Search
Now showing items 1-10 of 23
Article
A bayesian poisson-lognormal model for count data for multiple-trait multiple-environment genomic-enabled prediction
(Genetics Society of America, 2017)
When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait ...
Article
A zero altered Poisson random forest model for genomic-enabled prediction
(Genetics Society of America, 2021)
Article
Origin specific genomic selection: a simple process to optimize the favorable contribution of parents to progeny
(Genetics Society of America, 2020)
Article
Bayesian multitrait kernel methods improve multienvironment genome-based prediction
(Oxford University Press, 2022)
Article
New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes
(Genetics Society of America, 2019)
Multiple-trait experiments with mixed phenotypes (binary, ordinal and continuous) are not rare in animal and plant breeding programs. However, there is a lack of statistical models that can exploit the correlation between ...
Article
A genomic bayesian multi-trait and multi-environment model
(Genetics Society of America, 2016)
When information on multiple genotypes evaluated in multiple environments is recorded, a multi-environment single trait model for assessing genotype · environment interaction (G · E) is usually employed. Comprehensive ...
Article
Prediction of multiple-trait and multiple-environment genomic data using recommender systems
(Genetics Society of America, 2018)
In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. ...
Article
An R Package for Bayesian analysis of multi-environment and multi-trait multi-environment data for genome-based prediction
(Genetics Society of America, 2019)
Evidence that genomic selection (GS) is a technology that is revolutionizing plant breeding continues to grow. However, it is very well documented that its success strongly depends on statistical models, which are used by ...
Article
Genomic-enabled prediction in maize using kernel models with genotype x environment interaction
(Genetics Society of America, 2017)
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: ...
Article
Bayesian Genomic Prediction with Genotype x Environment Interaction Kernel Models
(Genetics Society of America, 2017)
The phenomenon of genotype · environment (G · E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G · E have been ...