Show simple item record

Genome-wide association mapping for leaf tip necrosis and pseudo-black chaff in relation to durable rust resistance in wheat

Author: Juliana, P.
Author: Rutkoski, J.
Author: Poland, J.A.
Author: Singh, R.P.
Author: Murugasamy, S.
Author: Natesan, S.
Author: Barbier, H.
Author: Sorrells, M.E.
Year: 2015
ISSN: 1940-3372
URI: https://hdl.handle.net/10883/19705
Descriptors: Partial Rust
Descriptors: Resistance Genes
Descriptors: Genome Wide Association Mapping
Descriptors: Leaf Tip Necrosis
Descriptors: Wheat
Abstract: The partial rust resistance genes Lr34 and Sr2 have been used extensively in wheat (Triticum aestivum L.) improvement, as they confer exceptional durability. Interestingly, the resistance of Lr34 is associated with the expression of leaf tip necrosis (LTN) and Sr2 with pseudo-black chaff (PBC). Genome-wide association mapping using CIMMYT’s stem rust resistance screening nursery (SRRSN) wheat lines was done to identify genotyping-by-sequencing (GBS) markers linked to LTN and PBC. Phenotyping for these traits was done in Ithaca, New York (fall 2011); Njoro, Kenya (main and off-seasons, 2012), and Wellington, India (winter, 2013). Using the mixed linear model (MLM), 18 GBS markers were significantly associated with LTN. While some markers were linked to loci where the durable leaf rust resistance genes Lr34 (7DS), Lr46 (1BL), and Lr68 (7BL) were mapped, significant associations were also detected with other loci on 2BL, 5B, 3BS, 4BS, and 7BS. Twelve GBS markers linked to the Sr2 locus (3BS) and loci on 2DS, 4AL, and 7DS were significantly associated with PBC. This study provides insight into the complex genetic control of LTN and PBC. Further efforts to validate and study these loci might aid in determining the nature of their association with durable resistance.
Abstract: The partial rust resistance genes Lr34 and Sr2 have been used extensively in wheat (Triticum aestivum L.) improvement, as they confer exceptional durability. Interestingly, the resistance of Lr34 is associated with the expression of leaf tip necrosis (LTN) and Sr2 with pseudo-black chaff (PBC). Genome-wide association mapping using CIMMYT’s stem rust resistance screening nursery (SRRSN) wheat lines was done to identify genotyping-by-sequencing (GBS) markers linked to LTN and PBC. Phenotyping for these traits was done in Ithaca, New York (fall 2011); Njoro, Kenya (main and off-seasons, 2012), and Wellington, India (winter, 2013). Using the mixed linear model (MLM), 18 GBS markers were significantly associated with LTN. While some markers were linked to loci where the durable leaf rust resistance genes Lr34 (7DS), Lr46 (1BL), and Lr68 (7BL) were mapped, significant associations were also detected with other loci on 2BL, 5B, 3BS, 4BS, and 7BS. Twelve GBS markers linked to the Sr2 locus (3BS) and loci on 2DS, 4AL, and 7DS were significantly associated with PBC. This study provides insight into the complex genetic control of LTN and PBC. Further efforts to validate and study these loci might aid in determining the nature of their association with durable resistance.
Language: English
Publisher: Crop Science Society of America
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Article
Place: United States
Journal issue: 2
Journal: The Plant Genome
Journal volume: 8
DOI: 10.3835/plantgenome2015.01.0002
Audicence: Researchers


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Wheat
    Wheat - breeding, phytopathology, physiology, quality, biotech

Show simple item record