New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes
Type:
Title:
New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes
Author:
Montesinos-Lopez, O.A.;
https://orcid.org/0000-0002-3973-6547
Scopus ID
Items in this Repository
View
Martin-Vallejo, J.;
Crossa, J.;
Gianola, D.;
Hernández Suárez, C.M.;
Montesinos-López, A.;
Juliana, P.;
Singh, R.P.
Montesinos-Lopez, O.A.


View
Martin-Vallejo, J.;
Crossa, J.;

Gianola, D.;
Hernández Suárez, C.M.;
Montesinos-López, A.;
Juliana, P.;

Singh, R.P.

Year:
2019
Copyright:
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Journal:
G3: Genes, Genomes, Genetics
Journal volume:
9
Journal issue:
5
Pages:
1545-1556
Place of Publication:
Bethesda, MD (USA)
Publisher:
Genetics Society of America
Citation:
New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes. 2019. Montesinos-Lopez, O.A.; Martin-Vallejo, J.; Crossa, J.; Gianola, D.; Hernández Suárez, C.M.; Montesinos-López, A.; Juliana, P.; Singh, R.P. 9 (5) DOI: 10.1534/g3.119.300585 Genetics Society of America.