Multimodal deep learning methods enhance genomic prediction of wheat breeding
Type:
Title:
Multimodal deep learning methods enhance genomic prediction of wheat breeding
Creator:
Montesinos-López, A.;
Rivera-Amado, C.;
Pinto Espinosa, F.;
Piñera Chavez, F.J.;
González-Diéguez, D.;
Reynolds, M.P.;
https://orcid.org/0000-0002-4291-4316
Scopus ID
Researcher ID
Items in this Repository
View
Perez-Rodriguez, P.;
Huihui Li;
Montesinos-Lopez, O.A.;
https://orcid.org/0000-0002-3973-6547
Scopus ID
Items in this Repository
View
Crossa, J.
Rivera-Amado, C.;

Pinto Espinosa, F.;

Piñera Chavez, F.J.;

González-Diéguez, D.;

Reynolds, M.P.;

Reynolds, M.P.



View
Perez-Rodriguez, P.;
Huihui Li;

Montesinos-Lopez, O.A.;
Montesinos-Lopez, O.A.


View
Crossa, J.

Year:
2023
Journal volume:
13
Journal issue:
5
Article number:
jkad045
Access Rights:
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Citation:
Multimodal deep learning methods enhance genomic prediction of wheat breeding. 2023. 13 (5) DOI: 10.1093/g3journal/jkad045