated as determined by the Department of Agriculture. Movement of germplasm, however, is allowed under certain, but strict quarantine rules (SARH 1987).

Quarantines for KB have been established by many countries to exclude the disease from entry. For example, the USA prohibits importation of all wheat from Mexico, allowing entry only of experimental seed under permits requiring strict safeguards and handling procedures (Anon. 1983, Cooper 1983).

Approximate losses in northwestern Mexico due to KB, including losses in yield and quality, loss of seed and grain export markets, and costs associated with control measures, are estimated at about $US7 million annually (Brennan et al. 1990).

Hosts

KB occurs naturally on bread wheat (*Triticum aestivum*; Mitra 1931), durum wheat (*T. turgidum*), and triticale (*Triticosecale*; Agarwal et al. 1977).

According to Aujla et al. (1985), *T. indica* also occurs on *Triticum shareonensis*, *T. variabilis*, *T. ovatum*, and *T. scirrta*. Although inoculation has infected accessions of the following species, it is not known whether they can be infected under natural conditions: *Oryzopsis miliacea*, *Bromus ciliatus*, *B. tectorum*, *Lolium multiflorum*, *L. perenne*, *Triticum monococcum*, *T. timopheevi*, *T. tauschii*, *Aegilops triuncialis*, *Ae. mutica*, *Ae. columnaris*, *Ae. caudata*, *Ae. sharonensis*, *Ae. cylindrica*, *Ae. bicornis*, *Ae. comosa*, *Ae. searsii*, *Ae. tauschii*, and *Ae. triaristata* (Royer and Ryutter 1988).

Pathogen

Taxonomy

The KB fungus was originally classified as *Tilletia indica* (Mitra 1931) and was later placed in *Neovossia* on the basis of a long promycelium with a whorl of 32-128 nonfusing conidia at the apex (Mundkur
However, others now consider *Tilletia* to be the appropriate genus (Fischer 1953, Durán and Fischer 1961, Waller and Mordue 1983).

Pathogenic Specialization

Mitra (1935) reported two physiologic forms of *T. indica* on the basis of spore size. However, significant differences in teliospore size were not found in collections from five Indian states (Bansal et al. 1984a). Recently, three distinct pathotypes of *T. indica*, which differed in virulence, were present in Punjab (Dhiman 1982). Aujla et al. (1987) reported pathotypes K1, K2, K3, and K4 in 21 collections of *T. indica* from different regions of Punjab and Himachal Pradesh. Their pathotypes were single teliospore isolates from single kernels and were identified on the basis of pathogenicity to genotypes of *T. aestivum*, *T. durum*, *X Triticosecale*, and *Secale cereale*. The pathotypes were morphologically alike and all were virulent on the wheat cultivars used. Pairs of pathogenic monosporidial cultures, each isolated from different teliospores, generally infect greater numbers of spikes than pathogenic pairs from the same teliospore (Fuentes-Davila 1989). Crosses within monosporidial lines from India cause more diseased kernels and spikes than crosses between Mexican and Indian lines (Royer and Rytter 1985). More research is needed to confirm the existence of *T. indica* races and to determine their importance.

Teliospore Morphology, Germination, and Physiology

Teliospores are brown to dark brown, spherical or subspherical or oval; 22-42 x 25-40 µm in diameter, average 35.5 µm; some may be 55 µm (Figure 3.1). They occasionally have an apiculus (Roberson and Lutrell 1987), papilla (Mitra 1931) or a vestige of attached mycelium (Durán and Fischer 1961). Teliospores have three wall layers (Khanna et al. 1966; Khanna and Payak 1968; Roberson and Lutrell 1987; Gardner et al. 1983a,b). The primary wall is continuous with the apiculus wall (Roberson and Lutrell 1987). Immature teliospores are sterile, numerous, yellowish or sub-hyaline, rounded, angular or lacrimiform, 10-28 µm in diameter, and have thin, laminated walls (Mitra 1931, Durán and Fischer 1961).

Though each teliospore generally produces one promycelium (Mitra 1931), several promycelia may arise from a single teliospore (Krishna and Singh 1981, Warham 1988). Promycelia vary in length up to 1500 µm (Mitra 1931, Holton 1949) and bear at the apex a whorl of 32 to 128 or more primary sporidia (Figure 3.2) (Mitra 1931, Holton 1949). The promycelium may branch (Mitra 1931, Krishna and Singh 1981). Variation in the enlargement of promycelial tips may occur. Primary sporidia are filiform, 64.4-78.8 µm long and 1.6-1.8 µm wide (Peterson et al. 1984).

Germination. Primary sporidia germinate terminally or laterally to produce hyphae or sterigmata from which secondary falcate sporidia, 11.9-13 µm long and 2-2.03 µm wide (Peterson et al. 1984), are formed and forcibly discharged (Fuentes-Davila 1984). Falcate secondary sporidia produce hyphae or other sporidia by repetition. Hyphae that originate from primary or secondary sporidia produce large numbers of secondary, mononucleate falcate sporidia and somewhat fewer secondary filiform sporidia (Fuentes-Davila 1984). H-bodies are not formed by *T. indica* (Mitra 1931), although Holton (1949) reported seeing one H-body. Primary sporidia are initiated by the promycelium 6 to 44 hours after its extension, and production of secondary sporidia may require an additional 128 hours (Warham 1988).

During teliospore germination, meiosis occurs and the haploid nuclei migrate into the promycelium and primary sporidia, each of which receives one nucleus (Fuentes-Davila and Durán 1986). After one or two mitoses, most sporidia become septate forming two to four monokaryotic cells. Most secondary sporidia are mononucleate. Mycelial cells that originate from either type of sporidia are also mononucleate. After anastomosis, the dikaryotic sporogenous mycelium bears intercalated Y-shaped septa formed at the base of the probasidial initials. Nuclei migrate to the teliospore initials, which enlarge to form the teliospores, and the nuclei presumably fuse to form a diploid.
nucleus (Fuentes-Davila and Durán 1986, Roberson and Lutrell 1987).

T. indica is heterothallic (Durán and Cromarty 1977, Fuentes-Davila 1989). Heterothallism and pathogenicity are controlled by four alleles at one locus (Durán and Cromarty 1977, Fuentes-Davila 1989). Solopathogenic lines have not been found.

Variation in germination is common in reports from different researchers. Freshly collected teliospores are dormant, as indicated by failure of fresh teliospores to germinate (Mitra 1931, 1935). Others report low germination percentages of fresh teliospores (Bansal et al. 1983, Smilanick et al. 1985b). The highest germination occurs with year-old teliospores (Mathur and Ram 1963, Kiryukhina and Shcherbakova 1976, Bansal et al. 1983).

Teliospores of *T. indica* germinate at 5-30°C (Mitra 1935, Bansal et al. 1983, Krishna and Singh 1982a, Zhang et al. 1984, Smilanick et al. 1985b, Dupler et al. 1987). However, germination has been reported after 10 weeks at -18°C (Zhang et al. 1984) or after 4-12 weeks at -30°C. Optimum temperature for teliospore germination is between 15 and 25°C (Mitra 1935, Mundkur 1943b, Holton 1949, Mathur and Ram 1963, Durán and Cromarty 1977, Krishna and Singh 1982a, Bansal et al. 1983, Zhang et al. 1984, Smilanick et al. 1985b). It is better in alternating light (Krishna and Singh 1982a, Zhang et al. 1984) than in darkness or near UV light, but germination in continuous light has been reported (Smilanick et al. 1985b).

Teliospores germinate between pH 4 and 11, the optimum being pH 6-9.5 (Krishna and Singh 1982a, Smilanick et al. 1985b). Under different osmotic and matric potentials, teliospore germination is delayed (Dupler et al. 1987) and both rate and percentage decrease with decreasing water potential. The highest percentage germination occurs at the highest potential tested, -1.4 bars.

Viability. Teliospores are viable in the laboratory for 5-7 years (Mathur and Ram 1963, Krishna and Shcherbakova 1976, Zhang et al. 1984, Krishna and Singh 1983a). Teliospores in unbroken sori and buried 3 or 6 inches in field soil or left on the soil surface can remain viable for 27-45 months (Krishna and Singh 1982b).

Dissemination. Before harvest, dissemination of teliospores is limited, unless the sori break, which occurs infrequently. However, during harvest, sori may be broken and teliospores may contaminate healthy seed, soil, machinery, or vehicles and may be blown by the wind for long distances. Bonde et al. (1987) found viable teliospores up to 3000 m over burning wheat fields, suggesting the possibility of wind dissemination. Teliospores also germinate after ingestion by livestock and grasshoppers, providing another means of dissemination (Smilanick et al. 1986).

Infection and Disease Cycle

The disease cycle of Karnal bunt is illustrated in Figure 1.7. Moderate temperatures, high relative humidity or free moisture, cloudiness, and rainfall during anthesis favor disease development (Mundkur 1943a, Bedi et al. 1949, Sattar and Hafiz 1952c, Agarwal et al. 1976, Aujla et al. 1977, Singh and Prasad 1978, Khetarpal et al. 1980, Krishna and Singh 1982c). Disease development was favored in soil at 17-21°C (Aujla et al. 1977). High rates of nitrogen applications, as well as heavy manuring, may increase disease incidence (Bedi et al. 1949, Aujla et al. 1981, Ortiz-Monasterio et al. 1993). In India, cultivars sown late (November 25-December 15) tend to have greater KB incidence than when sown earlier (October 25-November 24; Singh and Prasad 1978, Aujla et al. 1981).

Symptoms

Not all spikes of a plant are affected by KB (Mitra 1935, Bedi et al. 1949), and usually only a few irregularly distributed kernels are bunted. Furthermore, infection of individual kernels varies from small points of infection to completely bunted kernels. Affected kernels are usually partially infected (Figure 3.3), and completely infected ones are rare (Mitra 1935, Bedi et al. 1949, Chona et al. 1961). The embryo is largely undamaged except when infection is severe. In infected spikelets, the glumes may be flared to expose bunted kernels (Figure 3.4), which reek of an odor similar to rotten fish caused by trimethylamine (Mitra 1935). The spikes of infected plants generally are reduced in length and in number of spikelets (Mitra 1937).

Penetration

The site of dikaryotization in *T. indica* is not known, although apparent hyphal anastomosis has been observed on glume surfaces. Conclusive evidence of the initiation of the dikaryotic phase will require
elucidation of the nuclear condition of hyphae during the infection process (Goates 1988).

Sporidial germ tubes penetrate stomata in the rachis (Dhaliwal et al. 1989), glumes, lemma, and palea (Goates 1988, Salazar-Huerta et al. 1990). Growth of germ tubes towards stomata is common and, although germ tubes often penetrate beyond the stomatal ledges, they only occasionally pass into the substomatal chamber.

During early stages of infection, hyphae are intercellular among parenchyma and chlorenchyma cells in the distal to midportions of the glume, lemma, and palea, but not in basal portions. Later hyphae grow intercellularly toward the ovary, subovarian tissue, and rachis. After subovarian tissue is infected, the pathogen enters the pericarp through the funiculus. Hyphae have been seen in the rachis only during the later stages of infection. The epidermis of the ovary wall is not penetrated, even after prolonged contact with germinating secondary sporidia (Dhaliwal et al. 1983, Goates 1988).

Sporidial germ tubes penetrate stomata in the rachis (Dhaliwal et al. 1989), glumes, lemma, and palea (Goates 1988, Salazar-Huerta et al. 1990). Growth of germ tubes towards stomata is common and, although germ tubes often penetrate beyond the stomatal ledges, they only occasionally pass into the substomatal chamber.

As the fungus grows, it ruptures the pericarp tissues in the bottom of the adaxial groove along the length of the developing kernel. This disrupts the flow of nutrients from the pericarp causing the endosperm to shrink and become cartilaginous. The embryo with attached endosperm may be easily removed and it germinates before or after removal. In the most severe infections, the kernel is reduced to a black membranous sorus and the embryo is killed.

Control Strategies

Resistance

Since the 1940s, cultivars of *T. aestivum, T. durum,* and *T. dicoccum* have been reported to be resistant to KB under field conditions in India (Anon. 1943; Bedi et al. 1949; Gautam et al. 1977; Singh et al. 1986, 1988; Singh and Srivastava 1990). X *Triticosecale* cultivars exhibited near immunity to KB in field trials (Meeta et al. 1980). Inoculation indicated resistance among experimental lines and cultivars of *Triticum, Triticosecale,* and grass species (Aujla et al. 1980, Krishna and Singh 1983c, Warham et al. 1986, Gill and Aujla 1987, Royer and Rytter 1988, Singh et al. 1988, Singh and Srivastava 1990, Fuentes-Davila et al. 1992).

The reactions of lines or cultivars to KB are determined by percent infected kernels per spike (Fuentes-Davila and Rajaram 1994) or as coefficient of infection (Aujla et al. 1989). After a line or cultivar has been evaluated under inoculated and natural conditions in more than 12 tests, it is considered to be resistant if disease incidence averages 5% or less (Gill 1990, Fuentes-Davila and Rodriguez-Ramos 1993, Fuentes-Davila and Rajaram 1994). In CIMMYT’s Wheat Program, after five years of testing, 98 lines and cultivars of bread wheat have been identified as resistant, while at Punjab Agricultural University, 68 resistant lines have been identified. Most of these lines trace to germplasm from China, India, and Brazil. In 1992, KB resistant bread wheat cultivar Arivechi was released for commercial use by the Mexican national program for northwestern Mexico.

Impact of Cultivars

The importance and distribution of KB in India appear to be related to periodic widespread cultivation of susceptible or tolerant cultivars, although the impact of weather during these periods is also recognized (Gill et al. 1993). Prior to about 1968, indigenous tall wheats grown in the main wheat belt were KB susceptible, and the disease was often widespread, although usually not severe. The semidwarf wheats Kalyansona, PV18, and Sonalika (introduced in the late 1960s) were more resistant than indigenous wheats and KB decreased somewhat in importance. In 1975, high yielding but KB susceptible cultivars were released, and as their popularity grew, disease severity increased throughout northern India. After 1982, cultivars with KB tolerance were introduced and efforts were made to diversify the cultivars grown by farmers. These changes coincided with a reduction in disease incidence up to 1989. However, the situation changed again with the widespread use of KB susceptible cultivars.
Cultural Practices

Cultural practices appear to have been of little practical value because most recommendations have been based on observation rather than long-term experiments (Table 3.1).

Warham and Flores (1988) surveyed farmers in the Yaqui Valley, Sonora, Mexico, from 1983 to 1985 to learn whether cultural practices to control KB were useful. They reported limited use involving seed type, land preparation, origin of seed, irrigation, nitrogen and other fertilizers, weed control, and crop rotation. Rainfall or high humidity at flowering were more important than any of the cultural practices for conditioning KB. Adjustment of sowing dates did not appear to be beneficial because weather fluctuations at anthesis were probably more important. Limiting irrigation during flowering would have adverse effects on yield. A three-year rotation did not appear to be useful because it is too short to affect teliospores in the soil and because inoculum blew into the fields from adjacent areas.

In repeated experiments, Ortiz-Monasterio et al. (1993) found that disease incidence would increase with greater rates of nitrogen. Similar results were obtained with nitrogen applications during sowing compared to split applications. KB incidence was also greater when wheat cultivars were sown in flats instead of beds, and some cultivars showed a direct correlation between plant density and disease incidence.

Seed Treatment

Hot water and solar energy treatments have been applied to KB-infected seeds. However, they have had limited application. These treatments inhibit teliospore germination, but not as much as fungicide treatments (Mitra 1937). Fungicide seed treatments have been investigated for KB control since 1933-34 (Mitra 1935). Although many fungicides have been tested for effectiveness (Table 3.2), results have not been satisfactory.

Smilanick et al. (1987) applied seven systemic fungicides to seed (Benomyl, Bitertanol, Campogran, Trimirol, Propiconazole, Thiabendazole LSP, and Triadimefon), planted the seed, and inoculated spikes on some tillers. KB incidence was evaluated on inoculated and naturally infected spikes. None of the fungicides controlled development of the disease.

Some fungicides applied to infected kernels, which were then stored for various periods, inhibited teliospore germination, but others had little or no effect. Most of the fungicides reported to be effective inhibitors of teliospore germination have not been tested for germicidal properties. However, the fact that they inhibit teliospore germination after months of storage suggests they might be useful to control KB or to eradicate the pathogen from infected seed lots. For example, in one test, pentachloronitro-benzene in liquid or wettable formulations applied to wheat seeds inhibited teliospore germination up to two months (Fuentes et al. 1983).

Chlorothalonil, as emulsifiable concentrate and wettable powder applied to infected kernels, inhibited teliospore germination up to eight months (Figueroa-Lopez and Espinoza-Salazar 1988). Triphenyltin hydroxide, methoxyethy mercury acetate, and ethylmercury chloride inhibited teliospore germination for 18 months (Warham and Prescott 1989).

Table 3.1. Cultural practices suggested by various researchers for Karnal bunt control.

<table>
<thead>
<tr>
<th>Cultural practice</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop rotation</td>
<td>Mitra (1935), Padwick (1939), Singh and Mathur (1953), Singh et al. (1979)</td>
</tr>
<tr>
<td>Reduced irrigation and/or fertilizer</td>
<td>Bedi et al. (1949), Padwick (1939), Singh et al. (1979), Dhimann (1982), Ortiz-Monasterio et al. (1993)</td>
</tr>
<tr>
<td>Avoid continuous wheat</td>
<td>Singh et al. (1979)</td>
</tr>
<tr>
<td>Use disease-free clean seed, avoid late planting</td>
<td>Singh et al. (1979), Dhimann (1982), Lopez-Lugo (1986)</td>
</tr>
<tr>
<td>Use deep plowing, fallow after harvest</td>
<td>Dhimann (1982)</td>
</tr>
<tr>
<td>Plant on light soils</td>
<td>Aujla et al. (1986a)</td>
</tr>
</tbody>
</table>

Table 3.2. Chemicals evaluated in wheat seed treatments for Karnal bunt control.

<table>
<thead>
<tr>
<th>Seed Treatment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot water</td>
<td>Aujla et al. (1981) Ethylmercury chloride, Thiram</td>
</tr>
<tr>
<td>Solar energy</td>
<td>Aujla et al. (1986b) Agrozin, Benomyl, Biteranol, Butrizol, Captan, Carbendazim, Carboxin, ethylmercury chloride, Fentifuran, Fuberidazole, Furavax, Mancozeb, oxycarboxin, pentachloronitrobenzene, tiophanate-methyl, triadimefon, triadimenol</td>
</tr>
<tr>
<td>Reduced irrigation</td>
<td>Fuentes et al. (1982) Benomyl, Carboxin, Carbol, 2 methoxyethyl mercury chloride, hexachlorobenzene, Mist-o-matic, oxycarboxin, phenylmercury acetate, propiconazole, RH 5871, thiabendazole</td>
</tr>
<tr>
<td>Avoid continuous wheat</td>
<td>Salazar-Huerta et al. (1986) Chlorothalonil (EC), Chlorothalonil (WP)</td>
</tr>
<tr>
<td>Use disease-free clean seed, avoid late planting</td>
<td>Singh et al. (1979) Phenylmercury acetate, ethylmercury chloride, charcoal formaldehyde, copper carbonate, Formalin, Hortisan A, sulfur, Uspulum</td>
</tr>
<tr>
<td>Use deep plowing, fallow after harvest</td>
<td>Rai and Singh (1979) Triphenyltin acetate, Brestanol, triphenyltin hydroxide, oxycarboxin, Butrizol</td>
</tr>
<tr>
<td>Reduce stand density</td>
<td>Salazar-Huerta et al. (1986) Chlorothalonil, Mancozeb, Carbendazim + Mancozeb</td>
</tr>
<tr>
<td>Plant on light soils</td>
<td>Singh et al. (1979) Phenylmercury acetate, ethylmercury chloride, improved ethylmercury chloride</td>
</tr>
<tr>
<td>Fungicide seed treatments</td>
<td>Smilanick et al. (1985a) Chloropirine dioxide, ethanol 40%, formaldehyde, sodium hypochlorite, hot water (54°C), cupric acetate, Chloro-picrin, sulfur dioxide, methyl bromide</td>
</tr>
<tr>
<td>Fungicide seed treatments</td>
<td>Smilanick et al. (1987) Triadimifon, Biteranol, benomyl, Campogran, thiabendazole, propiconazole, Trimirol</td>
</tr>
<tr>
<td>Fungicide seed treatments</td>
<td>Valenzuela-Rodriguez and Navarro-Soto (1985) Chlorothalonil (WP), Maneb, Carbendazim + Mancozeb, Carbendazim + Mancozeb, Maneb</td>
</tr>
<tr>
<td>Fungicide seed treatments</td>
<td>Warham and Prescott (1989) Triphenyltin hydroxide, methoxyethy mercury acetate, ethylmercury chloride</td>
</tr>
</tbody>
</table>
On the other hand, Aujla et al. (1986b) treated infected seed with 17 protectant and systemic fungicides and buried the seed in soil for 16 days. None of these fungicides inhibited germination of teliospores that were recovered from the buried seed.

Fungicides that had little or no effect on teliospore germination have been reported in other experiments. Examples are: ethyl-mercury chloride, oxycarboxin, 4-butyl-1,2,4-triazole, chlorothalonil, and propiconazole, Mancozeb, tridimefon, and carboxin.

In vitro teliospore germination tests, in the absence of seeds, provide little information directly related to KB control, but they might be useful in preliminary identification of chemicals for later study. Such screenings were made by Krishna and Singh (1983b) with Carbendazim, copper oxychloride, thiophanate, Mancozeb M45, Mancozeb 78, triphenyltin hydroxide, edifenphos, Dinocap, Iprobenfos, Thiram, and carboxin. All of these fungicides inhibited teliospore germination to some extent.

Foliar Treatments

A number of experiments with foliar applications of fungicides have been reported since the late 1970s and all have had positive results (Table 3.3). Some studies reported low disease incidence in the checks (Singh and Prasad 1980, Quiñones-Leyva 1984), suggesting that future work on foliar applications should be done in conjunction with inoculations to assure adequate levels of disease in the tests.

Soil Fumigation

Soil fumigation to control teliospore germination has been attempted with some success. In wet soil, methyl bromide reduced teliospore germination 98% when they were buried at depths up to 10 cm. Metam-sodium (Vapam) and formaldehyde were effective only on the soil surface. In dry soil, Vapam reduced germination 57-99% when spores were buried at depths up to 10 cm. Methyl bromide and formaldehyde were less effective (Smilanick and Prescott 1986). In other experiments, teliospore germination in samples buried at depths of 5 and 10 cm was 0, 0.2, and 2.4, and 0.6% in plots treated with methyl bromide and Dazomet, respectively, while in the untreated check soil, germination was 7-10% (Fuentes-Davila and Lawn 1992).

Combined Fungicide Application

During 1985 to 1987, the combination of soil fumigation with Brassicol (pentachloronitrobenzene), seed treatment with Bavistin (Carbendazim), and foliar sprays with propiconazole has shown a range of 50 to 80% control in experiments in India.

Table 3.3. Fungicides applied to foliage for KB control.

<table>
<thead>
<tr>
<th>Reference/ fungicide</th>
<th>Percentage control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krishna and Singh (1982b)</td>
<td>82-87% control in greenhouse</td>
</tr>
<tr>
<td>Carbendazim</td>
<td></td>
</tr>
<tr>
<td>Oxycarboxin</td>
<td></td>
</tr>
<tr>
<td>Triadimefon</td>
<td></td>
</tr>
<tr>
<td>Quiñones-Leyva (1984)</td>
<td>Reduced infection in field</td>
</tr>
<tr>
<td>Triadimenol</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
</tr>
<tr>
<td>Salazar-Huerta et al. (1986a), Salazar-Huerta and Prescott (1986, 1987)</td>
<td>93-98% control in field</td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
</tr>
<tr>
<td>Singh et al. (1985a)</td>
<td>Reduced infection in field</td>
</tr>
<tr>
<td>Carbendazim</td>
<td></td>
</tr>
<tr>
<td>Fentin hydroxide</td>
<td></td>
</tr>
<tr>
<td>Mancozeb</td>
<td></td>
</tr>
<tr>
<td>Singh and Prasad (1980)</td>
<td>Reduced infection in field</td>
</tr>
<tr>
<td>Benomyl</td>
<td></td>
</tr>
<tr>
<td>Carbendazim</td>
<td></td>
</tr>
<tr>
<td>Mancozeb</td>
<td></td>
</tr>
<tr>
<td>Triphenyltin hydroxide</td>
<td></td>
</tr>
<tr>
<td>Singh and Singh (1985)</td>
<td>Reduced disease incidence in field</td>
</tr>
<tr>
<td>Triadimenon</td>
<td></td>
</tr>
<tr>
<td>Triadimenol</td>
<td></td>
</tr>
<tr>
<td>Singh et al. (1985b)</td>
<td>64% control in field</td>
</tr>
<tr>
<td>Bitertanol</td>
<td></td>
</tr>
<tr>
<td>Smilanick et al. (1987)</td>
<td>80% control in field</td>
</tr>
<tr>
<td>Copper hydroxide</td>
<td></td>
</tr>
<tr>
<td>Etaconazole</td>
<td></td>
</tr>
<tr>
<td>Mancozeb</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
</tr>
</tbody>
</table>

Combinations of foliar sprays with seed treatment or with soil fumigation also reduce KB incidence (Gill et al. 1993).

Soil Drench

Applications of chlorothalonil (WP) and Mancozeb in irrigation water to 10 wheat cultivars did not significantly reduce KB incidence (Valenzuela-Rodriguez 1985).

Techniques for Study

Culture Techniques

Teliospores of *T. indica* can be isolated by making a fine hole in an intact sorus and dusting the spores onto water agar in a petri plate. Alternatively, a teliospore suspension may be prepared by shaking sorri in water containing a surfactant. Then sieve the suspension to remove debris and centrifuge to pellet spores, re-suspend the spores in water containing sodium hypochlorite (0.5%) and centrifuge; rinse in sterile water and centrifuge (repeat this step 2-3 times to remove disinfectant).

Plate teliospores on 1.5% water agar and incubate at room temperature (20-22°C) and light; germination begins in 7-10 days. At this stage, single sporidia can be isolated by micromanipulation. Masses of sporidia from single teliospores can be isolated or pieces of agar bearing the fungus can be transferred to potato dextrose agar slants or petri plates. After 4-6 days, add sterile water and scrape the cultures into additional PDA test tubes or plates.

Inoculation Techniques

Moore’s vacuum method. Wet the spikes during anthesis with a teliospore or sporidial suspension. Insert the stems through a rubber stopper cut along the radius and fit the stopper to the inferior end of a cylinder connected by a hose to a water suspension of inoculum. Pull the inoculum into the cylinder by vacuum.

After spike exposure to the inoculum for about 1-2 minutes, release the vacuum by a valve located between the cylinder and the vacuum pump. The inoculum suspension returns to the repository by gravity (Moore 1936). A range of 11-100% infection has been obtained when inoculation is done with sporidial suspensions (Bedi et al. 1949, Chona et al. 1961). A number of factors may account for the range of infection, including: 1) viability of inoculum, 2) different cultivars, 3) varying environmental conditions, and 4) variation in efficient use of the inoculation technique.

Dropper method. Open the florets at anthesis and add a drop of sporidial suspension with an eye dropper. Chona et al. (1961) obtained 18 to 45% infection with this method.

Injection technique. Inject the inoculum with a hypodermic syringe into the boot just as awns emerge (Figure 3.5). High percentages of infection can be obtained with this technique (Chona et al. 1961, Durán and Cromarty 1977, Singh and Krishna 1982, Aujla et al. 1980). Mist-spraying inoculated plants also helps to obtain high percentages of infection (Aujla et al. 1982).

Go-go injection technique. Remove the central floret of an individual flower and clip off the awns with scissors. Then inject one or two drops of inoculum with a syringe into the remaining florets. This method gives satisfactory infection, but is more time consuming and less successful than the boot inoculation technique (Aujla et al. 1982, 1983).

Other techniques that involve spraying spikes with an aqueous suspension of inoculum (Durán and Cromarty 1977) or applying sporidia with a small piece of cotton wool inside florets (Warham 1990) have given minimal infection.

Goates’ inoculation method. Inoculate spikes inside an incubator. Lay pots and plants on their sides and place the spikes on fresh water agar in a plastic petri dish. Make a slit in the side of the petri dish to accommodate each stem. Then invert a petri plate containing the fungal colony over the spikes. Sporidia will shower from the culture onto the spikes. Inoculate the spikes in this fashion for 24-48 hours at 20°C under continuous light (Goates 1988). This method is more suitable to screen for morphological resistance than the boot inoculation technique and the percentage of infection is higher than with the boot technique (Salazar-Huerta et al. 1990).

Disease Scoring

Disease scoring has been based on the number of healthy and infected spikes (Mitra 1935, 1937; Mundkur 1943a; Bedi et al. 1949; Chona et al. 1961). However, this classification gives equal weight to the presence of one infected kernel per head and to many infected kernels per head. Today, disease scoring is primarily based on the percentage of infected kernels (Singh and Krishna 1982, Aujla et al. 1982, Fuentes-Davila and Rajaram 1994).

Lines are considered to be resistant when kernel infection percentage is below 5% in 10 inoculated spikes after several tests (Fuentes-Davila and Rajaram 1994). Also used is a rating scale that considers the size of the lesion in the kernel, the number of kernels in each category, and the total number of kernels (Aujla et al. 1989).

Figure 3.5. Injection of *T. indica* inoculum into the boot of a wheat plant.
History

The first written account of the cereal smuts comes from Theophrastus (384-332 BC). Smut was known to the Romans, who named it Ustilago, which comes from the Latin word for burn. This term was later used in many languages as the common name for smut (e.g., carbon, carbone, sot, brand). Loose smut (LS) of wheat was illustrated in 1556 in Hieronymus Bock’s Herbal (Figure 4.1), and an accurate symptomology is given in Fabricius’ text of 1774.

The accurate illustrations and descriptions of symptoms contrast with early views on the possible causes of cereal LS. Among them were: a superabundance of sap that fermented and dried up and was thought to be favored by certain soils and weather; the wrath of the gods or acts of the devil; a curse from malevolent neighbors; ill-boding solar, lunar, or stellar positions; and spontaneous generation, perhaps through previously disarranged plant tissue. These causes were held to be valid until about 1800, when the true causes of the smut diseases of cereals began to be uncovered. By 1890, three distinct fungal species had been shown to cause the LSs of wheat, barley, and oat, and it was soon learned that wheat is infected via the ovary (Maddox 1896).

Distribution and Importance

Loose smut [Ustilago tritici (Persoon) Rostrup] of wheat occurs wherever cultivated wheat, Triticum aestivum and T. turgidum grown (Anon. 1982; Figure 4.1). Since the pathogen is seedborne, it will be spread from place to place by man; rarely is it disseminated over long distances through the air. U. tritici did not occur in the Americas, Australia, or South Africa before European settlers introduced it when they brought wheat seed with them. In North America, LS was present on wheat at least as early as 1832 (Hendry and Hansen 1934). Resistant cultivars impede, but do not prevent, dissemination. When breeding resistant cultivars, it is essential to test with races that occur in the area of adaptation of the cultivar, and to have resistance available to races with wider virulence from other parts of the world.

LS is never devastating, but causes low to moderate annual losses. It is more common in regions with a cool, moist climate during flowering of the host. Yet, even in dry warm climates, economic losses occur. Since percentage infection equals loss in yield, and since most of the monetary return from any one field goes into cost of production, even 1-2% infection can reduce profit to the farmer by 5-20%.

Hosts

Wheat species are the principal hosts of U. tritici which has been found on all Triticum spp. except T. timopheevi. LS occurs on Aegilops spp. and is likely to have parasitized (Aegilops before cultivated wheat evolved. Some races that are specialized on bread or durum wheats are pathogenic on some Aegilops spp., while most races on Aegilops spp. are not pathogenic on Triticum spp. (Nielsen 1985).

The LS fungus is pathogenic on rye (Secale cereale L.) and was at one time economically significant on this crop (Humphrey and Tapke 1925). Races that specialize on either bread or durum wheats can attack rye, but the level of infection is low, and in rye resistance is more frequent than in wheat. Cultivars of triticale (X Triticosecale) can be susceptible to any race that attacks the parental wheat or rye (Nielsen 1973).

In nature, U. tritici is rare on wild grasses other than Aegilops spp. There are two reports of natural occurrence on Agropyron spp. in North America, and one report each on Elymus and Taeniatherum spp. in Morocco (Nielsen 1978). U. tritici is also pathogenic on Haynaldia, Hordeum, and Secale spp. Within many of the wild species, there are both susceptible and resistant strains; specialization by the fungus is thus not restricted to cultivated wheat. Likewise, secondary symptoms, such as the incompatibility reaction of seedlings and shorter plants, are found within all host species.
Most wild hosts have no role in the epidemiology of wheat LS. The possible exceptions are races found on *Aegilops* spp., but only eight such races have been tested for virulence/avirulence on accessions of bread and durum wheat. Seven races were avirulent and one was virulent on certain bread and durum wheats (Nielsen 1985). The virulent race originated from *T. tauschii* (*Ae. squarrosa*) from an area of Iran where little wheat is grown. This supports the view of a phylogenetic relationship among races from *T. tauschii* and *T. aestivum* (Krivchenko 1984). Races on *T. tauschii* may harbor genes for virulence not yet found in races on *T. aestivum*. Likewise, races found on wild diploid and tetraploid relatives of *T. turgidum* may carry genes for virulence on durum wheat.

Pathogen

Taxonomy

LS of wheat is caused by the heterobasidiomycetous fungus *Ustilago tritici* (Persoon) Rostrup. It is the only *Ustilago* sp. that occurs on wheat. A trinomial system to designate strains that are specialized on certain host species is impractical because of the multitude of possible *formae speciales* and the overlapping pathogenicity of each strain on several host species or genera (Nielsen 1985).

Because *U. nuda*, the cause of LS of barley, and *U. tritici* have identical spores and a similar biology, the two diseases have been claimed to be caused by the same organism. This taxonomic treatment, based solely on spore morphology, is untenable because it ignores the following important differences (Kellerman and Swingle 1889, Kim et al. 1984, Kanehira and Shinohara 1986, Vánky 1994):

- The morphology of the promycelium and of the monokaryotic and dikaryotic hyphae after germination is different in the two fungi.
- In *U. nuda*, all monokaryotic haploid isolates of the *MAT-2* mating type are proline auxotrophs, and those of the *MAT-1* mating type are temperature-sensitive; no such properties are found in the isolates of *U. tritici*.
- The sori of *U. nuda* are initially covered by a thin membrane when the infected spike emerges, whereas those of *U. triticâre* naked (Figure 4.2).
- There are pronounced differences in polypeptides and isozymes between the two species, suggesting genetic differences.
- Only selected races of the two organisms can be hybridized, but the offspring are not viable (J. Nielsen, unpubl.).

These differences justify *U. nuda* and *U. triticâs* valid, though related species. *U. nudamay* have evolved from *U. tritici* (Nielsen 1987b).

Physiologic Specialization

The study of races of *U. tritici* began about 1930 (Tiemann 1925, Piekenbrock 1927, Grevel 1930). Principles evolved from these early studies that are valid today:

- Resistance to each race is monofactorial and the genes can be readily transferred or combined, enabling planned breeding for resistance.
- The virulence pattern of a race does not depend on its geographic origin, but is determined by the cultivar on which it occurred.
- Cultivars select the races that are virulent on them.
- The same race may occur in different geographic areas.

Origin of races. Many races, T1 for example, occur in more than one country (Table 4.1). That some races seem to be restricted to one country is in all likelihood more apparent than real. Analysis of more collections on the standard set of differentials may show that the distribution of most races is not restricted because *U. tritici* disseminated in seed by man. Further, new races of *U. tritici* appear to arise infrequently, spread slowly, and are found nearly exclusively on cultivated wheat.

A new race may arise by recombination of pre-existing virulence genes or by mutations at loci responsible for virulence. It is possible for new races to arise by recombination but this possibility is now greatly reduced because of widespread use of the same cultivars and of pedigreed seed. Further, LS is a monocyclic disease that has only a limited number of infection sites in any one field. Therefore, the role of new races has been greatly overstated. In fact, all past so-called “breakdowns” of resistance of wheat to LS can be

![Figure 4.2. Loose smut sporulating on spikes of bread wheat. Normal spike at left.](image-url)
explained by existing races that escaped detection by race surveys that are necessarily restricted in geographic coverage and in the number of collections examined. Such so-called “new” races can become prominent after being exposed to hosts that select for them.

Differential cultivars. Races of the LS fungus are determined by inoculating a series of differential cultivars, and noting the incidence of sporulation in the next generation. This method is time-consuming and labor-intensive because of the biology of the pathogen. Methods that require less time are desired, as are single-gene differentials.

Several sets of differential cultivars have been used in different countries (Tiemann 1925, Piekenbrock 1927, Grevel 1930, Oort 1947, Bever 1953), based on reactions of local cultivars to local collections of the pathogen. These sets precluded any comparison with races detected elsewhere. This was partially alleviated when sets of differentials used in one country were also used in other countries, often after supplementing them with local cultivars. The set most widely used, and most modified, is that of Oort (1947). The original set of 10 cultivars or a supplemented version was employed in Great Britain (Batts 1955a), South Africa (Gorter 1964a), India (Rewal and Jhooty 1986a), and Canada (Cherewick 1953).

The present set of spring wheat differentials (Nielsen 1987a, Nielsen and Dyck 1988) contains 19 cultivars or lines (Table 4.2), of which only five were originally proposed by Oort (1947). The numbering of the differentials (TD = *U. tritici*Differential) is arbitrary; TD-1 to 11 were designated by Cherewick (1953), and TD-12 to 19 by J. Nielsen. Each of these differentials identifies either different combinations of known genes or a previously undetected gene for virulence. TD-13 is the first known universal susceptible for all races of LS from *Triticum* spp., but it is resistant to races collected on *Aegilops* spp. (Nielsen 1985).

A new race is recognized if teliospores from a single spike of a field collection give a pattern of virulence that differs from any known race in at least three consecutive tests on the differentials, or if

Table 4.1. Occurrence of races of *U. tritici* worldwide (analyses of J. Nielsen to 1989 and P. Thomas to 1994).

<table>
<thead>
<tr>
<th>Race designation</th>
<th>First identified in collection from</th>
<th>Later identified in collection from</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Canada</td>
<td>Afghanistan, Yugoslavia, Algeria, Kenya, Iran, Iraq, Ethiopia, Tunisia, Turkey, Poland, Germany, Australia, USSR, India, USA, Denmark, China, Pakistan, Nepal, Egypt, Mexico</td>
</tr>
<tr>
<td>T2</td>
<td>Canada</td>
<td>Sweden, Germany, Tunisia, Kenya, Denmark, South Africa, Brazil, Great Britain, China, USA, Turkey</td>
</tr>
<tr>
<td>T3</td>
<td>Canada</td>
<td>USSR, USA, Italy</td>
</tr>
<tr>
<td>T4</td>
<td>Canada</td>
<td>Algeria, USA, Italy, Mexico</td>
</tr>
<tr>
<td>T5</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>Sweden</td>
<td>Ireland, USSR</td>
</tr>
<tr>
<td>T7</td>
<td>Denmark</td>
<td>Canada, New Zealand, Australia</td>
</tr>
<tr>
<td>T8</td>
<td>Germany</td>
<td>Brazil, Poland, Australia, USSR, USA</td>
</tr>
<tr>
<td>T9</td>
<td>Czechoslovakia</td>
<td>Canada</td>
</tr>
<tr>
<td>T10</td>
<td>Canada</td>
<td>India, USA</td>
</tr>
<tr>
<td>T11</td>
<td>India</td>
<td>Ethiopia, Pakistan, Iran, Poland, Turkey, Canada, USA, Iraq, Nepal</td>
</tr>
<tr>
<td>T12</td>
<td>Argentina</td>
<td>Canada, USA, Uruguay</td>
</tr>
<tr>
<td>T13</td>
<td>USSR</td>
<td></td>
</tr>
<tr>
<td>T14</td>
<td>Tunisia</td>
<td>Canada</td>
</tr>
<tr>
<td>T15</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>T16</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>T17</td>
<td>Canada</td>
<td>Poland, China, Egypt</td>
</tr>
<tr>
<td>T18</td>
<td>Canada</td>
<td>USSR, Turkey, USA, Uruguay</td>
</tr>
<tr>
<td>T19</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>T21</td>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>T22</td>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>T23</td>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>T24</td>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>T25</td>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>T26</td>
<td>Turkey</td>
<td>Canada, USA</td>
</tr>
<tr>
<td>T27</td>
<td>Turkey</td>
<td>Poland</td>
</tr>
<tr>
<td>T28</td>
<td>USSR</td>
<td>Australia, China, Uruguay</td>
</tr>
<tr>
<td>T29</td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>T30</td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>T31</td>
<td>Poland</td>
<td>Italy</td>
</tr>
<tr>
<td>T32</td>
<td>Canada</td>
<td>Italy</td>
</tr>
<tr>
<td>T33</td>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>T34</td>
<td>USSR</td>
<td>China, Egypt*</td>
</tr>
<tr>
<td>T35</td>
<td>USSR</td>
<td></td>
</tr>
<tr>
<td>T36</td>
<td>USSR</td>
<td></td>
</tr>
<tr>
<td>T37</td>
<td>China</td>
<td>Turkey, Canada</td>
</tr>
<tr>
<td>T38</td>
<td>Israel</td>
<td>Egypt, Italy</td>
</tr>
<tr>
<td>T39</td>
<td>USA</td>
<td>Canada</td>
</tr>
<tr>
<td>T40</td>
<td>Reaction could not be confirmed</td>
<td>Deleted from collection</td>
</tr>
</tbody>
</table>

* Race T34 detected in Egypt by Dr. Abu El-Naga, Sakha.

Table 4.2. Lines or cultivars of spring wheat to differentiate races of *U. tritici.*

<table>
<thead>
<tr>
<th>Differential designation</th>
<th>Cultivar, line or pedigree</th>
<th>CI or PI **</th>
<th>CN **</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD-1</td>
<td>Mindum</td>
<td>CI 7795</td>
<td></td>
</tr>
<tr>
<td>TD-2</td>
<td>Renfrew</td>
<td>6194 1796</td>
<td></td>
</tr>
<tr>
<td>TD-3</td>
<td>Florence/Aurore</td>
<td>150111 1797</td>
<td></td>
</tr>
<tr>
<td>TD-4</td>
<td>Kota</td>
<td>5878 1798</td>
<td></td>
</tr>
<tr>
<td>TD-5A</td>
<td>Little Club/Reward</td>
<td>69282 18129</td>
<td></td>
</tr>
<tr>
<td>TD-6</td>
<td>PI 69282</td>
<td>69282</td>
<td></td>
</tr>
<tr>
<td>TD-7</td>
<td>Reward</td>
<td>8182 1801</td>
<td></td>
</tr>
<tr>
<td>TD-8A</td>
<td>Carma/Reward</td>
<td>18130</td>
<td></td>
</tr>
<tr>
<td>TD-9</td>
<td>Kearney</td>
<td>6585 1803</td>
<td></td>
</tr>
<tr>
<td>TD-10</td>
<td>Red Bobs</td>
<td>6255 1804</td>
<td></td>
</tr>
<tr>
<td>TD-11</td>
<td>Pentad</td>
<td>3322 1811</td>
<td></td>
</tr>
<tr>
<td>TD-12A</td>
<td>Thatcher/Regent/Reward</td>
<td>18131</td>
<td></td>
</tr>
<tr>
<td>TD-13</td>
<td>PI 298554/Cf 7795</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD-14</td>
<td>Sonop</td>
<td>227060 1814</td>
<td></td>
</tr>
<tr>
<td>TD-15</td>
<td>H44/Marquis</td>
<td>11782 1815</td>
<td></td>
</tr>
<tr>
<td>TD-16</td>
<td>Marronio 588</td>
<td>1816</td>
<td></td>
</tr>
<tr>
<td>TD-17</td>
<td>Marquillo/Waratah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD-18</td>
<td>Manitou/2/Giza 144</td>
<td>1818</td>
<td></td>
</tr>
<tr>
<td>TD-19</td>
<td>Wakooma</td>
<td>1819</td>
<td></td>
</tr>
</tbody>
</table>

* CI = Cereal investigation number; PI = USDA plant introduction number.
** CN = Agriculture Canada number.
it is virulent on a line or cultivar that has been resistant to all known races (Nielsen 1983). The reactions of the differentials to 40 races that have been identified in collections from around the world are listed in Table 4.3. The countries from which each race was first and subsequently identified are given in Table 4.1 (Nielsen 1987a, Nielsen and Tikhomirov 1993).

Inheritance of virulence. There have been limited genetic studies since the development of techniques to isolate and culture monokaryotic haplonts (see page 46 in the “Techniques for Study” section; Nielsen 1972). To date, five genes for virulence have been identified (Nielsen 1977, 1982, unpubl.). Each is recessive, independently inherited, and not linked to the mating type locus. The five virulence genes and the cultivars they attack are shown below:

<table>
<thead>
<tr>
<th>Virulence gene</th>
<th>Imparts virulence on cultivar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utv1</td>
<td>Renfrew, Florence/Aurore, Red Bobs</td>
</tr>
<tr>
<td>Utv2</td>
<td>Kota, Little Club</td>
</tr>
<tr>
<td>Utv3</td>
<td>Carma</td>
</tr>
<tr>
<td>Utv4</td>
<td>Thatcher/Regent</td>
</tr>
<tr>
<td>Utv5</td>
<td>Sonop</td>
</tr>
</tbody>
</table>

Teliospores do not exhibit dormancy. At spore germination, the single diploid nucleus of the spore divides meiotically, then mitotically, and a slender, slightly curved promycelium emerges on the lighter colored side of the spore. The promycelium consists of four cells, each with a single haploid nucleus. These cells may divide before producing a short hypha within 18 hours at 20°C, the optimum temperature for germination, in either light or darkness (Figure 4.3).

Ustilago tritici is heterothallic and bipolar. A haploid monokaryotic hypha, or a mycelium developed from it, can be either MAT-1 or MAT-2 mating type. This mating system is identical to that of Ustilago spp. parasitic on barley, oat, and several grasses; isolates of these several fungi are compatible with each other. Mating type is determined in a fusion test with two standards of known mating type, on a medium low in nutrients such as potato-dextrose agar at 1/10 normal

Table 4.3. Reaction of differentials to races of U. tritici

<table>
<thead>
<tr>
<th>Race (T-)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5A</th>
<th>6</th>
<th>7</th>
<th>8A</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>24*</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>25*</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>36*</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>40**</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The following pairs of previously reported (Nielsen 1987a) races were combined under one designation since they differ only by symptoms of incompatibility on one or more differentials: T2/T25, T8/T24, T27/T36.

** The virulence pattern previously reported (Nielsen 1987a) for race T40 could not be repeated in subsequent tests; it was deleted from the collections.
concentration. Hyphae of opposite compatible mating type readily fuse to form a haploid dikaryotic hypha, which is slightly thicker than a monokaryotic hypha. In axenic culture, a dikaryotic cell usually soon divides into one dikaryotic and two monokaryotic cells, each of the latter of opposite mating type. A germinated spore will thus be surrounded by a mixture of monokaryotic and dikaryotic hyphae, both slightly curved.

Infection and Disease Cycle

Infection
Infection by *U. tritici* occurs only on the ovary. Spores enter the floret, germinate, and form dikaryotic hyphae that infect the ovary, usually at the brush end (Batts 1955b, Shinohara 1976). The process requires 5 to 7 days. Once in the testa, the hyphae grow intracellularly; but in the integument and nucellus, the fungus grows intercellularly, mainly on the dorsal side of the developing caryopsis. The mycelium enters the upper and side parts of the scutellum 10 to 15 days after penetration and grows through the hypocotyl into the plumular bud, or growing point, of the embryo (Figure 4.4). Thus, about 3 weeks are required for the fungus to reach the growing point, where it will lie dormant in the mature seed. Infected seeds do not differ outwardly from healthy seed.

When an infected seed germinates, the mycelium in the growing point is revitalized and carried in the crown node as the subcrown internode elongates. The fungus permeates crown tissues and enters the initials of the inflorescence. As the developing spike is carried upward by elongation of the internodes, the mycelium is also carried upward and proliferates in the developing spike (Batts and Jeater 1958a).

The dikaryotic nuclei fuse to form a diploid nucleus as the teliospores mature. At emergence of the spike, the teliospores are readily carried by the wind to nearby florets, where they germinate and cause infection, closing the life cycle of the fungus (Figure 1.8).

Symptoms
Masses of dark olivaceous brown spores are seen when the spike emerges from the boot with nearly all tissue of the spikelets affected (Figure 4.2). Only the rachis is intact, but it may be slightly shorter than the rachis of a healthy tiller. The dark spore mass can be seen through the wall of the boot several days before heading. Rain or heavy dew can cause the spores to cake into a black, hardened mass as does a severe drought in the late stages of spore formation. Hyperparasites, usually *Fusarium* spp., may cover and permeate the sori with whitish to pinkish mycelium. Yellow streaks appear on the flag leaf of certain genotypes (Figure 4.5). Narrow linear sori form only rarely on the flag leaf (Figure 4.6), the leaf sheath, or the peduncle (Klushnikova 1928, Batts and Jeater 1958a) under conditions such as those in the greenhouse. The mycelium of the LS fungus can be found in each node, but not the internodes, and is scattered in leaves of adult plants.

The physiological response of a susceptible host to infection includes increases in respiration; in catalase, peroxidase, and polyphenoloxidase
activity; and in glucose and saccharose content (Stanescu 1961). The fungus produces trehalose, mannitol, and erythritol in liquid culture and in the host, but these compounds do not appear to be translocated. A reciprocal flow of carbohydrates between host and fungus is suggested (Gaunt and Manners 1971b, 1973).

In plants with sporulation, the number and dry weight of roots are reduced along with number, height, and dry weight of tillers. After heading, plants with sporulation stop growing. The lower internodes are usually longer and the upper ones shorter than in healthy plants, but the peduncle of the spike with sporulation is much shorter. The leaf-sheaths of some infected cultivars are grayish-purple; the leaves, particularly the flag leaf, are reduced in size, often yellowed and senesce early (Tingey and Tolman 1934, Mather and Hansing 1960, Gaunt and Manners 1971a, Gothwal 1972b). Under some environmental conditions, sporulation may be confined to the lower part of the spike.

Certain cultivars respond to infection by some races with hypersensitive (Oort 1944) or incompatible (Mantle 1961c) reactions. In this type of reaction, some seedlings die before emergence; others emerge but are stunted and have leaves that are brittle, often distorted, dark green, and with necrotic tips; such seedlings succumb easily to root rot and seedling blights. If a secondary tiller is produced, it usually appears to be normal and will bear a healthy spike. This tiller develops from the coleoptile bud, which has escaped invasion by the mycelium (Mantle 1961c). These symptoms are obvious in the greenhouse (Figure 4.7), but less so in the field, where most infected seedlings die before emergence. This resistance reaction will not be seen in commercial fields because no spores of the causative race are produced.

Association with Other Diseases

If a spike is partially infected, the upper florets can be infected by ergot (*Claviceps purpurea*), head blight (*Fusarium* spp.), Karnal bunt (*Tilletia indica*) or other floral infecting organisms. LS and common bunt (caused by *T. tritici* and *T. laevis*) may sporulate on the same spike, with sori of LS on the lower part of the spike clearly demarked from those of bunt in the upper florets. If seed that is infected with LS is inoculated with spores of common bunt, the interaction between the two organisms depends on the race of the pathogen and host cultivar. There can be complete compatibility, with both fungi on the same spike as just described, or infection by bunt is suppressed (Hanna 1938, Mantle 1962). Both flag smut (*Urocystis agropyri*) and LS have been observed on the same plant or culm (Aujla and Sharma 1977).

Influence of Environment

The environment influences development of LS soon after infection while the pathogen spreads through the embryo and also during growth of the infected plant in the next generation.

Because several days are required to penetrate the ovary wall, the first few days after inoculation are critical. The optimum for teliospore germination and further growth is 95% relative humidity and 20-25°C (Danko and Michalikova 1969). Excessive heat or dry air will lower germination and germtube growth, delay penetration of the ovary, and preclude the fungus from reaching the growing point. The environment can also cause florets to stay open for a shorter time, which will reduce spore entry. Less LS has been noted on cultivars in warm and dry climates than in cooler and more humid ones (Tapke 1931, Atkins et al. 1963). It is likely that rapid dehydration of the embryo may inhibit or prevent infection of the plumular bud.

Seedlings developing from infected kernels are often weak and succumb sooner to adverse environmental conditions such as low soil temperature, drought, compacted soil, deep seeding, and waterlogging. Vernalization under normal conditions does not influence the level of sporulation in the next generation (Mantle 1961b). However, infected seedlings are more susceptible to severe frost (Tapke 1929), an effect that could suppress the disease in winter wheat

Figure 4.7. The short plants show the typical hypersensitive or incompatible reaction exhibited by some race/cultivar combinations. The tall plants are infected by a race that does not cause the reaction.
in areas where winter temperatures are already close to the climatic limit of the crop. It is likely that seedlots containing LS-infected kernels, treated with a fungicide to protect against soilborne diseases, will have a higher incidence of infection by LS than untreated seedlots. Soil fertility does not affect infection. Furthermore, lighter kernels have a higher incidence of infection than larger, heavier kernels (Taylor 1927, Niemann 1955). The reason for a higher incidence of infection in the smaller seed class is because the florets of the uppermost spikelets, and the third or fourth florets of the other spikelets, tend to produce smaller kernels; these florets also tend to open wider for a longer time, allowing more spores to enter and infect the embryo.

Adverse environmental conditions for wheat could lower LS incidence in the field because fewer infected seedlings survive. Those that survive may grow to maturity, but environmental conditions in later stages of wheat development can also influence infection. In one study (Kavanagh 1961b), infected plants were raised at one of three continuous temperatures. At 19°C, spikes with normal symptoms were produced; at 24°C, both normal spikes and spikes with sori only on glumes or in ovaries developed; at 29°C, there were no spores and the spikes were very slender. A week of continuous 29°C between internode elongation and boot stage almost completely inhibited spore formation. Cultivars differed in their response to the temperatures used (Kavanagh 1961b). It is conceivable that shorter or interrupted exposure to high temperature at certain growth stages may prevent or reduce sporulation in some plants.

In another study (Dean 1969), sporulation was maximum at continuous 23°C, less at continuous 20°C, and even less at 15°C. Seedlings kept at 6°C for 2 months and then at 15°C developed into plants that had only one third the level of infection observed at 23°C. Differences in response to temperature were observed between different race/cultivar combinations. Low temperature may reduce the growth rate of the fungus in the later stages of host development when growth rate of the spike increases. These experiments partly explain why late seeding of winter wheat and early seeding of spring wheat may reduce LS incidence (Freeman and Johnson 1909, Niemann 1925).

Control Strategies

Physiologic Resistance

Resistance may be recognized by the absence of sporulation due to the following according to Batts and Jeater (1958a,b), Mantle (1961a,d), and Gaskin and Schafer (1962):

A) There are only a few penetrations of the ovary wall and little or no mycelium in the pericarp.

B) The mycelium is widely established in the pericarp, but there are few or no hyphae in the scutellum.

C) Hyphae permeate the scutellum, may be found in the hypocotyl, but are absent in the growing point.

D) When mycelium is found in scutellum, hypocotyl, and growing point, it indicates one of three interactions:
 I. a compatible host/pathogen interaction that results in sporulation;
 II. an incompatible reaction as described earlier under “Symptoms” on page 36 (if a tiller is produced, it bears healthy spike), or
 III. the crown node is infected, but the fungus rarely reaches the initials of the inflorescence and there is no sporulation.

Each of these interactions is specific for each race/cultivar combination and is determined by genotypes of both host and pathogen. Intermediate reactions are frequent and are affected by environmental conditions. The physiological principles that determine these interactions are unknown.

The resistance of a cultivar—if it is based on interactions A, B, or C in which the fungus does not reach the growing point—can be accurately assessed by the embryo or crown node tests. These tests, however, cannot distinguish between susceptibility based on interaction D-I and resistance based on interactions D-II or D-III. With these three interactions, there is mycelium in the embryo and crown node, making it necessary to plant inoculated seeds to determine whether or not there is sporulation on the adult plant (Gaskin and Schafer 1962, do Valle Ribeiro 1963a, Gorter 1964b).

Breeding for physiological resistance. Large differences in susceptibility are governed by the interaction between the genotypes of host and pathogen, and are thus specific for each cultivar/race combination. There is a correlation between the incidence of plants with sporulation in a cultivar and the proportion of tillers with sporulation on a single plant (Oort 1947, Batts and Jeater 1958a). Therefore, in moderately resistant cultivars, there is an additional factor that reduces spore production in the field, and with it, the chance and level of re-infection of the next generation.

Detection of sources of resistance. Resistance to LS has been demonstrated many times and remains the most economical and environmentally sound way to control the disease (Coons and Spragg 1918, Nielsen 1983). Unfortunately, most resistance has been detected with undefined field collections, which may have been extremely narrow in virulence, perhaps not even reflecting the virulence actually present in an area.

 Breeders and pathologists must be aware of the races as they occur worldwide, but in particular the races of neighboring countries and countries with which cereals are traded. When searching for enduring resistance to LS, it is imperative that the lines or cultivars be tested with as wide a
spectrum as possible. An entry that passes such a screening has a good chance of being resistant to most races of the pathogen. Races with wider virulence should not be introduced for the sole purpose of testing in the field. Rather, their accidental introduction should be prevented by mandatory fungicidal treatment of all seed imports. If it is deemed necessary to use foreign races with wider virulence in evaluating resistance to LS, the tests should be made in controlled environments during seasons when wheat is not grown. When tests are completed, the test area should be sanitized, infected hosts should be autoclaved, and the pathogen should be destroyed or placed in safe storage.

The search for sources of resistance and their utilization in breeding programs is facilitated by use of high pressure spray or partial vacuum inoculation methods. The high pressure spray method (Moore and Munnecke 1954) is fast but uses large quantities of inoculum and may be less reliable than the partial vacuum method (Cherewick and Cunningham 1956, Nielsen 1983). However, the high pressure spray method enables one person to efficiently inoculate large numbers of entries.

For field tests, 10 to 12 seeds of each entry are sown in one hill. Ten hills are arranged 30 cm apart in a row. The spacing between rows ranges up to 90 cm to allow movement between two rows of hills. Blocks of several hundred hills are surrounded by a border of a resistant cultivar sown 30 cm away from the hills. Several highly susceptible checks should be included in each test to ascertain success of inoculation.

Since a single race rarely carries all genes for virulence that are needed to test for resistance, inoculum usually consists of a mixture of defined races. Each component of a mixture of up to three races should be present at a concentration of approximately 500 mg/L of water, an amount that represents the spores from one-half to all of a spike with sporulation. Since even a dilute inoculum will result in a high level of infection, there is no need to fine-adjust the concentration. An inoculum prepared in the afternoon and not used can be stored at 3-5°C until the next morning.

A diverse collection of resistance sources of bread and durum wheats of spring habit (Nielsen 1983) were identified using most of the 40 races listed in Table 4.3 and the vacuum inoculation procedure. Since these races were collected from many countries, these resistance sources will likely be resistant in many countries. They are available on request from the Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, or from Plant Gene Resources of Canada, Agriculture and Agri-Food Canada, Ottawa, Ontario. In addition, many sources of resistance may be identified in winter wheats and in collections of diploid and tetraploid *Triticum* spp. and *Aegilops* spp. (Nielsen 1985).

Inheritance of resistance. Krivchenko (1984) listed 52 genes for resistance to LS in 34 bread wheat cultivars or lines; some carried up to three genes. Most genes were dominant, 11 were recessive. Unfortunately, summation of resistance genes reported by different workers is likely to overestimate the number of genes. Future studies of the inheritance of resistance should be made with defined races and should include some hosts with known genotype.

Studies on inheritance of resistance are relatively easy if they involve a highly susceptible parent, a resistant parent that carries one or a few genes for resistance, and races with narrow virulence. When more than two genes are involved in the host/pathogen interaction, it is difficult to interpret results. The greatest difficulty lies in classifying the segregating progenies into homozygous resistant-homozygous-homozygous susceptible classes to establish ratios for interpretation of the genetics. The susceptible parent should be used as a check at each step of the study to establish a base for the incidence of infection to be expected in the homozygous susceptible class. Without the susceptible check as a benchmark it is difficult to delimit this class. Some misclassification is unavoidable due to variability among tests.

New techniques are evolving. Resistance to race T19 was located on the short arm of chromosome 6A, using a monoclonal antibody in conjunction with an alien substitution line (Knox and Howes 1994). Work involving various DNA mapping techniques is in progress.

- Resistance can be dominant or recessive.
- A gene can impart complete resistance (immunity) or partial resistance.
- Effects may be additive.
- Different genes may condition resistance to a single race.
- Resistance to one race can be conditioned by different, single genes.
- Genes may stop pathogen development at one or several specific sites in the ovary, embryo, or seedling.
- The genes of the embryo usually determine whether the fungus is arrested in the ovary or embryo or later, resulting in resistance.
- The maternal tissue of the ovary blocks, in some cases, further penetration by the fungus, even though the embryo is genetically susceptible.
- Genes can by located with monosomic and disomic chromosome substitution lines.

- Cytoplasmic host genes can affect expression of nuclear genes.
- Gene symbols have been proposed.
- There is no known linkage between a gene for resistance to LS and genes that condition reaction to leaf rust and mildew, awns, color of glume, lemma or other morphological traits.

It is now clear that the gene-for-gene relationship postulated by Flor (1947) exists in the *Ustilago tritici* / *Triticum* pathogen/host system (Oort 1963). It has been proposed, on the basis of the gene-for-gene model, that 11 genes for virulence correspond to 11 dominant genes for resistance (Tikhomirov 1983).

Breeding methods. Breeding for resistance should emphasize genes for virulence rather than races. Since many cultivars already carry one or more genes for resistance, it is not an overwhelming task to incorporate additional gene(s) because there is no shortage of resistance sources.

Several approaches can be followed when breeding for resistance, depending on priorities and local conditions. If both parents are agronomically acceptable, screening for resistance to LS can start as late as F5 to F7, after other traits have been selected. Backcrosses are employed if resistance is to be transferred from an agronomically inferior source into an already established line or cultivar. With both the pedigree and backcross approaches, the two parents may differ in more than one gene for resistance. Inoculum should be a mixture of races that carries all genes for virulence against which resistance is desired.

Inoculation of small numbers of lines in early generations can be handled by syringe, but for later generations the partial vacuum method is the preferred method of inoculation. The reaction of entries is rated by the incidence of infection based on infection of two highly susceptible checks that are planted for about every 300 entries. If these checks have at least 80-90% infected spikes (as they should), the reaction classes are usually as follows:

<table>
<thead>
<tr>
<th>Infection incidence</th>
<th>Reaction class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10%</td>
<td>R resistant</td>
</tr>
<tr>
<td>11-30%</td>
<td>MR moderately resistant</td>
</tr>
<tr>
<td>31-50%</td>
<td>MS moderately susceptible</td>
</tr>
<tr>
<td>51-70%</td>
<td>S susceptible</td>
</tr>
<tr>
<td>over 70%</td>
<td>HS highly susceptible</td>
</tr>
</tbody>
</table>

When selecting lines, it should be remembered that infection resulted from an amount of inoculum greater than encountered under natural conditions. Therefore, about 30% infection in repeated tests is probably adequate to indicate sufficient resistance under field conditions to prevent economic losses. Although immunity or high levels of resistance may be ideal for a cultivar, it is difficult to achieve, especially at the outset of a breeding program. Initially, whatever level of resistance is achievable should be used, thus preventing release of susceptible cultivars.

Morphological Resistance

Cultivars may be susceptible to LS when inoculated, but resistant, or nearly resistant, under field conditions (Tyler 1965; Nielsen, unpubl.). Freeman and Johnson (1909) expected that the number of spores entering florets would vary among cultivars because of differing floral opening habits. Tavcar (1934) reported that, in field-resistant cultivars, there are smaller lodicles and a smaller angle of opening for the palea and lemma during flowering than in susceptible cultivars. Cultivars also differ in the length of time florets stay open, in the proportion of florets that do not open at all, and in the extrusion of anthers (Ryzhei 1960, Parii 1973, Loria et al. 1982, Pandey and Gautham 1988). Breeding programs that screen wheat cultivars for resistance to LS by placing spores directly into florets may overlook morphological resistance conferred by factors like limited floret opening. At present, however, morphological resistance cannot be easily used in the improvement of cultivars because of the difficulties associated with selection. Currently, there is no method to quickly test large numbers of entries for both physiological and morphological resistance, which together determine the field reaction of a cultivar.

Morphological resistance, based on exclusion of spores from the site of infection, is effective against all races, and cannot be endangered by new virulence. Furthermore, most cultivars have varying, though low levels of physiological resistance, which in combination with morphological resistance will depress infection to an acceptable level. Therefore, one of the most urgent areas of study in relation to LS resistance is the search for an easily recognizable trait that conditions morphological resistance, or that is correlated with it.

Seed Treatment

Hot water, anaerobic, and similar treatments. One hundred years ago, LS of wheat could not be controlled except by the use of new seed. When hot water treatment (Jensen 1888) proved effective in controlling LS of oat and barley, it was applied to LS of wheat (Swingle 1892, Freeman and Johnson 1909). Numerous subsequent contributions detailed the conditions, particularly the time and temperature required, and all agreed that temperature had to be exactly controlled (Larose et al. 1946, Tapke 1926). Although large-scale seed treatment is possible, the hot water method is laborious and demands expertise.

Other attempts to control wheat LS involved the use of warm water, alone or in combination (Tyner 1953, Weibel 1958) with ethanol (Gassner and Kirchhoff 1938), or mercurial seed treatment fungicides (Rodenhiser and Stakman 1925, Bever 1961). In time, anaerobic
treatments evolved (Zalesskij 1935, Zemanek and Bartos 1964) in which wet seed was deprived of air for up to a week. Phytotoxicity, although lower than with the hot water method, was common with all of these treatments. The treatment advocated by Luthra (1953) used the sun as the source of heat: seed was soaked in water at ambient temperature for 4 hours, then spread in the sun for 4 hours. However, the usefulness of the method was limited. Microwave heating of seed (Szepessy 1969) to control the fungus has never been put to practical use. Today, all these procedures are mostly of historical interest (Niemann 1962).

Fungicidal seed treatment. Any efficacious fungicide must reach the mycelium inside the embryo or young seedling without harming the host. Early attempts at chemotherapy, including some work with antibiotics (Paulus and Starr 1951), were not successful. However, in 1966, the 1,4-oxathiin derivatives were reported to be active against *U. nuda* in barley (von Schmeling and Kulka 1966), and later proved to be effective against *U. tritici* wheat (Hansing 1967). These compounds heralded a revolution in the control of LSs of wheat and barley. They are systemic, absorbed by plant tissue, and translocated to the site of action on the mycelium of the pathogen. Applied as wet or dry formulations, even distribution throughout the seed sample is important. The compounds, which dissolve in soil moisture and penetrate and spread throughout the hydrated embryo and the very young seedling, interfere with essential metabolic processes in the mycelium. Fungicides efficacious against LS include carbathiin, carboxin, benomyl, difenoconazole, etaconazole, ethyltrianol, flutriafol, furmecyclox, myclobutanil, nuarimol, and triadimenol.

Although a seedling test has been proposed (Verma et al. 1984) to evaluate the efficacy of fungicides, testing is usually done in the field at several locations with different climatic and soil conditions. Possible phytotoxicity can then be assessed. There have been no reports of *U. tritici* developing resistance to any fungicide.

Other Methods

Cleaning seed. The smaller kernels in a seedlot have a higher incidence of infection (Taylor 1927, Niemann 1955). Proper and rigorous cleaning will remove many of the small kernels and the crop will have less infection.

Roguing. Roguing infected plants as early as possible has been recommended, particularly in small isolated seed increase plots (Maddox 1896, Freeman and Johnson 1909). This approach may be practical only where small areas of wheat are grown.

Certification of seed. Seed certification schemes specify the incidence of LS infected plants at inspection of a field producing pedigreed seed. The tolerance level varies between 0.01% and 0.05% infection, with different levels for different classes of seed.

Test were developed to gauge the percentage of infected seeds in a seed lot. One early test was based on the difference in specific gravity of healthy vs infected kernels. When the kernels were placed in a chloroform/ethanol mixture, the infected kernels floated in the upper layer. Other tests have involved the fluorescence of whole or dissected kernels (Yablokova 1939, Woestmann 1942). Khanzada et al. (1980) detail a procedure for staining whole embryos.

The embryo and crown node tests are reliable if properly done, but they are time-and labor-intensive and costly. Also, working with NaOH and phenol is neither pleasant nor completely safe. For these reasons, the tests are unlikely to become a standard method for all classes of pedigreed seed. A simpler technique is needed to identify seedlots that are likely to produce crops with reduced yield.

Techniques for Study

Evaluation of Fungicide Efficacy

A minimum of 95% control of smut is needed to avoid the necessity of treating seed every year. Do not inoculate the seeds for fungicide tests; they should carry natural infection that is about the maximum that occurs in commercial fields in the area; 10% is an appropriate level. For efficacy tests, plots with single rows 4-5 m long and replicated four times are sufficient. Evaluate the tests by calculating the percentage of infected tillers after counting infected and healthy tillers. Ignore the slight variability due to cultivar interactions.

Determination of Incidence in the Field

In fields where infection appears to be less than 1%, make a 100-m loop through the field counting the smutted plants in a 1-m wide swath. Determine stand density and calculate percentage incidence. In fields with 1%, or greater, count smutted plants among 200 plants and calculate the percentage incidence.
Inoculum Preparation
For race determinations, inoculum is often prepared from bulked collections of spikes with sporulation from susceptible cultivars in commercial fields and could therefore be a mixture of races of the pathogen. If used for repeated testing of differentials, or if passed repeatedly through one cultivar (Roemer and Kamlah 1932), such inoculum could give the impression that virulence of the original “race” is not stable. This is likely the reason for earlier claims of instability of races (Cherewick 1958). To greatly reduce the possibility of working with mixtures of races, only teliospores from one spike should be used for race identification.

A suspension of teliospores in tap water has, over the years, proven to be the most reliable and practical inoculum. Addition of nutrients is unnecessary. The suspension is prepared by rubbing spores from an infected spike under water and straining the suspension through folded nylon screen (mesh size 250 μm) into a beaker. Spores suspended in water will stay viable for up to 5 days at 2 to 4°C, even if the temperature of the inoculum rises to 20°C when inoculating once a day. For longer storage, a viable inoculum should be put in a small polyethylene bottle and frozen at -15 to -18°C (Nielsen 1987a).

The optimal concentration of spores is 1 g/L water (Oort 1939, Rod 1958), but it is not necessary to adjust each suspension to this optimum. Even at 1/10 of this concentration, the level of infection is not significantly reduced. The inoculum may be adjusted to optimal concentration by visually comparing its color to a “standard” suspension prepared beforehand. The standard may be preserved for years with addition of a few drops of isopropanol before it is stored.

Inoculation Procedures
For maximum infection, inoculate the host at early to mid-anthesis growth stage (Freeman and Johnson 1909, Piekenbrock 1927, Stringfield 1929, Tapke 1929, Oort 1939, Batts 1955a, Rod 1958, Gothwal 1972a). The long time required by the mycelium to reach the growing point in the maturing embryo, together with the thickened cuticle and epidermis, explains why inoculations later than the optimal time give progressively lower infection levels. Because it is impractical to inoculate only those florets on a spike that are at the optimal stage, usually all florets are inoculated at one time. The proper stage is readily recognized on most cultivars by extrusion of the first anthers until the extruded anthers of the florets in the middle of the spike start to turn white. This period is described by growth stages 60-65 (Zadoks et al. 1974). Despite all precautions, inoculation with the same race and the same host in separate tests or years often results in considerably different levels of infection. These differences (even in a homogeneous host) are attributed to environmental factors at the time of inoculation or when growing plants from inoculated plants. Moreover, inoculation procedures cannot be completely standardized.

Field. Most field inoculation methods have been developed to simulate natural conditions. Dry spores are introduced into the florets with a forceps or a small brush, with a puff of air over a tiny piece of paper or on a ball of cotton containing spores, or

![Figure 4.8. The most reliable and consistent method for inoculating wheat with U. tritici. The ideal stage for inoculation is from first extrusion of anthers until the anthers in the middle of the spike start to turn white (illustrated above). The inoculum is injected into the floret after the needle penetrates the palea.](image-url)
by dusting spores over entire spikes (Maddox 1896, Brefeld and Falck 1905, Freeman and Johnson 1909, Grevel 1930, Mishra and Jain 1968). To provide better access to the ovary, the tips of the florets are clipped. Partial vacuum or high pressure jet spray methods have been developed and are preferred for testing large numbers of entries in a breeding program where a single inoculum consists of a mixture of races (Moore and Munnecke 1954, Cherewick and Cunningham 1956, Nielsen 1983).

Go-go technique. This method, which has been commonly used at CIMMYT and other institutions, is an adaptation of the “go-go” pollination method. Remove the central floret of each spikelet and clip the glumes of the two remaining florets to expose the stigma and anthers. However, do not remove the anthers. Cover the spike with a paper bag, and, before anthesis is complete, use a smutted spike to “dust” teliospores onto the clipped spike. This technique requires a supply of smutted spikes and is unsuitable for inocula of more than one race. The simplest way to assure an adequate supply of inoculated cultivars at the same time as the lines to be tested are sown. Staggered sowings will usually provide a range of headings, which will provide fresh inoculum. Infected spikes can also be picked and stored for varying time periods. This technique can also be used in the greenhouse. Inoculum may be blown into the bag containing the spike to be inoculated, if desired.

Air blast. Although this procedure gives good results, you must give strict attention to the operation or you risk injuring the plants or improperly inoculating them. At about mid-anthesis, tag 10 spikes and blow the inoculum into the florets with a jet of air (Figure 4.9). Direct the inoculum-laden air along each side of the floret to complete inoculation. The air jet is produced by a pressure pump that operates at about 20 psi. After inoculation, mist-spray the plants for an hour or so to assure maximum infection (Moore and Munnecke 1954).

Vacuum. At mid-anthesis, put the inoculum in a 1-L glass jar, which is placed in a wire basket that is permanently fixed to the lower end of the inoculating stand. Close the jar with a screw cap into which a short copper pipe has been soldered. Rubber tubing on one end of the pipe leads to the bottom of the jar, and from the other end to a copper pipe in a split rubber stopper (Cherewick and Popp 1950), which is inserted into the bottom of an inoculation cylinder. The inoculation cylinder (5 x 25 cm) is made of plexiglas, with a rubber stopper and copper pipe at its top. Seal the top of the pipe that is in the split rubber stopper and drill two holes in the side of the pipe. The side holes and the top prevent inoculum from squirting to the top of the chamber during evacuation. Insert a plexiglass cylinder (3 x 8 cm) in the vacuum line about 10 cm above the inoculation cylinder to keep inoculum from reaching the valve.

Mount the vacuum pump on a small sled or cart, which can be moved between blocks of hills during inoculation (Figure 4.10a). Use a rubber vacuum tube to connect the pump with the valve on the inoculating stand to allow free movement of the stand between rows of hills. Two inoculating stands can be connected to one pump to accommodate two operators. A 1/2 to 4 hp (0.4-3 kW) gasoline engine drives a rotary vacuum pump (Eberbach air-cooled Rotary Air Blast and Suction Pump). The pump maintains a vacuum of about 125 torr in a reservoir of about 6 L. Mount a vacuum gauge on the reservoir.

Figure 4.9. Air blast method of inoculation of wheat plants with teliospores of *U. tritici*.

Figure 4.10a. Vacuum inoculation of wheat with teliospores of *U. tritici*: equipment including the pump mounted on a cart; inoculum container (near operator’s head); vacuum cylinder containing spikes (near his left hand), and catchment basin (near his right foot).
To prevent fine dirt from entering the pump (at shutdown), place a ceramic, automotive type filter over the exhaust. Allow droplets of inoculum to settle in a sturdy flask in line with the vacuum reservoir. In the line above the inoculating cylinder, fasten a three-way valve (push-button type, hydraulic, Maxam 703-131-810 A) to the inoculating stand. Select the spikes and insert them into the inoculation cylinder after clamping the split stopper over the stems (Figures 4.10b-c). The split stopper must make a good seal with the plexiglass cylinder. Press the valve to create an immediate and high vacuum in the cylinder—this draws inoculum into the cylinder; then pinch shut the flexible inlet hose and maintain the vacuum for 2-3 seconds (Figure 4.10d). To close the vacuum line and open the cylinder to the atmosphere, release the valve to the normal position. Repeat the evacuation and release, then unpinch the hose at the bottom of the cylinder, which allows the inoculum to drain back into the storage vessel.

With this procedure, two people can inoculate about 200 entries in a day. From each hill, one person selects two or three spikes that are at the appropriate stage and of about equal height and then loosely loops a short piece of brightly insulated copper wire just below the flag leaves to identify spikes to be inoculated and to hold them together. About 1 cm is clipped off the spike tips to mark the inoculated spikes (Figure 4.10e) for identification during harvest. The plants can also be marked with bright tags or bright plastic tape. The other person does the inoculating, marks the inoculated entries on a list and removes the wires.

Sow 30 to 40 seeds/entry from inoculated spikes in the greenhouse or sow all the seeds in the field. At heading, establish the percent of infected spikes by counting or estimating. Entries with over 30% infection are classed as susceptible and not tested again. Entries with less than 10% infection are classed as resistant. Since the environment at the time of inoculation and the process of inoculation cannot be standardized, entries identified as resistant in one test should be tested again. In the tests, susceptible cultivars should be inoculated to check the success of the procedure (Figures 4.11a-b).

The partial vacuum method should not be used in genetic experiments because there will be some transfer of pollen between lines or cultivars during inoculation that may result in some outcrossing. Depending on the reaction of the “donor” and the mode of inheritance of resistance, it may slightly raise or lower the incidence of infection. This effect can be ignored when the reaction of many diverse genotypes is assessed.

Inoculating differentials. Plant the differentials in hills with a spacing that allows easy access. In a greenhouse or growth cabinet, raise the plants in 15-cm pots with 10 to 12 plants/pot. Cut off all
secondary tillers near the soil level, beginning about 3 weeks after seeding. To have the plants in the greenhouse or growth cabinet at anthesis at about the same time, plant the differentials in a staggered manner.

In the field, sow inoculated seed in a 1.5- to 2-m row, and evaluate the LS reaction by counting healthy and infected spikes. In the greenhouse, plant 30-40 seeds of each race/differential combination and evaluate the reaction by counting healthy and infected plants. A differential with more than 10% sporulating plants is classed as susceptible; below 10% infection, it is classed as resistant. In practice, the reactions of most differentials either show a high incidence of infected plants, or none at all.

Collecting Field Isolates of Smut

Collect isolates from different cultivars and widely separated parts of a region. Collect single spikes soon after heading, before spores have been exposed to rain. Keep each spike in a paper envelope (not plastic!), and dry them by spreading the envelopes on a table at room temperature for about 14 days. Storing the spores in a desiccator at about 4°C will keep them viable for at least 5 years. If the spores from a single spike are not sufficient to inoculate all differentials, the spores can be increased on susceptible varieties.

Working with Races

Purification. Two compatible monokaryotic haploid lines can be isolated (Nielsen 1972) from one spore of each race, increased separately in liquid shake culture, mixed, and at anthesis injected into florets of a susceptible differential. The methods and media used are described later. Alternatively, spores can be germinated on a dilution-plate, and after 1 week the mycelial colony surrounding a single spore is transferred to an agar medium in a test tube. This mycelium, which is a mixture of mono- and dikaryotic hyphae, is then increased and injected as just described. Use the spores formed in the next generation to inoculate a susceptible differential to increase the race, and to inoculate the set of differentials to confirm the pattern of virulence shown by the original collection.

Preservation. Dry storage of spores was attempted, but early on Stakman (1913) found that spores kept at ambient temperatures lose their viability within a few months. Storage at lower temperatures greatly prolongs viability (Gera and Vashisth 1968). For routine storage, keep dry infected spikes in paper envelopes or glass jars at 2 to 4°C and the spores will be viable for about five years. Spores dehydrated and sealed under vacuum (Vanderwalle 1953) will remain viable much longer if stored in a refrigerator or freezer. For even longer preservation, the races can be kept as dormant mycelia in inoculated seed. Storing infected seed below 0°C had no effect on the level of infection in the crop grown from such seed (Buchheim 1935).

Long-term storage of races of *U. tritici* should be handled as follows (Nielsen 1987a). Inoculate a differential that is susceptible to the fewest races possible (other than the race to be stored). Next dry the infected, mature seed in a vial over silica-gel in a desiccator for one week at room temperature. Then place the vial into another desiccator with silica-gel and store it at about -15°C; regenerate the silica-gel periodically. When a race is needed, remove 20 seeds from storage and plant them to produce spores.

Figure 4.11a. Results of vacuum inoculation of wheat with *U. tritici* showing nearly 100% infection.

Figure 4.11b. Results of vacuum inoculation of wheat with *U. tritici* showing only a few infected spikes.
Determination of races. Various approaches have been used to determine susceptibility:

- Looking for differences in germination of spores in extracts from stig mata (Michalikova 1970), kernel extracts (Gupta et al. 1977, 1979; Nielsen 1981), or from susceptible or resistant cultivars;
- Differentiation of races by immunochemistry (Yamaleev et al. 1975) or by characterization of their polypeptides (Kim et al. 1984);
- Inoculation of very young seedlings (Kavanagh 1961a).

These approaches have limited value in that they are not applicable to all race/cultivar combinations and inoculation and evaluation of disease is necessary for determining the races. A spore suspension can be injected into the florets using a rubber ball (Poehlimann 1945) or syringe with a hypodermic needle (Figure 4.8; Bever 1947, Rod 1958, do Valle Ribeiro 1963a, Danko and Michalikova 1968). The advantages of such injection are:

- The spores from one spike suffice to inoculate the differential set, which helps ensure purity of races;
- It is easy to change inocula since syringes and needles are readily sterilized in 70% alcohol or boiling water (for routine race-determination, repeated thorough rinsing of the syringes under running water is sufficient);
- No special precautions are required to avoid cross-contamination between spikes.

Crosses between races. In a typical study of the inheritance of virulence, isolate two monokaryotic haploid lines of compatible mating type from one germinating spore of a race avirulent on a certain cultivar; in a similar fashion isolate a pair of lines from a virulent race. Cross these four parental lines in all possible combinations on a common susceptible cultivar to give spores of two selfings and of two F1s. One tetrad, i.e., the four products of meiosis are now isolated from one germinating spore of each F1; cross the eight lines in all possible combinations with each other and with the parental lines. This results in 8 F1-selfings, 8 F1-intercrossoves, 16 F1-backcrosses (8 to each parental race), and also 2 parental selfings or intraracial crosses, and two interracial crosses. These are injected into the florets of the cultivars on which virulence/avirulence is to be determined. The presence or absence of sporulation on plants grown from seed inoculated with these 36 crosses reveals whether virulence is recessive or dominant and the number of genes involved.

To do the crosses, transfer the mycelia of monokaryotic haploid cultures from stock cultures on solid medium into 125-ml Erlenmeyer flasks with 35 ml of a liquid medium made up of 2 g asparagine, 2 g yeast extract, 2 g malt extract, and 20 g glucose in 1000 ml water. Hyphal fragments appear in the liquid medium after about 8 days with continuous agitation at 20-22°C. When a dense suspension has developed, inoculate additional flasks with 5 to 10 ml of this suspension. Use the cultures in these new flasks after 2 to 3 days on the shaker. Mix cultures to be crossed in a 50-ml beaker, using 20 to 25 ml of each culture, but if the concentration of the hyphal fragments is different, adjust the proportion so that cells of each line are present at about equal numbers. Leave the beakers standing for about 30 minutes to allow hyphal fragments to settle loosely at the bottom. When the liquid above the fragments is clear, draw it off with a narrow tube connected to an aspirator, leaving about 12-15 ml. Break up the larger pieces of mycelium in a Sorvall Omni Mixer in a 50-ml vessel. Run the mixer for 4 to 7 seconds at about half speed, depending on the size of the larger pieces of the mycelium, and on the volume. Inject the inoculum into the florets through a 20 gauge needle.

Obtaining Haploid Hyphae

Monokaryotic haploid hyphae can be isolated on special media and by microsurgery (Nielsen 1972). Spread dry teliospores with a fine brush on 1.5% water agar (1.5-2 mm thick) containing aspartic acid (0.147 mg/ml water). Incubate at 20°C about 30 hours until dikaryons have been formed. Cut 1 x 1-cm squares from the medium and place them on a thick layer of potato dextrose agar at 1/5 the normal nutrient concentration (1/5 PDA) and place in the refrigerator over night. Transfer the squares to another thick layer of 1/5 PDA, pre-warmed to 25°C, and keep at this temperature four to six hours. Isolate monokaryotic haploids by microsurgery, and transfer them to small slips of water agar 1.5-2 mm thick; place these on a thick layer of 1/5 PDA at 20°C. Growth will be visible after 3-4 days.

Isolates will stay mycelial and grow on minimal media containing glucose and ammonium or nitrate (Sen and Munjal 1964). They can be maintained on PDA, potato surose agar, or potato malt agar. Growth is relatively slow and results in a dense, cream to pinkish-cream surface mycelium. Cultures stored at 3-5°C may be transferred every 2-3 months. For special studies, all four products of meiosis can be isolated from one germinated teliospore. For intra- and interspecific crosses, the isolates can be increased in a liquid medium on a shaker.

The cardinal temperatures for culturing the fungus on both solid and liquid media are 6-8/21-23/31-33°C.

Most cultures on solid media turn dark gray to brown on aging. If the culture is dikaryotic, the cell walls thicken and the cells may assume a globular shape. These are resting spores or chlamydospores, but not true telio- or ustilospores, which are formed only on a host plant. The fungus cannot complete its life cycle in axenic culture.
CHAPTER 5
Flag Smut
Barbara Ballantyne, Agricultural Research Institute, Wagga Wagga, Australia

History
Flag smut (FS) on wheat was first reported in South Australia in 1868 (Anon. 1868). However, it had probably been there earlier because farmers referred to a "black rust" before this date (Miller and Millikan 1934a). In 1848, FS was reported on Agropyron sp. in Europe and was attributed to Uredo agropyri (Preuss 1848). The Australian FS pathogen was identified (Wolff 1873) as Urocystis occulta, previously described on rye. However, it was later designated as U. tritici on the basis of spore morphology (Körnicke 1877).

The history of the disease shows that incidence and severity is dependent on the cultivars grown. For example, in the USA, the replacement of a commonly grown susceptible cultivar by resistant cultivars in Illinois reduced FS incidence to a negligible level (Fischer and Holton 1957). Further, in Australia, serious losses occurred when susceptible and very susceptible cultivars were widely grown at various periods, including 1915 to 1930 and 1949 to 1966. However, the disease declined when susceptible cultivars were replaced by resistant cultivars (Anon. 1970, Brown 1975, Platz and Rees 1980, Ballantyne 1993). Chemical seed treatment has also contributed to FS control.

Distribution and Importance
FS is present on all continents (Figure 1.5), although it has not been reported on wheat in the Scandinavian countries, Poland, or England (Anon. 1991). FS has been reported from Australia (Anon. 1868, Cobb 1891), Chile (Anon 1991), China (Miyake 1912), Egypt (El-Helaly 1948), India (Sydow and Butler 1906), Japan (Hori 1907), Pakistan (Anon. 1991), South Africa (Putterill 1920), Spain (Griffiths 1924), and the USA (Humphrey and Johnson 1919).

While FS has been a serious problem at times in all Australian wheat growing areas, it is now difficult to find (Ballantyne 1993; J.S. Brown, R. Loughman, R. Rees, and H. Wallwork, pers. comm.).

When FS was discovered on wheat in Illinois, USA, it was considered a sufficient threat for quarantine action (Coons 1919). Shortly afterwards, it was found in Missouri and Kansas, but has not been reported there since the early 1930s (Boewe 1960). FS was recorded on wheat in Oregon and Washington in 1940 (Holton 1941, Purdy and Holton 1963) and may be found on wheat at a low level in the Pacific Northwest at the present time. Purdy (1965) speculated that wheat FS may have originated in the USA from a grass-attacking form, since many grass species are known to be hosts for FS throughout the USA. It is not known on wheat elsewhere in the USA (R.F. Line, pers. comm.).

A specimen of FS was collected in the USA prior to 1879 on Agropyron repens (No. 293 in the Ellis and Everhart set of exsiccati named North American Fungi, quoted as Ell. and Ev. N. Amer. Fungi). It was used to describe Urocystis occulta var. tritici Ellis.

The origin of the disease in Australia is not known, but there is evidence that Australia exported the pathogen to some other countries. For example, FS spores were found on leaf fragments in Australian wheat received in California (Pollack 1945). Outbreaks occurred in Mexico in 1945 after the importation of wheat from Australia (Borlaug et al. 1946), in South Africa (Verwoerd 1929), and in Egypt (El-Helaly 1948), suggesting that the disease was imported from Australia.

Australian cultivars were extensively grown overseas earlier in the century. For example, the susceptible cultivars Federation and Baart were widely grown from 1910 until the 1930s in the Pacific Northwest of the USA (Callaghan and Millington 1956, Lupton and Derera 1981, Patterson and Allan 1981). Federation was also grown in India (Macindoe and Walkden Brown 1968) and a range of Australian cultivars were widely used in Chile and Peru (Wrigley and Rathjen 1981). FS caused serious losses, sometimes in isolated areas, in China, India, Italy, Japan, and Pakistan early in the century (Purdy 1965). In Australia, it caused widespread and substantial losses, sometimes even total crop failure, at times when popular cultivars were susceptible (Brittlebank 1920, Carne 1924, Anon. 1960). In Pakistan, FS incidence was as high as 70% during 1975-76 (Khan et al. 1984).

Hosts
Wheat is the most commonly reported host, but certain grasses are also susceptible (Table 5.1). Since 1879, FS has been reported on a range of grasses in 13 widely separated states of the USA (Clinton 1904, Griffiths 1907, Garrett 1910, Standley 1916, Zundel 1933, Durán 1968). There were no apparent relationships between genome and FS reaction.
Rees and Platz (1973) reported naturally occurring FS on Agropyron scabrum var. plurinerve Vickery form A, a common grass in southern Queensland. Wheats inoculated with an Agropyron collection were infected, and an Agropyron inoculated with a wheat isolate was smutted. Rye grass (Lolium spp.) occasionally shows symptoms in southern New South Wales. No inoculation tests have been carried out, and the distribution does not suggest that rye grass is a source of inoculum for wheat (Ballantyne, unpublished observations).

Table 5.1. Susceptible (S) and resistant (R) reactions of grasses inoculated with flag smut from wheat.

<table>
<thead>
<tr>
<th>Reference/species</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>McIntosh (1968)</td>
<td></td>
</tr>
<tr>
<td>Triticum</td>
<td></td>
</tr>
<tr>
<td>D. Triticum</td>
<td></td>
</tr>
<tr>
<td>T. tauschii</td>
<td>S/R S/R</td>
</tr>
<tr>
<td>T. bicorn</td>
<td>S/R S/R</td>
</tr>
<tr>
<td>T. comosum</td>
<td>R S/R</td>
</tr>
<tr>
<td>T. species</td>
<td></td>
</tr>
<tr>
<td>Tetraploid Triticum</td>
<td></td>
</tr>
<tr>
<td>T. turgidum</td>
<td>R S/R S/R</td>
</tr>
<tr>
<td>Polyploid Triticum</td>
<td></td>
</tr>
<tr>
<td>T. ventricosum</td>
<td>S</td>
</tr>
<tr>
<td>T. triuncale</td>
<td>S</td>
</tr>
<tr>
<td>T. columnare</td>
<td>S</td>
</tr>
<tr>
<td>T. ovatum</td>
<td>S</td>
</tr>
<tr>
<td>T. crassum</td>
<td>S</td>
</tr>
<tr>
<td>T. juvenale</td>
<td>S</td>
</tr>
<tr>
<td>T. cylindricum</td>
<td>R</td>
</tr>
<tr>
<td>T. kotchyi</td>
<td>R</td>
</tr>
<tr>
<td>T. trianstatum</td>
<td>R</td>
</tr>
<tr>
<td>Fischer and Holton (1943)</td>
<td>U. agropyri</td>
</tr>
<tr>
<td>Agropyron caninum</td>
<td>S</td>
</tr>
<tr>
<td>A. dosystachum</td>
<td>S</td>
</tr>
<tr>
<td>A. desertorum</td>
<td>S</td>
</tr>
<tr>
<td>A. repens</td>
<td>S</td>
</tr>
<tr>
<td>A. semicostatum</td>
<td>S</td>
</tr>
<tr>
<td>A. spicatum</td>
<td>S</td>
</tr>
<tr>
<td>A. trachycaulum</td>
<td>S</td>
</tr>
<tr>
<td>Elymus canadensis</td>
<td>S</td>
</tr>
<tr>
<td>E. glaucus</td>
<td>S</td>
</tr>
<tr>
<td>E. tritosidoloides</td>
<td>S</td>
</tr>
<tr>
<td>Hordeum jubatum var. caespitosum</td>
<td>S</td>
</tr>
<tr>
<td>Purdy (1965)</td>
<td></td>
</tr>
<tr>
<td>Aegilops squarrosa</td>
<td></td>
</tr>
<tr>
<td>Agropyron elongatum</td>
<td></td>
</tr>
<tr>
<td>Griffiths (1924)</td>
<td></td>
</tr>
<tr>
<td>Triticum spelta</td>
<td>S/R S/R</td>
</tr>
<tr>
<td>T. turgidum</td>
<td>S/R S/R</td>
</tr>
</tbody>
</table>
| S/R = some accessions S, others R.

Pathogen

Taxonomy

Fischer (1953) regards the wheat- and grass-attacking forms of the FS pathogen as the same species. If this is valid, the name is Urocystis agropyri (Preuss). Schröter. However, Vanky (1985) and other European mycologists consider the FS fungus on wheat to be distinct from the one on grasses. If this is the case, the name is Urocystis tritici Körnicke (Körnicke 1877). The extended synonymy is in Fischer (1953).

Urocystis occulta, the FS pathogen of rye (Secale cereale), has often been confused with U. agropyri, although the two species differ in spore ball morphology. In U. agropyri, the dark spores are covered by an almost complete layer of hyaline to tinted sterile cells, but this layer of cells is incomplete or absent in U. occulta (Mordue and Ainsworth 1984).

Other smuts commonly associated with FS-like symptoms on a wide range of grass hosts are Ustilago striiformis and U. macrospora (Mordue and Waller 1981b). These two smuts are distinguished from U. agropyri by single spores rather than spore balls (Mordue and Waller 1981a).

Teliospores and Spore Balls

Spore balls occur in dark stripes in leaves or occasionally in the inflorescence. They are dusty, dark brown to black. The spore ball consists of up to six (usually three) teliospores (ustilospores) (Hawkesworth et al. 1983) that are hyaline or lightly tinted and surrounded by flattened, sterile peripheral cells (Figure 5.1). Teliospores are globose to subglobose, reddish to olivaceous, 8-18 µm in diameter; spore balls are 18-52 µm in diameter (Langdon et al. 1976; Mordue and Waller 1981a).

Longevity. Teliospores survive in soil for 4 to 7 years (McDaidair 1912, Verwoerd 1929, Sattar and Hafiz 1952a) and in the laboratory, when stored at low humidity at 13-31ºC, for at least 10 years (Noble 1934). Spores are viable after passing through the digestive systems of horses and cattle (McAlpine 1910, Clayton 1925, Verwoerd 1929).

Germination. Teliospores of U. agropyri germinate capriciously (McAlpine 1910, Griffiths 1924, Verwoerd 1929). Those collected immediately after maturity do not germinate until after 42-82 days (Verwoerd 1929). Noble (1923) broke the dormancy by drying for 48 hours at room temperature over concentrated sulfuric acid.

A wide range of plant extracts, organic chemicals and surface active agents promoted germination especially of aged presoaked teliospores (Noble 1923, 1934; Griffiths 1924; Verwoerd 1929; Allan and Durán 1979; Goel and Jhoty 1987). The delay in germination may have survival value.

The teliospore germinates to produce a bulbous or club-shaped promycelium (basidium) that becomes cylindrical (Figure 5.2a). The promycelium is septate or nonseptate, 23-29 x 4.5 µm in size, with 2-5 protuberances forming on its tip and...
developing into sporidia (basidiospores). The young sporidia are born in clusters, but at maturity they are distinct, fingerlike projections (Figure 5.2b), oblong, translucent, and smooth, and 25 x 4.5 µm in size. A septum may develop between the sporidium and the germinal tube (Figures 5.2d-e; Griffiths 1924, Noble 1924, Verwoerd 1929, El-Khadem et al. 1980, Nelson and Durán 1984, Goel and Jhooty 1986). When mature, sporidia produce a germinal tube or infection thread (Figure 5.2f) up to 250 µm long and always septate.

Cytology of germination. Meiosis occurs in the teliospore followed by mitosis. Haploid nuclei migrate to elongated basidiospores, generally one nucleus per spore, but sometimes two. Plasmogamy occurs in situ between mononucleate basidiospores and the nucleus of one basidiospore migrates into the protoplast of the other. Usually plasmogamy occurs between two hyphal pegs, one at the base of each basidiospore, although apical fusions have also been seen. Some dikaryons also form fusions between promycelia and basidiospores or by migration of two nuclei into single basidiospores or from the promycelium itself when teliospores germinate directly.

Cultures derived from unbroken smutted tissue are slow growing, but they grow well on different media (Wu 1949). Isolates differ in cultural characteristics that persist after transfer. A typical 60-day-old culture on potato dextrose agar was 26 mm in diameter, white to dark olive or buff in color, raised umbonate in topography, coriaceous and mycelioid in consistency, velvety surface with zonation, lacerate, lobate or entire and mycelioid, appressed on the margin. The tough mycelial growth produced few if any sporidia (Wu 1949).

Mating behavior. Mating is bipolar with multiple alleles controlling heterothallism (El-Khadem et al. 1980). However, secondary homothallism was occasionally suggested when basidiospores received two nuclei (Nelson and Durán 1984).

Physiologic Specialization
Physiologic specialization has been reported, but does not appear to have been a problem in breeding programs. Some of the tester wheats susceptible to certain Chinese, Pakistani, and Indian collections are resistant to collections from other regions such as Australia and the USA. It is possible that local cultivars have exerted selection pressure over a long period of time in these Asian countries. This raises the possibility that the center of origin of the pathogen lies in Asia. There are suggestions that some subsequent spread occurred in wheat exported from Australia early in the century.

Races. The FS pathogen has shown less physiologic specialization than any of the cereal smuts. The variation that has occurred has not been a problem in breeding, except possibly in China and India.

Yu et al. (1936, 1945) demonstrated physiologic races in collections from China using three infection classes: 0-5% infection = resistance, 5.1-20% infection = intermediate, and 20.1-100% infection = susceptible. The reactions of tester wheats to 12 races of the FS pathogen are shown in Table 5.2.

Holton and Johnson (1943) designated a collection from Kansas in central USA as race 1 and another, able to overcome the resistance of Oro/Federation selections 38 and 40, from Washington State in the Pacific Northwest, as race 2.

Further variation was reported with collections from Australia, Chile, China, Cyprus, India, Pakistan, South Africa, and the USA (Hafiz 1951, and Johnson 1959). These data have been rearranged and are presented in Tables 5.3 and 5.4, respectively.

Host accessions. Of the five differential tester wheats chosen by Yu et al. (1936, 1945) in Table 5.2, TH 19323, Ngochen, Grassland, and TH559 were all commercial cultivars and Nanking 716 had been bred for FS resistance.

The groupings in Table 5.4 indicate similarities of reaction in Johnson’s tests. For example, Ghurka 616, Rex, and N.P. 4 were similar in their resistant reactions to most collections. The exceptions were the intermediate responses with some
Table 5.2. Reactions of 5 testers to 12 physiologic races of flag smut pathogen in China.

<table>
<thead>
<tr>
<th>Physiologic race</th>
<th>TH 1932</th>
<th>Nanking 716</th>
<th>Ngochen</th>
<th>Grassland</th>
<th>TH 559*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>12</td>
<td>R</td>
<td>R</td>
<td>I</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

* Poulard wheat (T. turgidum).

Table 5.3. Reactions of seven wheats to 11 collections from 6 countries (Hafiz 1951).

<table>
<thead>
<tr>
<th>Collections</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federation</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Oro/Fed-1</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Oro/Fed-36</td>
<td>-</td>
<td>-</td>
<td>I</td>
<td>-</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Oro/Fed-38</td>
<td>I</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Chinese Wheat</td>
<td>I</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Punjab T90</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>NP.80.5</td>
<td>I</td>
<td>R</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

Table 5.4. Reactions of selected tester wheats with flag smut collections from USA, China, Australia, India, Chile, South Africa, and Japan. From Johnson, 1959.

<table>
<thead>
<tr>
<th>Tester wheats</th>
<th>Accessions resistant to most cultures</th>
<th>Differentials</th>
<th>Accessions susceptible to most cultures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ghurka 616</td>
<td>Nanking 716</td>
<td>Oro/Federation - 1</td>
</tr>
<tr>
<td></td>
<td>Rex</td>
<td>Grassland</td>
<td>Spring Early</td>
</tr>
<tr>
<td></td>
<td>N.P. 4</td>
<td>N.P. 101</td>
<td>T.H. 3929</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hindi D</td>
<td>Kanred/Hard Federation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Punjab 8A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.P. 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hindi 62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.P. 165</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baart</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oro/Federation - 38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oro/Federation - 40</td>
<td></td>
</tr>
</tbody>
</table>

Accessions resistant to most cultures

Accessions susceptible to most cultures

Most accessions of similar reaction and pathogen collections of similar reaction are grouped together.

* U = USA * 1 & 2 U.S. * C 1-12 China
I = Indian * 3 Chile
C = Chinese * 4-6 Australia
S = From South Africa * 7 South Africa
T.H. = 3929 Japan
Oro = Selection from Turkey

collections of group 3. Nanking 716, Grassland, and Ngochen were resistant to most collections, but were susceptible to Chinese isolate C10. The Indian cultivars were tested with a more limited group of collections and reacted differentially. Most were susceptible to the Indian isolates, but gave intermediate or resistant responses in comparison with Chinese wheats and Baart.

Oro/Federation selections 38 and 40 reacted similarly to all pathogen collections with the exception of the Chinese smut collection, C4. Oro/ Federation-38 and 40 are the differentials for distinguishing Johnson’s races 1 and 2. Oro/Federation-1 was clearly different from other selections, being susceptible to race 1. Oro, a Turkish selection, was used as a source of bunt resistance in early breeding in Washington State. The
Chinese wheat TH3929 and Kanred/Hard Federation were almost identical in response, being susceptible to all collections except No. 9 from India.

Seed of the tester wheats (Table 5.4) is in the Australian Winter Cereals Collection, Tamworth, NSW, Australia.

Pathogen collections. The collections of Hafiz (1951) (Table 5.3) fall clearly into four groups, with group 1 from the USA as race 1, group 2 from Australia and Italy the most complex resembling USA race 2. Group 3 from China and Cyprus gave no disease on these testers, even though the spores were viable. Group 4 from Pakistan was distinctly different and simpler than the others.

Johnson’s data (Table 5.4) formed eight groups. Group i, similar to US race 1 from USA and China, gave a susceptible reaction only on Oro/Federation 1. Group ii of two Chinese collections was similar to race 1 except for giving susceptible reactions on Baart and Spring Early. Collections in Group iii, made up of three from Australia and one each from China, Chile, South Africa and USA, were all similar to US race 2. Johnson (1959) designated the Australian isolates as race 2A because they gave more disease on Nqochen, NP80.5, N.P. 12, and Baart. Similarly, the South African collection also gave higher scores on certain testers and was designated race 2B. Verwoerd (1929) and Johnson (1959) also reported that Australian and South African collections produced more disease than the US smut. There is a report (Gorlenko 1946 as quoted by Dickson 1956) of an Azerbaijan collection similar to race 2.

Group iv from Japan was distinct in being able to overcome the resistance of some of the Indian testers and was designated as race 3. The one collection from India (Group v), designated as race 4, caused disease on an even wider range of Indian testers. Groups vi, vii, and viii—each with one collection from China—were screened on an incomplete set, but appeared to be different from each other and other groups. Group viii (collection C10) was clearly different and gave susceptible reactions on three Chinese cultivars resistant to most other collections. Johnson did not name these Chinese smuts.

Khan et al. (1984), working with Pakistan collections and using a different and limited range of tester wheats, reported that their race 1 (designations of Yu et al. 1945) was similar to Johnson’s race 1, but their race 4 resembled Johnson’s race 2A.

A three-year survey showed no variation in Australian collections (Watson 1958). This is despite the fact that FS was reportedly more destructive and widespread over longer periods this century in Australia than in any other country.

R.F. Line (pers. comm.) has not detected any race differences in the USA Pacific Northwest.

The greatest variation has been in the pathogen collected from China and India. Certain Chinese and Indian collections have overcome resistance of cultivars from China and India, but these genotypes were resistant to collections from other geographic regions (Yu et al. 1945). This suggests that FS may have originated in the regions of China and India. However, the sample size for all these studies is relatively small so such comments are speculative.

Studies on variation in this pathogen are resource-intensive because of the need to grow relatively large wheat populations to maturity and to have uniformity of inoculum and favorable environmental conditions at the time of germination and infection.

Collections from grasses. Inoculation tests with U. occulta from rye and U. agropyri from wheat demonstrated that, while U. occulta did not cause symptoms on wheat and U. agropyrigave no infection of rye, certain grass accessions supported both U. occulta and U. agropyri (Fischer and Holton 1943). Their Pacific Northwest wheat FS collection caused disease on Agropyron caninum and A. spicatum, which were resistant to the collection from the USA Midwest.

Infection and Disease cycle

Infection Process

FS infects seedlings before they emerge from the soil. See life cycle in Figure 1.9. Spores carried on the seed or present in soil provide the inoculum. The apical cells of dikaryotic infection hyphae form appressoria with penetration pegs that enter directly through the epidermis (Wolff 1873, Noble 1924, Verwoerd 1929, Emmett and Parbery 1975, Nelson and Duran 1984). Invasion of the host occurs only through the young coleoptile before the first leaf emerges (Jarrett 1932). The FS fungus infects both resistant and susceptible plants, but symptoms develop only in susceptible genotypes.

After infection, the fungus grows both inter- and intra-cellularly until sporulation. The mycelium ramifies through almost all host parts. It is unbranched in the internodal tissues and branched in nodal regions. The host tissues are often so heavily invaded by mycelium that cells are forced apart. Sporulation occurs between the epidermal layers and the vascular tissues of the plant (Noble 1924, Verwoerd 1929).

High levels of inoculum are reported to produce a higher incidence of infection than lower levels (Miller and Millikan 1934a, Millikan and Sims 1937, El-Helaly 1948).
Dissemination

Spore balls produced on diseased leaves dislodge during harvest and fall to the ground. A soot-like dust is often visible behind harvesters in heavily infected wheat. This attaches to seed, becomes incorporated into the soil, and may be blown by wind to adjacent fields (Miller and Millikan 1934a). Spore balls may also be disseminated in animal manure (McAlpine 1910, Clayton 1925), on the hooves of animals (Putterill 1920), in irrigation water (Putterill 1920), and in straw used for packing (Minz 1943).

Symptoms and Other Effects

Infected seedlings are characteristically twisted and bent (Figure 5.3; Angell 1934a,b). Raised white areas with a blistered or vesicular appearance (“leprous spots”) may develop on coleoptiles of some susceptible cultivars (Churchward 1934, McIntosh 1968).

Miller and Millikan (1934a) noted that, before typical symptoms are seen, infected plants may be distinguished by a large number of thin, stunted, wilted, and yellowish green leaves. In the field, symptoms may develop any time after the third or fourth leaf. However, the disease is more apparent after spikes form and is most obvious at the end of the season on late tillers.

On older leaves, first symptoms appear as white striations, which occasionally extend into the inflorescence (Figure 5.4). The striations change from white through shades of gray to black. Infected plants produce increased numbers of stunted, twisted, and distorted tillers and may not develop spikes. Infected plants also produce less developed roots (Angell et al. 1938a,b), fewer fertile spikes and seeds per spike, lighter seeds (Brown 1975, Bhatnagar et al. 1978), and poorer germination of seeds (Pal and Mundkur 1941).

Cultivars vary widely in response to FS. Some genotypes may be severely stunted and have blackened tillers and few if any spikes (Figure 5.5), whereas others may show only the occasional sign of infection. Some plants with a degree of resistance may have symptoms only on late tillers. Subterranean sporulation has been observed on *Phleum alpinum* and *Deschampsia caespitosa* (Durán 1968).

Association with Other Diseases

Urocystis agropyri, *Fusarium culmorum*, and other *Fusarium* spp. may simultaneously occur in the same wheat plant infected with FS. Seedling blight caused by the *Fusarium* spp. was more prevalent...
when FS was present (Geach 1933, Angell 1934a). Other pathogens that have been observed in plants infected with *U. agropyrinum*: *Tilletia caries* (McAlpine 1905), *T. controversa* (Holton and Jackson 1951), *Puccinia striiformis* (Purdy and Holton 1963), and *Ustilago tritici* (Aujla and Sharma 1977).

Influence of Environment

Soil type, soil moisture, and temperature affect the incidence of the disease mainly by influencing the seedling germination and emergence rates. The seedling is susceptible only until the first leaf breaks through the coleoptile (Griffiths 1924). Hence any factor that slows emergence, such as deep sowing (Miller and Millikan 1934a), El-Helaly 1948, Sattar and Hafiz 1952a), may increase FS incidence.

Because soil temperature changes during the season, time of sowing is an important factor. In Missouri, USA, the disease was more severe in early sowings from mid-October until early November than after mid-November (Griffiths 1924). However, in southern Australia, where the crop cycle is different, the incidence of FS is lower in the early sowings in April-May than in June (Ballantyne 1993).

The effect of fertilizer is controversial (Foster and Vasey 1929; Miller and Millikan 1934b; Millikan 1939a,b; Yasu and Yoshino 1963).

Soil pH from 5.5 to 8.7 favored FS infection (Miller and Millikan 1934b). In the laboratory, Noble (1924) found that the range was pH 4.1-6.4, but the optimum was at pH 5.1-5.7.

Variation in Infection Frequency and Expression

Generally, FS is more severe in glasshouse trials than in field tests, but considerable variation occurs. Cultivars that have little or no infection in the glasshouse may be severely infected in the field and vice versa (R.F. Line, per. comm.; Griffiths 1924; Johnson 1959; Purdy et al. 1964; McIntosh 1968).

Cutting back plants favors the development of FS in the regrown tissues. Often, some resistant plants are rated as susceptible after being cut back (Griffiths 1924, Jarrett 1932, Miller and Millikan 1934a, Purdy et al. 1964). Cutting back at the two-leaf stage had a greater impact than cutting back after spike formation (Griffiths 1924).

Variation in the incidence of infection at different sites and in different seasons or when inoculum is seedborne rather than soilborne is a common feature of FS screening (Pridham and Dwyer 1930, Purdy et al. 1964, McIntosh 1968, Platz and Rees 1980, Ballantyne 1993).

Control Strategies

Physiologic Resistance

Sources. Resistance to FS is quite widespread as reported by many workers (USA: Reed and Duncan 1920; Tisdale et al. 1923, 1927; Griffiths 1924; Melchers 1938; Purdy et al. 1964; Line 1972; Australia: Shelton 1924; Carne and Limbourn 1927; Pridham et al. 1929; Pridham and Dwyer 1930; Limbourn 1931; Miller and Millikan 1934a; Millikan and Sims 1937; Sims et al. 1943; Anon. 1952; Cass Smith 1954; Anon. 1960; Ballantyne 1993; India: Pal and Mundkur 1941; Joshi et al. 1970; Geel and Jhooty 1984; South Africa: Verwoerd 1929; China: Yu and Chen 1931; Yu et al. 1933, 1934; Fischer and Holton 1957; Purdy 1965; Egypt: El-Helaly 1948; Mexico: Borlaug et al. 1946). Some details are in Table 5.5.

Breeding for FS resistance does not appear to be a high priority in any breeding program. In Australian breeding programs, advanced material and candidate parents are commonly screened. This enables culling of some susceptible segregates and planning of crosses. Ballantyne (1993) recently reviewed the Australian resistance situation and reported that most

| Table 5.5. Selected reported reactions of wheat genotypes to flag smut. |
|---------------------------|------------------|-----------------|
| USA Midwest | | |
| Reed and Duncan (1920), Griffiths (1924), Tisdale et al. (1923, 1927), Melchers (1938), Churchward (1938), Resistant: Bobs, Clarkan, Early May, Fulcaster, Galgalos*, Gypsy, Hope*, Kawvale, Red Man, Red Rock*, Redwave, Reliable, Tenmarq, Turkey. |
China	Yu and Chen (1931), Yu et al. (1933, 1934), Shen et al. (1938), Resistant: Nanking 16, Nanking 716, Nanking 4592*, TH1932*.
Egypt	El-Helaly (1948), Resistant: Hindi, Mabarouk.
Mexico	Borlaug et al. (1946), Susceptible: Most Mexican wheats (not CIMMYT).

* Subjected to genetic analysis of flag smut reaction.
recommended cultivars and locally adapted CIMMYT lines were resistant, but a number of introductions from the USA were susceptible or very susceptible in a series of field trials. Most of the durum wheats screened have been resistant.

Inheritance. Resistance is generally controlled by a number of genes and transgressive segregation is common (Shen 1934, McMillan 1935, Shen et al. 1938, Purdy and Allan 1967, McIntosh 1968, Helm and Allan 1971). There are a few reports of simple inheritance (Churchward 1938, Helm and Allan 1971, Miller and Millikan 1934a). Resistance has generally been recessive, but there are occasional reports of dominance (Shen 1934, Helm and Allan 1971).

Purdy and Allan (1967) obtained heritability estimates of 49-74% from regression analyses. The genetic variance estimated in the F2 generation was mainly additive in the populations studied by McIntosh (1968). Genotype-environment interactions were small in relation to genetic variance. Broad sense heritability estimates determined from F3 data, involving individual crosses, were usually within the 40-70% range.

Churchward (1938) reported loose genetic linkage in Hope wheat between a possible single gene pair determining FS resistance and resistance to bunt. In a comparison of isolines (Allan 1975), wheats with the semidwarf trait had increased susceptibility to FS possibly due to the delayed emergence typical of semidwarf wheats, which probably offered increased opportunity for infection. Allan and Pritchett (1976) reported that club wheats were likely to be susceptible to FS. The C allele responsible for the club head type reduces rates of seedling growth and emergence, so again a delay in emergence appears to be involved.

Breeding. McMillan (1935) obtained infection data for a number of crosses in succeeding generations and recommended that selection be based upon progeny tests in later generations, not earlier than the F3 population.

Seed Treatment

Water and anaerobic seed treatments have not been reported for FS.

Control of the common bunt fungi (*Tilletia tritici* and *T. laevis*) was the primary impetus for cereal seed dressing, and this has influenced the chemicals used for control of FS. The literature has been summarized by Holton and Heald (1941), Martin (1959), Callan (1973), and Hoffman (1981). Most of the fungicides used for control of bunt are also effective against FS, but there are some exceptions, notably hexachlorobenzene. Information about such chemical applications, which began in the early 1900s, is given in Table 5.6.

The seed dressings currently recommended for control of FS in New South Wales include the triazoles (bitertanol, tebuconazole, triademefon) and the carbofuran (carboxin, flutriafol). Carboxin is advised for the control of seedborne inoculum only, but the other systemic fungicides are recommended for both seedborne and soilborne infection. The rates are 70-100 g/110 kg of seed for the powder formulations or 100-250 ml/100 kg of seed for the liquid treatments (Verrell and Komoll 1991, Gammie 1994).

Cultural Practices

Cultural practices that have been advised to control FS include rotations with a

Table 5.6. Fungicides that have been evaluated for the control of wheat flag smut.

<table>
<thead>
<tr>
<th>Reference/ chemical</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>McAlpine (1906)</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Effective but inconvenient</td>
</tr>
<tr>
<td>Copper sulfate</td>
<td>Effective but inconvenient</td>
</tr>
<tr>
<td>Morwood (1930, 1931)</td>
<td></td>
</tr>
<tr>
<td>Copper carbonate</td>
<td>Effective except at high inoculum doses</td>
</tr>
<tr>
<td>Formalin</td>
<td>Effective only with seedborne inoculum</td>
</tr>
<tr>
<td>Copper</td>
<td>Effective only with seedborne inoculum</td>
</tr>
<tr>
<td>Mercury*</td>
<td>Effective only with seedborne inoculum</td>
</tr>
<tr>
<td>Hexachlorobenzene*</td>
<td>Effective with both seed- and soilborne inoculum</td>
</tr>
<tr>
<td>Moore and Kuiper (1974)</td>
<td></td>
</tr>
<tr>
<td>Mancozeb</td>
<td>Effective</td>
</tr>
<tr>
<td>Kuiper and Murray (1978), Kuiper (1968), Metcalfe and Brown (1969), Line (1972)</td>
<td></td>
</tr>
<tr>
<td>Benomyl</td>
<td>Less effective</td>
</tr>
<tr>
<td>Pentachloronitrobenzene</td>
<td>Less effective</td>
</tr>
<tr>
<td>Line and Scott (1967)</td>
<td></td>
</tr>
<tr>
<td>Carboxin</td>
<td>Each compound gives complete control and is systemic</td>
</tr>
<tr>
<td>Oxycarboxin</td>
<td></td>
</tr>
<tr>
<td>Triademionol</td>
<td></td>
</tr>
<tr>
<td>Triademeton</td>
<td></td>
</tr>
<tr>
<td>Loughman (1989)</td>
<td></td>
</tr>
<tr>
<td>Triademefon</td>
<td>Effective to complete control</td>
</tr>
<tr>
<td>Triademenol</td>
<td>Effective to complete control</td>
</tr>
<tr>
<td>Diniconazole</td>
<td>Effective to complete control</td>
</tr>
<tr>
<td>Carboxin</td>
<td>Effective</td>
</tr>
<tr>
<td>Flutriafol</td>
<td>Effective</td>
</tr>
</tbody>
</table>

* Withdrawn in Australia on toxicological grounds.
nonhost species, stubble burning, variations in planting time, and variations in depth of sowing (Hamblin 1921, Purdy 1965, Brown 1975).

Purdy (1965) and Brown (1975) recommended rotations with a nonhost crop, but the wheat-free period needs to be longer than that used for control of root rots and foliar pathogens.

Stubble burning may reduce the infection. In one experiment in northern New South Wales, FS incidence was 1.25% where stubble was burned, but 9% where stubble was plowed under (Brown 1975). On self-mulching soils, stubble burning may be less effective because flag smut spore balls are likely to be buried in the soil and so escape the high temperatures.

In Australia, early sowing in autumn into warm soils favors infection, whereas later sowing into cool soils during the winter may result in disease-free conditions (Brown 1975). However, in Egypt, early sowing in October in warm soils resulted in almost complete control of FS, whereas late sowing in December in cooler soils resulted in severe FS (El-Helaly 1948).

Quarantine
In the USA, an FS-infested area was quarantined (Stakman 1922) immediately after the disease was discovered (Humphrey and Johnson 1919) and the area affected was extended as the known distribution of the disease increased. The movement of wheat and farm machinery from the infested areas was prohibited. Machinery was to be used only in infested areas and was to be disinfected with formaldehyde before harvesting oats or straw at the end of the season. Resistant cultivars, seed treatment with copper sulfate, and lime and stubble burning after harvest were recommended.

USA Federal Quarantine No. 39, effective August 15, 1919 (Anon. 1919, Weber 1930), prohibited importation of cereals in the raw (seed) or uncleaned state from Australia, Italy, France, Germany, Belgium, Great Britain, Iceland, Brazil, and India except by special permit. Quarantine 39 was superseded by Quarantine No. 59, which prohibited the importation of wheat from many countries where FS occurs (Anon. 1925). Germany was released from restrictions in 1954 since FS of wheat was apparently absent from its territory (Anon. 1954).

USA Federal Quarantine No. 69, which is related to packing material and became effective June 8, 1953, exempts from its provisions wheat straw, chaff, and hulls used for packing material when subject to the FS quarantine (Anon. 1953).

In addition to wheat, Australian oats and barley are prohibited imports to the USA because they are grown in wheat areas and may therefore be contaminated by spores of U. agropyri (Ballantyne 1993).

The potential danger of FS is recognized by several regions and countries by quarantine regulations: Transcaucasia (Szembel 1934), Russia (Anon. 1935), Canada (Anon. 1930, 1932, 1955), Mexico (Anon. 1928, 1931) and Iran (Anon. 1946). Careful inspections are required (Minz 1943, Pollack 1945).

Techniques for Study

Inoculation
Inoculate seed by shaking spores onto seeds (Jarrett 1932; Miller and Millikan 1934a; Rewal and Jhooty 1986b), by mixing inoculum with soil before planting, or by spraying inoculum on the open row (Rewal and Jhooty 1986b, Line and Scott 1987). Planting in naturally infested soil has also been done (Miller and Millikan 1934a, Loughman 1989, Ballantyne 1993). All methods give satisfactory results if the environmental conditions are favorable. McIntosh (1968) and Greenhalgh and Brown (1984) developed precise methods for determining cultivar reaction.

Disease Rating Scales
Most workers have used percentage infection to record responses to FS, although Pridham et al. (1929) noted that this did not measure the severity on individual plants.

Yu et al. (1945) established three infection classes on an arbitrary basis for race identification studies:
- 0-5% infection = Resistant (R).
- 5.1-20% infection = Intermediate (I).
- 20.1-100% infection = Susceptible (S).

Goel and Jhooty (1984) distinguished six categories:
- No disease = Immune.
- 0.1-2.0% infection = Highly resistant.
- 2.1-5.0% infection = Moderately resistant.
- 5.1-10.0% infection = Moderately susceptible.
- 10.1-20.0% infection = Susceptible.
- >20% infection = Highly susceptible.

Ballantyne (1993) used a 0-9 scale 15-20 plants per row:
- 0 = no disease = highly resistant.
- 1-2 = trace to two infected tillers per row = resistant.
- 3-4 = Three or four tillers per row of one plant partially infected = moderately susceptible.
- 5-6 = a few plants partially or severely infected = susceptible.
- 7-9 = Many to all plants severely infected = highly susceptible.
References

Finn, S. 1981. Studies on the pathogenic races of Tilletia foetida and T. caries and their pathogenesis on some wheat varieties in Turkey. EPPO Bull. 11:77-82.

Rai, R.C., and A. Singh. 1978. A note on the
Purdy, L.H., E.L. Kendrick, J.A. Hoffmann, and
Purdy, L.H., and C.S. Holton. 1963. Flag smut of
Purdy, L.H. 1963. Comparative effectiveness of
Preuss, C.G.T. 1848. In Sturm J. Deutschlands
Mitra). Reporte Técnico, CIANO-CAEVY , indica
para el control del carbón parcial en trigo (Tilletia indica (Mitra) Mundkur en trigo en el
de siembra para el control de carbón parcial
hongo
L.) al carbón parcial causado por el
Vulgare
Kabul, Afghanistan. 112 pp.
Urocystis agropyri
. Plant Dis. Rep. 41:588-
Neovossia indica
(Mitra) Mundkur en trigo en el
Neovossia indica
(Mitra) Mundkur en trigo en el
Reactions of wheats to flag smut in the Pacific
Saad, A.T., and F. Nienhaus. 1969. Plant diseases
to small spores. Phytopathology 53:416-418.
Sahay, J.P. 1964. Breeding of wheat resistant to
Shelton, J.P. 1924. Breeding wheats resistant to
Shen, T.H. 1934. The inheritance of resistance to
transgressive inheritance of reaction to flag smut, earliness of heading, partial sterility, and stiffness of glumes in a variety of cross of wheat. J. Amer. Soc. Agron. 30:68-79.

Glossary

Aggressiveness—Ability to maintain self in nature; disease-causing capacity in nature; a component (with virulence) in parasitic fitness; a concept similar to parasitic fitness. See Shaner et al. (1992), Annual Review Phytopathology 30:47-66 for further discussion of this concept.

Allantoid—Slightly curved spores, sausage-like in form.

Anastomosis—Fusion of hyphae and exchange of their contents.

Anthesis—Flowering, evident in cereals and grasses by extrusion of the anthers.

Apical meristem—Cells at the tip of a shoot that function in cell division and differentiation.

Apiculus—A short projection on the end of a spore by which it was fixed to the stigema.

Appressorium—A swelling on a germ tube or hypha for attachment in early stages of host penetration.

Areade—To divide into small areas by margins that differ in color, texture, or structure.

Avirulent—Inability of a pathogen to overcome host resistance.

Axenic culture—a growing system for one microorganism free of others.

Basidiospore—A propagative cell produced on a basidium after meiosis. It contains one or more haploid nuclei.

Bipolar—a form of heterothallism involving only one pair of alleles at a single locus that controls compatibility.

Biotype—a subdivision of physiologic race the individuals of which have similar genetic makeup; of bacteria, a subdivision of species distinguished by some physiological characteristic.

Bunt—a smut fungus that sporulates only in the spore by which it was fixed to the sterigma.

Bursa—A smut fungus that acts as an inoculum for inoculum for the spore by which it was fixed to the sterigma. Planta Pathol. 42:654-658.

Centipoise—A unit of viscosity equal to 0.01 poise, the c.g.s. unit of viscosity. Water at 20°C has a viscosity of 1.002 centipoise or 0.002 poise.

Coleoptile—A protective sheath surrounding the plant that provides nutrition to the embryo in the seed that provides nutrition to the embryo.

Diploid—a group of genotypes used for distinguishing physiologic races that usually include a universal susceptible and a universal resistant genotype among the genotypes that differ in reactions to the pathogen collections.

Dikaryon—a fungal cell containing two genetically distinct and sexually compatible haploid nuclei.

Dikaryophase—one of three phases in the life cycle characterized by cells with two haploid nuclei of opposite mating type.

Disease—The flower in the spikelet of a cereal or group of species. Disease cycle—the chain of events involved in disease development, including the stages of pathogen development and effects of the disease on the host.

Disomic—Having two sets of homologous chromosomes or genes.

Dissemination—Release and spread of fungal spores from the site of production.

Dominant—An allele that masks the phenotypic effect of another allele of the same gene. The phenotypic effect is the same in the heterozygous as in the homozygous condition.

Dormant—Resting due to reduced physiological activity.

Dwarf bunt—a smut disease caused by Tilletia controversa that infects seeds and severely stunts tillers.

Disease—A propagative cell produced on a basidium after meiosis. It contains one or more haploid nuclei.

Filiforme—Thread-like structure.

Flag leaf—The outer covering of a spore.

Filiforme—Thread-like structure.

Flag leaf—The uppermost leaf on the stem.

Floret—The flower in the spikelet of a cereal plant.

Footnote—a subdivision of a pathogen species based primarily on the host genera that are attached.

Formae speciales—a subdivision of a pathogen species based primarily on the host genera that are attached.

Formae speciales—a subdivision of a pathogen species based primarily on the host genera that are attached.
Fungicide—A chemical that is toxic to fungi.

Fungistatic—A chemical that inhibits the growth of fungi without killing.

Fungus—An undifferentiated plant lacking chlorophyll and conductive tissues.

Funiculus—The slender stalk of an ovule or seed.

Fusiform—A spindle-like in shape.

Gene—A hereditary unit on a chromosome which determines or conditions one or more characteristics.

Gene-for-gene relationship—The specific interaction of a host and a pathogen that is conditioned by complimentary genes of host and pathogen.

Germicide—A chemical that kills microorganisms, especially pathogens.

Germination—The initiation of growth from a resting propagule.

Glume—A bract at the base of a spikelet of a cereal or grass.

Haploid—Carrying a single set of chromosomes.

Haplophase—One of three phases in the life cycle characterized by nuclei that are haploid.

Haploid—An organism having haploid somatic nuclei.

H-body—A structure formed by the fusion of sporidia.

Heterobasidiomycete—Fungi that have basidia of different form and that are usually divided by septa.

Heterothallic—Two different genotypes or mating types are required for sexual reproduction.

Homothallic—A haploid nucleus can give rise to a mycelium that is capable of sexual reproduction.

Host range—The genera and species that are susceptible to a pathogen; resistant or immune among hosts.

Host type—A subdivision of a microorganism

Incompatible reaction—Host-pathogen response to infection that results in immune or resistant reactions.

Infect—To establish a pathogenic relationship with a host plant.

Inoculate—To introduce pathogen propagules onto or into a host or culture for the purpose of producing infection or for growing the pathogen in culture.

Inoculum—Propagules of microorganisms used for inoculation.

Isolate—A spore or culture of a microorganism, and derived cultures, that are separated from others.

Karnal bunt—A bunt disease that infects immature seeds, caused by Tilletia indica; named for the town of Karnal, India.

Karyogamy—The union and interchange of nuclei after cytoplasmic fusion, the fusion of two compatible haploid nuclei into one diploid nucleus.

Latent period—The time between inoculation and appearance of symptoms and/or spore production.

Lemma—The lower enclosing bract of the flower in cereals and grasses.

Linkage—The association of genes located on the same chromosome.

Lodicules—Two small scale-like structures below the ovary in cereals and grasses that swell up at flowering and open the bracts.

Loose smut—A smut disease caused by Ustilago nuda that infects ovaries only.

Mating type—A subdivision of a microorganism on the basis of mating behavior.

Matrix potential—The absorption and capillary forces that bind water to plant and soil constituents.

Meiosis—The reduction division of chromosomes in a diploid nucleus that results in the formation of four haploid gametes.

Micron (μm)—A unit of length equal to 0.001 mm.

Mitosis—The division of a nucleus in which chromosomes are duplicated, giving rise to two daughter nuclei with the original chromosome complement.

Monogenic—Having one type of gene.

Monokaryotic—An individual having one nucleus per cell.

Monokaryotic—Mycelia consisting of cells with single nuclei.

Monosomic—A plant with one missing chromosome.

Morphological resistance—Prevention of plant disease by means of structural and anatomical features of plants.

Mycelium—A mass of hyphae or the thallus of a fungus.

n—A single set of chromosomes per nucleus;
2n—A double set of chromosomes per nucleus;
(n + n)—Two haploid nuclei of opposite mating type within a cell.

Nucellus—The central portion of an ovule containing the embryo sac.

Ovary—The female reproductive structure that contains the egg.

Pales—The upper enclosing bract of the flower in cereals and grasses.

Partial resistance—Resistance expressed by reduced rate of infection, though symptom expression and macroscopic development of the pathogen are similar to those on a susceptible genotype; in smuts, infection occurs followed by some sporulation.

Pathogen—An organism capable of causing disease.

Pathogenicity—Able to cause disease.

Pathotype—A subdivision of a species with characteristic pathogenicity, especially host range, synonymous with formae speciales.

Pericarp—The wall of a ripened ovary.

Physiological resistance—Prevention or reduction of plant disease development or severity due to physiological responses of the plant to the pathogen.

Physiologic race—A population of individuals that are alike in morphology, but differ in their virulences on a set of differential cultivars or that differ in other cultural or physiological characteristics.

Physiologic specialization—The process whereby isolates or races of microorganisms become differentiated in function, as in pathogenicity or ability to grow on specific media.

Plasmogamy—The process of anastomosis of two cells with intermingling of their protoplasts and bringing haploid nuclei of opposite mating type into one cell.

Plumular bud—The apical meristem.

Primary homothallism—The nuclei are of the same genotype and sexual reproduction occurs without the intervention of another spore or thallus.

Promycelium—The germ tube (basidium) of a ustilospore (teliospore) of a smut fungus.

Rachis—The stem of the spike in cereals and grasses.

Recessive—An allele that does not produce a phenotypic effect when heterozygous with the dominant allele, masking the effect of an allele by another allele of the same gene.

Resistance—The genetic characteristic of a plant that prevents or reduces pathogen or disease development toward disease.

Reticulation—The net-ike appearance of the teliospore wall of smut fungi like Tilletia flocculata.

Rogue—To remove unwanted plants from a plot or field.

Sclerotium—A flat portion of the embryo of a cereal or grass, probably the cotyledon pressed against the endosperm.

Secondary homothallism—Inclusion of nuclei of compatible mating types within a single spore and sexual reproduction occurs in cultures derived from the single spore.

Septum—Cross wall of a hypha or other fungal structure.

Set of testers—Same as differential set.

Smut—A disease characterized by masses of dark spores, caused by members of the Ustilaginales.

Sordina—A compact spore bearing structure characteristic of smut fungi or other fungi.

Spore—The inflorescence on an axis, or the head of cereals or grasses.

Sporeball—A structure made up of sori and peripheral cells, characteristic of flag smut fungi.

Sporidium—Any spore other than a ustilospore (teliospore).

Spring wheat—Wheat that does not require vernalization to grow and produce a crop; usually sown and harvested without interruption in the growth of the crop.

Stoma—The openings in the epidermis of a plant that are surrounded by guard cells.

Subcrown internode—The internode between the crown and the germinated seed.

Symptom—The indication of disease in a plant.

Stubble—Standing crop residue.

Substitution lines—Genetic stocks in which an entire chromosome has been replaced by an equivalent chromosome from another cultivar or species.

Teliospore—Analogous to ustilospore, a dikaryotic black resting spore, with two haploid nuclei (n + n), which become diploid (2n) before germinating.

Teliosporogenesis—The formation of teliospores.

Testa—The outer hard covering of a seed.

Tetraploid—A cell with four sets of chromosomes in the nucleus.

Tetrapolar—A form of heterothallism that involves two loci each with a pair of alleles that control compatibility.

Tiller—A shoot or culm of a cereal or grass plant arising from a crown bud at the ground level.

Tilletiaceae—A family of Ustilaginales the teliospores of which germinate by a promycelium (basidium) that bears terminal sporidia (basidiospores).

Transgressive segregation—A pattern of inheritance in which some progeny have superior resistance to either parent and others have inferior resistance.

Trimethylamine—A volatile chemical that causes the foul odor characteristic of bunt diseases.

Ustilaginales—A family of Ustilaginales the teliospores of which germinate by a promycelium (basidium) that bears lateral sporidia (basidiospores) or branches.

Ustilaginaceae—Order of fungi, the smut fungi, consisting of the families Tilletiaceae and the Ustilaginaceae.

Ustilospore—The resting spore of smut fungi that gives rise to the basidiospore. Analogous to teliospore.

Vacuum inoculation—Inoculation of seeds or spores in a vacuum that is suddenly released to bring inoculum and seed surfaces into close contact.

Vernalization—The act of stimulating reproductive growth in a plant by subjecting seedlings to low temperatures away from light.

Virulence—The specific ability of a pathogen to overcome host resistance.

Winter wheat—Wheat that requires vernalization, usually sown late in the fall and harvested the next growing season.