Mostrar el registro sencillo del ítem

Stay-green and associated vegetative indices to breed maize adapted to heat and combined Heat-Drought Stresses

Autor: Cerrudo, D.
Autor: Gonzalez-Perez, L.
Autor: Mendoza, A.
Autor: Trachsel, S.
Año: 2017
URI: https://hdl.handle.net/10883/19360
URI: https://hdl.handle.net/10883/19360
Descripción: Maize
Descripción: Drought stress
Descripción: Heat stress
Resumen: The objective of this study was to assess the importance of stay-green on grain yield under heat and combined heat and drought stress and to identify the associated vegetative indices allowing higher throughput in order to facilitate the identification of climate resilient germplasm. Hybrids of tropical and subtropical adaptation were evaluated under heat and combined heat and drought stress in 2014 and 2015. Five weekly measurements with an airplane mounted multispectral camera starting at anthesis were used to estimate the area under the curve (AUC) for vegetation indices during that period; the indices were compared to the AUC (AUCSEN) for three visual senescence scores taken two, four, and six weeks after flowering and a novel stay-green trait (AUC for stay-green; AUCSG) derived from AUCSEN by correcting for the flowering date. Heat and combined heat and drought stress reduced grain yield by 53% and 82% (relative to non-stress trials reported elsewhere) for trials carried out in 2014 and 2015, respectively, going along with lower AUCSG in 2014. The AUCSG was consistently correlated with grain yield across trials and years, reaching correlation coefficients of 0.55 and 0.56 for 2014 and 2015, respectively. The AUC for different vegetative indices, AUCNDVI (rgGY = 0.62; rgAUCSG = 0.72), AUCHBSI (rgGY = 0.64; rgAUCSG = 0.71), AUCGRE (rgGY = 0.57; rgAUCSG = 0.61), and AUCCWMI (rgGY = 0.63; rgAUCSG = 0.75), were associated with grain yield and stay-green across experiments and years. Due to its good correlation with grain yield and stay-green across environments, we propose AUCNDVI for use as an indicator for stay-green and a long grain filling. The trait AUCNDVI can be used in addition to grain yield to identify climate-resilient germplasm in tropical and subtropical regions to increase food security in a changing climate
Lenguaje: English
Editor: MDPI AG
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Tipo: Article
Lugar: Basel, Switzerland
Paginas: 1-13
No de Revista: 3
Revista: Remote Sensing
Volumen de la Revista: 9
DOI: 10.3390/rs9030235


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Maize
    Maize breeding, phytopathology, entomology, physiology, quality, and biotech

Mostrar el registro sencillo del ítem