Show simple item record

Operational manual for turbo happy seeder: technology for managing crop residues with environmental stewardship

Author: Jat, M.L.
Author: Kapil
Author: Kamboj, B.R.
Author: Sidhu, H.S.
Author: Singh, M.
Author: Bana, A.
Author: Bishnoi, D.K.
Author: Gathala, M.K.
Author: Saharawat, Y.S.
Author: Kumar, V.
Author: Kumar, A.
Author: Jat, H.S.
Author: Jat, R.K.
Author: Sharma, P.C.
Author: Sharma, R.K.
Author: Singh, R.
Author: Sapkota, T.B.
Author: Malik, R.K.
Author: Gupta, R.
Year: 2013
Abstract: Multiple challenges associated with plough based conventional production practices that include deteriorating natural resources, declining factor productivity, yield plateau, shortages of water & labour and escalating costs of production inputs coupled with emerging challenges of climate change both in irrigated intensive systems as well as low intensity rainfed ecologies are the major threat to food security of South Asia (Jat et al, 2009; Ladha et al, 2009; Chauhan et al, 2012). Water and labour scarcity and timeliness of farming operations specially crop establishment under the emerging climatic uncertainties are becoming major concerns of farming all across farmer typologies, production systems and ecologies in the region (Chauhan et al, 2012). In many parts of South Asia, over-exploitation and poor management of groundwater has led to declining water table and negative environmental impacts. Conventional tillage based flooded rice receiving the largest amount of fresh water compared to any other crop is the major contributor to the problems of declining groundwater table ranging from 0.1– 1.0 m year-1 specially in north-west India and increasing energy use and costs. The problem has further been intensified with the unavailability of labour in time, and multi-fold increase in labour costs. Fragmented land holdings and nucleus farm families further exacerbates the problem of availability of farm labour. Potential solutions to address these issues include a shift from intensive tillage based practices to conservation agriculture (CA) based crop management systems (Saharawat et al, 2010; Jat et al, 2012; Gathala et al, 2013). Direct drilling (seeding/planting with zero tillage technology) is one such practice that potentially addresses the issues of labor, energy, water, soil health etc (Malik et al 2005; Gupta and Sayre, 2007; Jat et al, 2009; Ladha et al, 2009; Gathala et al, 2011; Jat et al, 2013) and adaptations to climatic variability (Jat et al, 2009; Malik et al, 2013). One of the key elements of CA is rational soil cover with organics (crop residues, cover crops etc) has greater relevance not only in terms of managing the agricultural waste but particularly for eliminating burning, improving soil health, conserve water, help in adaptation to and mitigating of climate change effects. Globally, annual production of crop residues is estimated at 3440 million tonnes of which large quantities are not managed properly. In India alone, more than 140 million tonnes of crop residues are disposed of by burning each year. In rice-wheat system of the IGP of South Asia, the disposal of rice residues is one of the major challenges due to poor quality for fodder, bioconversion, and engineering applications. In most combine harvested rice fields of western IGP, the rice residues are burnt before planting of wheat. The field burning of crop residues is a major contributor to poor air quality (particulates, greenhouse gases), human respiratory ailments, and the death of beneficial soil fauna and micro-organisms. During burning of crop residues around 80% of carbon is lost as CO2 and a small fraction is evolved as CO. Burning involving incomplete combustion can also be a source of net emissions of many greenhouse gases including CO, CH4, SO2 and N2O. Crop residue burning accounts 6.6 million tonnes of CO2 equivalent emission annually in India (INCCA, 2010). Apart from loss of carbon, up to 80% loss of N and S, 25% of P and 21% of K occurs during burning of crop residues (Ponnamperuma, 1984; Yadvinder-Singh et al., 2010). For managing residues of combine harvested crops and field (loose as well as anchored) as surface mulch and realize multiple benefits of improve crop yields, conserve soil moisture, saving of irrigation, buffer soil temperature, improve SOC, adapt to terminal heat effects in addition to environmental benefits through eliminating burning, ‘Turbo Happy Seeder’, is now available, which is capable of direct drilling (ZT) into heavy surface residue loads in a single operation. Many of the farmers in India and elsewhere have started using Turbo Happy Seeder for residue management. However, one of the major constraints in large scale adoption of this technology as well as sub-optimal use efficiency of planter is the lack of skills/knowledge on operation, calibration and maintenance of the machinery. There are different field situation specific adjustments needed before the use of the machine in the field. These adjustments include proper seeding depth, fertilizer rate and the seed rate etc as per the crop and field conditions to realize the potential benefits of the technology. There are several machinery manufacturers who supply these planters but the operational manuals are not available for making adjustments, calibrations under local conditions. In absence of the proper operational guidelines and protocols for efficient use of this machine by the farmers, service providers, extension agents, many a times the desirable results are not achieved and even contradictory results are observed. This results in slow down the adoption rates of the technology. Also, in absence of simple guidelines for maintenance of the machine, the farmers/service providers need to make huge investments on repairing at the start of the season. Therefore, we attempted to develop an operational manual to provide simple guidelines for calibration, operation, maintenance and troubleshooting for efficient use of turbo happy seeder by the range of stakeholders including farmers, service providers, extension agents and researchers.
Format: PDF
Language: English
Publisher: CIMMYT
Publisher: ICAR
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Handbook
Country focus: India
Region: South Asia
Place of Publication: New Delhi (India)
Pages: vi, 28 pages

Files in this item


This item appears in the following Collection(s)

  • Sustainable Intensification
    Sustainable intensification agriculture including topics on cropping systems, agronomy, soil, mechanization, precision agriculture, etc.

Show simple item record