Show simple item record

Earthworm activity and soil structural changes under conservation agriculture in central Mexico

Author: Castellanos-Navarrete, A.
Author: Rodriguez-Aragones, C.
Author: Goede, R.G.M. de
Author: Kooistra, M.J.
Author: Sayre, K.D.
Author: Brussaard, L.
Author: Pulleman, M.M.
Year: 2012
ISSN: 0167-1987
URI: http://hdl.handle.net/10883/1571
Abstract: Crop residue mulching combined with zero tillage and crop rotation, known as conservation agriculture (CA), is being promoted as an alternative system to revert soil degradation in maize-based farming in the central highlands of Mexico. The goal of this paper was to determine the effects of CA vs. conventional tillage systems on soil quality, with a special focus on the role of earthworms in affecting the soil structure morphology, and on crop yield. For the conventional tillage system, the effect of crop residue retention (CONV + RES) was also compared to the conventional farmers? practice (residues removed; CONV). CA resulted in four times higher earthworm abundance when compared to CONV. Residue retention per se (CONV + RES) did not favor earthworm abundance. In all cases the earthworm community was dominated by exotic species. CA increased total N and soil organic C concentrations relative to CONV, but only at 0?5 cm soil depth. Nevertheless, the more pronounced vertical stratification of soil organic carbon content under CA favored soil surface aggregation and aggregate stability as expressed by the aggregate mean weight diameter after dry sieving (MWDds = 2.6 mm for CA and 1.6 mm for CONV) and wet sieving (MWDws = 0.9 mm and 0.6 mm, respectively). Also, CA improved topsoil water stable macroaggregation (WSA = 415 mg g−1) when compared to CONV (251 mg g−1). Residue retention within conventional tillage (CONV + RES) led to small increases in topsoil aggregate stability (i.e. MWDds and WSA). Soil structural improvements were accompanied by a higher direct surface water infiltration. Micromorphological analysis of thin sections indicated a loose and highly biogenic soil microstructure in CA, whereas CONV was characterized by a physicogenic microstructure, despite similar soil bulk densities (SBD). SBD is thus a poor indicator of soil physical quality when comparing different tillage systems. Redundancy analysis illustrated that CA resulted in improvement in most parameters related to soil quality, especially at the soil surface, but significant yield increases were recorded only in 2004. CONV + RES lead to marginal improvements in soil quality with no yield increases.
Language: English
Copyright: CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Type: Article
Country: Mexico
Region: North America
Pages: 61-70
Journal: Soil and Tillage Research
Journal volume: 123
DOI: 10.1016/j.still.2012.03.011
Keywords: Central Mexico
Keywords: Crop residue management
Keywords: No-tillage
Keywords: Thin sections
Keywords: Zea mays


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Sustainable Intensification
    Sustainable intensification agriculture including topics on cropping systems, agronomy, soil, mechanization, precision agriculture, etc.

Show simple item record