• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Maize
  • Search
  •   DSpace Home
  • CIMMYT
  • Maize
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 16

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Article
Thumbnail

Genomic resources in plant breeding for sustainable agriculture 

Thudi, M.; Palakurthi, R.; Schnable, J.C.; Annapurna Chitikineni; Dreisigacker, S.; Mace, E.; Rakesh Kumar Srivastava; Satyavathi, C.T.; Odeny, D.A.; Vijay Tiwari; Hon-Ming Lam; Yan-Bin Hong; Singh, V.K.; Guowei Li; Yunbi Xu; Xiao-Ping Chen; Kaila, S.; Nguyen, H.T.; Sivasankar, S.; Jackson, S.A.; Close, T.J.; Wan Shubo; Varshney, R.K. (Elsevier, 2021)
Article
Thumbnail

Application of genomic selection at the early stage of breeding pipeline in tropical maize 

Beyene, Y.; Gowda, M.; Perez-Rodriguez, P.; Olsen, M.; Robbins, K.; Burgueño, J.; Prasanna, B.M.; Crossa, J. (Frontiers, 2021)
Article
Thumbnail

Genetic gains with genomic versus phenotypic selection for drought and waterlogging tolerance in tropical maize (Zea mays L.) 

Das, R.R.; Vinayan, M.T.; Seetharam, K.; Patel, M.B.; Ramesh Kumar Phagna; Singh, S.B.; Shahi, J.P.; Sarma, A.; Barua, N.S.; Babu, R.; Zaidi, P.H. (Elsevier, 2021)
Article
Thumbnail

Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize 

Ao Zhang; Perez-Rodriguez, P.; San Vicente, F.M.; Palacios-Rojas, N.; Dhliwayo, T.; Yubo Liu; Zhenhai Cui; Yuan Guan; Hui Wang; Hongjian Zheng; Olsen, M.; Prasanna, B.M.; Yanye Ruan; Crossa, J.; Zhang, X. (Elsevier, 2022)
Article
Thumbnail

Genome‑wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm 

Gowda, M.; Das, B.; Makumbi, D.; Babu, R.; Semagn, K.; Mahuku, G.; Olsen, M.S.; Bright, J.M.; Beyene, Y.; Prasanna, B.M. (Springer, 2015)
The maize lethal necrosis disease (MLND) caused by synergistic interaction of Maize chlorotic mottle virus and Sugarcane mosaic virus, and has emerged as a serious threat to maize production in eastern Africa since 2011. ...
Article
Thumbnail

Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations 

Ao Zhang; Hongwu Wang; Beyene, Y.; Semagn, K.; Yubo Liu; Shiliang Cao; Zhenhai Cui; Yanye Ruan; Burgueño, J.; San Vicente, F.M.; Olsen, M.; Prasanna, B.M.; Crossa, J.; Haiqiu Yu; Xuecai Zhang (Frontiers, 2017)
Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best ...
Article
Thumbnail

Genomic-enabled prediction in maize using kernel models with genotype x environment interaction 

Bandeira e Sousa, M.; Cuevas, J.; De Oliveira Couto, E.G.; Pérez-Rodríguez, P.; Jarquin, D.; Fritsche-Neto, R.; Burgueño, J.; Crossa, J. (Genetics Society of America, 2017)
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: ...
Article
Thumbnail

Genomic prediction in maize breeding populations with genotyping-by sequencing 

Crossa, J.; Beyene, Y.; Semagn, K.; Perez, P.; Hickey, J.M.; Chen Charles; Campos, G. de los; Burgueño, J.; Windhausen, V.S.; Buckler, E.S.; Jannink, J.L.; Lopez Cruz, M.A.; Babu, R. (Genetics Society of America, 2013)
Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide polymorphism (SNP) arrays. Therefore, ...
Presentation
Thumbnail

Upstream research for accelerated genetic gain 

Olsen, M. (CIMMYT, 2018)
Article
Thumbnail

Genomic prediction in CIMMYT maize and wheat breeding programs 

Crossa, J.; Perez, P.; Hickey, J.; Burgueño, J.; Ornella, L.; Ceron-Rojas, J.; Zhang, X.; Dreisigacker, S.; Babu, R.; Li, Y.; Bonnett, D.; Mathews, K. (Springer Nature, 2014)
Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending ...
  • 1
  • 2

Collections

Genetic ResourcesInstitutionalIntegrated DevelopmentMaizeSocioeconomicsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Collection
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Crossa, J. (9)Olsen, M. (8)Prasanna, B.M. (7)Beyene, Y. (6)Burgueño, J. (6)Zhang, Xuecai (6)Pérez-Rodríguez, P. (5)Ao Zhang (4)Babu, R. (4)San Vicente Garcia, F.M. (4)... View More
Date Issued
2022 (1)2021 (7)2019 (1)2018 (1)2017 (2)2015 (2)2014 (1)2013 (1)
Type
Article (15)Presentation (1)
Agrovoc
MARKER-ASSISTED SELECTION (11)MAIZE (7)GENOMICS (4)ARTIFICIAL SELECTION (3)DATA ANALYSIS (3)FORECASTING (3)STATISTICAL METHODS (3)BEST LINEAR UNBIASED PREDICTOR (2)CHROMOSOME MAPPING (2)GENOTYPE ENVIRONMENT INTERACTION (2)... View More
Keywords
Genomic Selection (16)
Genomic Prediction (3)GenPred (3)Prediction Accuracy (3)Shared Data Resources (3)GBLUP (2)Genotyping by Sequencing (2)Association Mapping (1)Bayesian LASSO (1)Best Linear Unbiased Prediction (1)... View More


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback