Show simple item record

Cluster analysis, an approach to sampling variability in maize accessions

Author: Rincón-Sánchez, Froylan
Author: Johnson, B.
Author: Crossa, J.
Author: Taba, S.
Year: 1996
URI: http://hdl.handle.net/10883/1629
Abstract: Cluster analysis is frequently used to classify maize (Zen mays L.) accessions and can be used by breeders and geneticists to identify subsets of accessions which have potential utility for specific breeding or genetic purposes. Phenograms can be utilized to define subsets of accessions on the basis of dissimilarity coefficients. Phenograms created using cluster analysis depend on the clustering method, and on type and number of attributes used to compute associations among individuals. The objectives of this study were to 1) compare several clustering strategies used for grouping Caribbean maize accessions, 2) define groups having similar characteristics, and 3) obtain a representative subset of the total number of accessions evaluated. Four hierarchical clustering strategies were compared: single linkage, unweighted pair-group method using arithmetic averages (UPGMA), using centroids, and Ward's. Each method was evaluated using two data sets, and varying types and numbers of traits. Average euclidean squared distance was used as the dissimilarity measure. Phenogram agreement was evaluated by the cophenetic correlation coefficients. Cophenetic correlation and inspection of phenograms suggested that in preference to the other strategies, UPGMA can be utilized to group maize accessions using agronomic and morphological data. Number of individuals and number of traits affected computation of dissimilarity measures among accessions. For large data sets, it might be useful to include as many traits as possible to compute the dissimilarity measures. In addition to clustering methods, principal component analysis helped to form groups which had particular characteristics that accounted for phenotypic diversity present in the whole population. Groups were formed on basis of common clusters identified by a consensus analysis. Each group was exposed to a stratified sampling process to define a subset in proportion to their number of accessions. A set of 43 entries (23%) was identified as a selected subset representing the 184 accessions evaluated. The relationships among accessions defined by the phenogram, and the associated race classification indicated that phenetic relationship can be used to group maize accessions, and consequently definine subsets, in proportion to the number of accessions
Language: English
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Article
Region: Global
Pages: 307-316
Journal issue: 4
Journal: Maydica
Journal volume: 41
Keywords: Zea mays
Keywords: Maize
Keywords: Classification
Keywords: Analytical methods
Keywords: Statistical analysis
Keywords: Sampling


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Genetic Resources
    Genetic Resources including germplasm collections, wild relatives, genotyping, genomics, and IP
  • Maize
    Maize breeding, phytopathology, entomology, physiology, quality, and biotech

Show simple item record