• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Search
  •   DSpace Home
  • CIMMYT
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-8 of 8

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Article
Thumbnail

Prediction of multiple-trait and multiple-environment genomic data using recommender systems 

Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Crossa, J.; Montesinos-López, J.C.; Mota-Sanchez, D.; Estrada-González, F.; Gillberg, J.; Singh, R.G.; Mondal, S.; Juliana, P. (Genetics Society of America, 2018)
In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. ...
Article
Thumbnail

Genomic-enabled prediction in maize using kernel models with genotype x environment interaction 

Bandeira e Sousa, M.; Cuevas, J.; De Oliveira Couto, E.G.; Pérez-Rodríguez, P.; Jarquin, D.; Fritsche-Neto, R.; Burgueño, J.; Crossa, J. (Genetics Society of America, 2017)
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: ...
Article
Thumbnail

Bayesian Genomic Prediction with Genotype x Environment Interaction Kernel Models 

Cuevas, J.; Montesinos-López, Osval A.; Burgueño, J.; Pérez-Rodríguez, P.; De los Campos, G. (Genetics Society of America, 2017)
The phenomenon of genotype · environment (G · E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G · E have been ...
Article
Thumbnail

A bayesian poisson-lognormal model for count data for multiple-trait multiple-environment genomic-enabled prediction 

Montesinos-Lopez, O.A.; Montesinos-López, A.; Crossa, J.; Toledo, F.H.; Montesinos-López, J.C.; Singh, P.K.; Juliana, P.; Salinas Ruiz. J. (Genetics Society of America, 2017)
When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait ...
Article
Thumbnail

BGGE: a new package for genomic-enabled prediction incorporating genotype × environment interaction models 

Granato, I.; Cuevas, J.; Luna-Vazquez, F.J.; Crossa, J.; Montesinos-Lopez, O.A.; Burgueño, J.; Fritsche-Neto, R. (Genetics Society of America, 2018)
One of the major issues in plant breeding is the occurrence of genotype × environment (GE) interaction. Several models have been created to understand this phenomenon and explore it. In the genomic era, several models were ...
Article
Thumbnail

Genomic-enabled prediction Kernel models with random intercepts for multi-environment trials 

Cuevas, J.; Granato, I.; Fritsche-Neto, R.; Montesinos-Lopez, O.A.; Burgueño, J.; Bandeira e Sousa, M.; Crossa, J. (Genetics Society of America, 2018)
In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multienvironment environment-specific ...
Article
Thumbnail

Genomic prediction with genotype by environment interaction analysis for kernel zinc concentration in tropical maize germplasm 

Mageto, E.K.; Crossa, J.; Perez-Rodriguez, P.; Dhliwayo, T.; Palacios-Rojas, N.; Lee, M.; Rui Guo; San Vicente, F.M.; Zhang, X.; Hindu, V. (Genetics Society of America, 2020)
Article
Thumbnail

Genomic prediction enhanced sparse testing for multi-environment trials 

Jarquín, D.; Howard, R.; Crossa, J.; Beyene, Y.; Gowda, M.; Martini, J.W.R.; Covarrubias-Pazaran, G.; Burgueño, J.; Pacheco Gil, R. A.; Grondona, M.; Wimmer, V.; Prasanna, B.M. (Genetics Society of America, 2020)

Collections

Genetic ResourcesInstitutionalMaizeSocioeconomicsSustainable Agrifood SystemsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Community
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Crossa, J. (7)Burgueño, J. (5)Montesinos-Lopez, O.A. (5)Cuevas, J. (4)Fritsche-Neto, R. (3)Pérez-Rodríguez, P. (3)E Sousa, M. (2)Granato, I. (2)Jarquin, D. (2)Juliana, P. (2)... View More
Date Issued
2020 (2)2018 (3)2017 (3)
Type
Article (8)
Agrovoc
GENOTYPE ENVIRONMENT INTERACTION (8)
GENOMICS (5)BAYESIAN THEORY (3)STATISTICAL METHODS (3)ARTIFICIAL SELECTION (1)BREEDING (1)DATA ANALYSIS (1)FORECASTING (1)GENETICS (1)MAIZE (1)... View More
Keywords
GenPred (8)
Shared Data Resources (8)Genomic Selection (5)Genomic Enabled Prediction Accuracy (2)Allocation of Nonoverlapping (1)Bayesian Genomic Enabled Prediction (1)Bayesian Genomic Linear Regression (1)BGGE (1)BGLR (1)Collaborative Foltering (1)... View More


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback