Show simple item record

Subterranean microbiome affiliations of plantain (Musa spp.) under diverse agroecologies of Western and Central Africa

Creator: Kaushal, M.
Creator: Kolombia, Y.
Creator: Alakonya, A.
Creator: Fotso Kuate, A.
Creator: Ortega Beltran, A.
Creator: Amah, D.
Creator: Masso, C.
Year: 2021
URI: https://hdl.handle.net/10883/21678
Language: English
Publisher: Springer
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose
Type: Article
Country focus: Africa
Place of Publication: USA
Volume: In press
DOI: 10.1007/s00248-021-01873-x
Keywords: Microbial Diversity
Keywords: Smallholder Farmers
Keywords: Metagenomics
Description: Plantain (Musa spp.) is a staple food crop and an important source of income for millions of smallholder farmers in sub-Saharan Africa (SSA). However, there is a paucity of knowledge on soil microbial diversity in agroecologies where plantains are grown. Microbial diversity that increases plant performance with multi-trophic interactions involving resiliency to environmental constraints is greatly needed. For this purpose, the bacterial and fungal communities of plantain fields in high rainfall forests (HR) and derived savannas (SV) were studied using Illumina MiSeq for 16S rDNA and ITS amplicon deep sequencing. Microbial richness (α- and β-diversity), operational taxonomic units, and Simpson and Shannon–Wiener indexes (observed species (Sobs), Chao, ACE; P < 0.05) suggested that there were significant differences between HR and SV agroecologies among the most abundant bacterial communities, and some specific dynamic response observed from fungal communities. Proteobacteria formed the predominant bacterial phylum (43.7%) succeeded by Firmicutes (24.7%), and Bacteroidetes (17.6%). Ascomycota, Basidiomycota, and Zygomycota were the three most dominant fungal phyla in both agroecologies. The results also revealed an immense array of beneficial microbes in the roots and rhizosphere of plantain, including Acinetobacter, Bacillus, and Pseudomonas spp. COG and KEGG Orthology database depicted significant variations in the functional attributes of microbes found in the rhizosphere to roots. This result indicates that the different agroecologies and host habitats differentially support the dynamic microbial profile and that helps in altering the structure in the rhizosphere zone for the sake of promoting synergistic host-microbe interactions particularly under resource-poor conditions of SSA.
Agrovoc: MICROORGANISMS
Agrovoc: MUSA
Agrovoc: AGROECOLOGY
Agrovoc: SMALLHOLDERS
Agrovoc: GENOMICS
ISSN: 0095-3628
Journal: Microbial Ecology


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Genetic Resources
    Genetic Resources including germplasm collections, wild relatives, genotyping, genomics, and IP

Show simple item record