• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Search
  •   DSpace Home
  • CIMMYT
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 18

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Article
Thumbnail

A bayesian poisson-lognormal model for count data for multiple-trait multiple-environment genomic-enabled prediction 

Montesinos-Lopez, O.A.; Montesinos-López, A.; Crossa, J.; Toledo, F.H.; Montesinos-López, J.C.; Singh, P.K.; Juliana, P.; Salinas Ruiz. J. (Genetics Society of America, 2017)
When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait ...
Article
Thumbnail

A multivariate Poisson deep learning model for genomic prediction of count data 

Montesinos-Lopez, O.A.; Montesinos-Lopez, J.C.; Singh, P.K.; Lozano-Ramirez, N.; Barrón-López, A.; Montesinos-Lopez, A.; Crossa, J. (Genetics Society of America, 2020)
Article
Thumbnail

Maximum a posteriori Threshold Genomic Prediction model for ordinal traits 

Montesinos-López, A.; Gutierrez-Pulido, H.; Montesinos-Lopez, O.A.; Crossa, J. (Genetics Society of America, 2020)
Article
Thumbnail

A zero altered Poisson random forest model for genomic-enabled prediction 

Montesinos-Lopez, O.A.; Montesinos-López, A.; Mosqueda-Gonzalez, B.A.; Montesinos-Lopez, J.C.; Crossa, J.; Lozano-Ramirez, N.; Singh, P.K.; Valladares-Anguiano, F.A. (Genetics Society of America, 2021)
Article
Thumbnail

Origin specific genomic selection: a simple process to optimize the favorable contribution of parents to progeny 

Chin Jian Yang; Sharma, R.; Gorjanc, G.; Hearne, S.; Powell, W.; Mackay, I. (Genetics Society of America, 2020)
Article
Thumbnail

A genomic selection index applied to simulated and real data 

Ceron Rojas, J.J.; Crossa, J.; Arief, V.N.; Basford, K.E.; Rutkoski, J.; Jarquin, D.; Alvarado, G.; Beyene, Y.; Fentaye Kassa Semagn; DeLacy, I.H. (Genetics Society of America, 2015)
A genomic selection index (GSI) is a linear combination of genomic estimated breeding values that uses genomic markers to predict the net genetic merit and select parents from a nonphenotyped testing population. Some authors ...
Article
Thumbnail

Genomic-enabled prediction Kernel models with random intercepts for multi-environment trials 

Cuevas, J.; Granato, I.; Fritsche-Neto, R.; Montesinos-Lopez, O.A.; Burgueño, J.; Bandeira e Sousa, M.; Crossa, J. (Genetics Society of America, 2018)
In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multienvironment environment-specific ...
Article
Thumbnail

Genomic-enabled prediction in maize using kernel models with genotype x environment interaction 

Bandeira e Sousa, M.; Cuevas, J.; De Oliveira Couto, E.G.; Pérez-Rodríguez, P.; Jarquin, D.; Fritsche-Neto, R.; Burgueño, J.; Crossa, J. (Genetics Society of America, 2017)
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: ...
Article
Thumbnail

A bayesian genomic regression model with skew normal random errors 

Pérez-Rodríguez, P.; Acosta-Pech, R.; Perez-Elizalde, S.; Velasco Cruz, C.; Suarez Espinosa, J.; Crossa, J. (Genetics Society of America, 2018)
Genomic selection (GS) has become a tool for selecting candidates in plant and animal breeding programs. In the case of quantitative traits, it is common to assume that the distribution of the response variable can be ...
Article
Thumbnail

BGGE: a new package for genomic-enabled prediction incorporating genotype × environment interaction models 

Granato, I.; Cuevas, J.; Luna-Vazquez, F.J.; Crossa, J.; Montesinos-Lopez, O.A.; Burgueño, J.; Fritsche-Neto, R. (Genetics Society of America, 2018)
One of the major issues in plant breeding is the occurrence of genotype × environment (GE) interaction. Several models have been created to understand this phenomenon and explore it. In the genomic era, several models were ...
  • 1
  • 2

Collections

Genetic ResourcesInstitutionalIntegrated DevelopmentMaizeSocioeconomicsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Community
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Crossa, J. (15)Montesinos-Lopez, Osval Antonio (10)Burgueño, J. (6)Montesinos-López, A. (6)Pérez-Rodríguez, Paulino (5)Cuevas, Jaime (4)De Los Campos, Gustavo (3)Fritsche-Neto, Roberto (3)Juliana, P. (3)Singh, P.K. (3)... View More
Date Issued
2021 (1)2020 (3)2019 (2)2018 (4)2017 (3)2016 (2)2015 (2)2013 (1)
Type
Article (17)
Agrovoc
BAYESIAN THEORY (8)GENOMICS (7)STATISTICAL METHODS (7)DATA ANALYSIS (5)GENOTYPE ENVIRONMENT INTERACTION (5)MARKER-ASSISTED SELECTION (5)ARTIFICIAL SELECTION (4)PLANT BREEDING (4)CROP FORECASTING (3)FORECASTING (3)... View More
Keywords
Genomic Selection (18)
GenPred (18)
Shared Data Resources (17)Genomic Prediction (6)GBLUP (3)Deep Learning (2)Multi-Trait Multi-Environment (2)Support Vector Machine (2)Assymetric Distributions (1)Bayesian Decision Theory (1)... View More


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback