Show simple item record

Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: Assessment of wheat grain yield and grain protein content

Author: Rodrigues, F.
Author: Blasch, G.
Author: Defourny, P.
Author: Ortíz-Monasterios, I.
Author: Schulthess, U.
Author: Zarco‑Tejada, P.J.
Author: Taylor, J.A.
Author: Gerard, B.
Year: 2018
URI: https://hdl.handle.net/10883/19535
Abstract: This study evaluates the potential of high resolution hyperspectral airborne imagery to capture within-field variability of durum wheat grain yield (GY) and grain protein content (GPC) in two commercial fields in the Yaqui Valley (northwestern Mexico). Through a weekly/biweekly airborne flight campaign, we acquired 10 mosaics with a micro-hyperspectral Vis-NIR imaging sensor ranging from 400-850 nanometres (nm). Just before harvest, 114 georeferenced grain samples were obtained manually. Using spectral exploratory analysis, we calculated narrow-band physiological spectral indices-normalized difference spectral index (NDSI) and ratio spectral index (RSI)-from every single hyperspectral mosaic using complete two by two combinations of wavelengths. We applied two methods for the multi-temporal hyperspectral exploratory analysis: (a) Temporal Principal Component Analysis (tPCA) on wavelengths across all images and (b) the integration of vegetation indices over time based on area under the curve (AUC) calculations. For GY, the best R2 (0.32) were found using both the spectral (NDSI-Ri, 750 to 840 nm and Rj, ±720-736 nm) and the multi-temporal AUC exploratory analysis (EVI and OSAVI through AUC) methods. For GPC, all exploratory analysis methods tested revealed (a) a low to very low coefficient of determination (R2 ? 0.21), (b) a relatively low overall prediction error (RMSE: 0.45-0.49%), compared to results from other literature studies, and (c) that the spectral exploratory analysis approach is slightly better than the multi-temporal approaches, with early season NDSI of 700 with 574 nm and late season NDSI of 707 with 523 nm as the best indicators. Using residual maps from the regression analyses of NDSIs and GPC, we visualized GPC within-field variability and showed that up to 75% of the field area could be mapped with relatively good predictability (residual class: -0.25 to 0.25%), therefore showing the potential of remote sensing imagery to capture the within-field variation of GPC under conventional agricultural practices.
Format: PDF
Language: English
Publisher: MDPI
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Article
Place of Publication: Basel, Switzerland
Issue: 6
Volume: 10
DOI: 10.3390/rs10060930
Keywords: Narrow-Band Indices
Keywords: Normalized Difference Spectral Index
Keywords: Spatial-Temporal Variability
Keywords: Within-Field Variability
Keywords: Principal Component Analysis
Keywords: Time Series
Country of Focus: YAQUI VALLEY
Country of Focus: NORTHWEST MEXICO
Agrovoc: TIME SERIES ANALYSIS
Agrovoc: AERIAL SURVEYING
Agrovoc: WHEAT
Agrovoc: PROTEIN CONTENT
Journal: Remote Sensing


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Genetic Resources
    Genetic Resources including germplasm collections, wild relatives, genotyping, genomics, and IP

Show simple item record