Search
Now showing items 1-10 of 23
Article
Increased prediction accuracy in wheat breeding trials using a marker x environment interaction Genomic Selection model
(Genetics Society of America, 2015)
Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates of selection. Originally, these models were developed without considering genotype · environment interaction( G·E). ...
Article
A genomic selection index applied to simulated and real data
(Genetics Society of America, 2015)
A genomic selection index (GSI) is a linear combination of genomic estimated breeding values that uses genomic markers to predict the net genetic merit and select parents from a nonphenotyped testing population. Some authors ...
Article
An R Package for Bayesian analysis of multi-environment and multi-trait multi-environment data for genome-based prediction
(Genetics Society of America, 2019)
Evidence that genomic selection (GS) is a technology that is revolutionizing plant breeding continues to grow. However, it is very well documented that its success strongly depends on statistical models, which are used by ...
Article
New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes
(Genetics Society of America, 2019)
Multiple-trait experiments with mixed phenotypes (binary, ordinal and continuous) are not rare in animal and plant breeding programs. However, there is a lack of statistical models that can exploit the correlation between ...
Article
Prediction of multiple-trait and multiple-environment genomic data using recommender systems
(Genetics Society of America, 2018)
In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. ...
Article
A Bayesian decision theory approach for genomic selection
(Genetics Society of America, 2018)
Plant and animal breeders are interested in selecting the best individuals from a candidate set for the next breeding cycle. In this paper, we propose a formal method under the Bayesian decision theory framework to tackle ...
Article
Genomic-enabled prediction in maize using kernel models with genotype x environment interaction
(Genetics Society of America, 2017)
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: ...
Article
Bayesian Genomic Prediction with Genotype x Environment Interaction Kernel Models
(Genetics Society of America, 2017)
The phenomenon of genotype · environment (G · E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G · E have been ...
Article
Genomic prediction in maize breeding populations with genotyping-by sequencing
(Genetics Society of America, 2013)
Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide polymorphism (SNP) arrays. Therefore, ...
Article
Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat
(Genetics Society of America, 2012)
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The ...