Show simple item record

Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat

Author: Velu, G.
Author: Singh, R.P.
Author: Huerta Espino, J.
Author: Guzman, C.
Year: 2017
Abstract: Wheat is a major staple food crop providing about 20% of dietary energy and proteins, and food products made of whole grain wheat are a major source of micronutrients like Zinc (Zn), Iron (Fe), Manganese (Mn), Magnesium (Mg), Vitamin B and E. Wheat provides about 40% intake of essential micronutrients by humans in the developing countries relying on wheat based diets. Varieties with genetically enhanced levels of grain micronutrient concentrations can provide a cost-effective and sustainable option to resource poor wheat consumers. To determine the effects of commonly deployed dwarfing genes on wheat grain Zn, Fe, Mn and Mg concentrations, nine bread wheat (Triticum aestivum) and six durum wheat (T. turgidum) isoline pairs differing for Rht1 (= Rht-B1b) and one bread wheat pair for Rht2 (= Rht-D1b) dwarfing genes were evaluated for three crop seasons at N.E. Borlaug Research Station, Cd. Obregon, Sonora, Mexico. Presence of dwarfing genes have significantly reduced grain Zn concentration by 3.9 ppm (range 1.9-10.0 ppm), and Fe by 3.2 ppm (range 1.0-14.4 ppm). On the average, about 94 ppm Mg and 6 ppm Mn reductions occurred in semidwarf varieties compared to tall varieties. The thousand kernel weight (TKW) of semidwarf isolines was 2.6 g (range 0.7-5.6 g) lower than the tall counterparts whereas the plant height decreased by 25 cm (range 16–37 cm). Reductions for all traits in semidwarfs were genotype dependent and the magnitude of height reductions did not correlate with reductions in micronutrient concentrations in wheat grain. We conclude that increased grain yield potential of semidwarf wheat varieties is associated with reduced grain micronutrient concentrations; however, the magnitude of reductions in micronutrients varied depending on genetic background and their associated pleiotropic effect on yield components.
Format: PDF
Language: English
Publisher: Elsevier
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Article
Place of Publication: Amsterdam, Netherlands
Pages: pages 373-377
Volume: v. 214
DOI: 10.1016/j.fcr.2017.09.030
Keywords: Rht Dwarfing Genes
Keywords: Isogenic Lines
Keywords: Micronutrients
Keywords: Biofortification
Agrovoc: WHEAT
Agrovoc: GENES
Journal: Field Crops Research

Files in this item


This item appears in the following Collection(s)

  • Wheat
    Wheat - breeding, phytopathology, physiology, quality, biotech

Show simple item record