2022-04-142022-04-142022https://hdl.handle.net/10883/22042CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purposeAGRICULTURAL SCIENCES AND BIOTECHNOLOGYAutomated Machine Learning: A Case Study of Genomic “Image-Based” Prediction in Maize HybridsArticle10.3389/fpls.2022.845524Non-Image to ImageMultilayer PerceptronsConvolutional Neural NetworksAutoMLMachine learning methods such as multilayer perceptrons (MLP) and Convolutional Neural Networks (CNN) have emerged as promising methods for genomic prediction (GP). In this context, we assess the performance of MLP and CNN on regression and classification tasks in a case study with maize hybrids. The genomic information was provided to the MLP as a relationship matrix and to the CNN as “genomic images.” In the regression task, the machine learning models were compared along with GBLUP. Under the classification task, MLP and CNN were compared. In this case, the traits (plant height and grain yield) were discretized in such a way to create balanced (moderate selection intensity) and unbalanced (extreme selection intensity) datasets for further evaluations. An automatic hyperparameter search for MLP and CNN was performed, and the best models were reported. For both task types, several metrics were calculated under a validation scheme to assess the effect of the prediction method and other variables. Overall, MLP and CNN presented competitive results to GBLUP. Also, we bring new insights on automated machine learning for genomic prediction and its implications to plant breeding.ACCURACYMAIZEHYBRIDSPLANT BREEDINGNEURAL NETWORKSMACHINE LEARNINGOpen Access