Show simple item record

Combined multistage linear genomic selection indices to predict the net genetic merit in plant breeding

Author: Ceron Rojas, J.J.
Author: Crossa, J.
Year: 2020
ISSN: 2160-1836 (Print)
URI: https://hdl.handle.net/10883/20901
Format: PDF
Language: English
Publisher: Genetics Society of America
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Article
Place of Publication: Bethesda, MD (USA)
Pages: 2087-2101
Issue: 6
Volume: 10
DOI: 10.1534/g3.120.401171
Description: A combined multistage linear genomic selection index (CMLGSI) is a linear combination of phenotypic and genomic estimated breeding values useful for predicting the individual net genetic merit, which in turn is a linear combination of the true unobservable breeding values of the traits weighted by their respective economic values. The CMLGSI is a cost-saving strategy for improving multiple traits because the breeder does not need to measure all traits at each stage. The optimum (OCMLGSI) and decorrelated (DCMLGSI) indices are the main CMLGSIs. Whereas the OCMLGSI takes into consideration the index correlation values among stages, the DCMLGSI imposes the restriction that the index correlation values among stages be zero. Using real and simulated datasets, we compared the efficiency of both indices in a two-stage context. The criteria we applied to compare the efficiency of both indices were that the total selection response of each index must be lower than or equal to the single-stage combined linear genomic selection index (CLGSI) response and that the correlation of each index with the net genetic merit should be maximum. Using four different total proportions for the real dataset, the estimated total OCMLGSI and DCMLGSI responses explained 97.5% and 90%, respectively, of the estimated single-stage CLGSI selection response. In addition, at stage two, the estimated correlations of the OCMLGSI and the DCMLGSI with the net genetic merit were 0.84 and 0.63, respectively. We found similar results for the simulated datasets. Thus, we recommend using the OCMLGSI when performing multistage selection.
Agrovoc: BREEDING VALUE
Agrovoc: GENETIC MARKERS
Agrovoc: PLANT BREEDING
Agrovoc: MARKER-ASSISTED SELECTION
Related Datasets: https://hdl.handle.net/11529/10548356
Related Datasets: https://hdl.handle.net/11529/10199
Journal: G3: Genes, Genomes, Genetics


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Genetic Resources
    Genetic Resources including germplasm collections, wild relatives, genotyping, genomics, and IP

Show simple item record