Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield
Type:
Title:
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield
Author:
Aguate, F.M.;
Trachsel, S.;
Gonzalez-Perez, L.;
Burgueño, J.;
Crossa, J.;
Balzarini, M.;
Gouache, D.;
Bogard, M.;
De los Campos, G.
Trachsel, S.;
Gonzalez-Perez, L.;
Burgueño, J.;

Crossa, J.;

Balzarini, M.;
Gouache, D.;
Bogard, M.;
De los Campos, G.
Year:
2017
Copyright:
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Journal:
Crop Science
Journal volume:
57
Journal issue:
5
Pages:
2517-2524
Place of Publication:
Madison, Wisconsin, U.S.
Publisher:
Crop Science Society of America (CSSA)
Citation:
Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield. 2017. Aguate, F.M.; Trachsel, S.; Gonzalez-Perez, L.; Burgueño, J.; Crossa, J.; Balzarini, M.; Gouache, D.; Bogard, M.; De los Campos, G. 57 (5) DOI: 10.2135/cropsci2017.01.0007 Crop Science Society of America (CSSA).