• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Search
  •   DSpace Home
  • CIMMYT
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-9 of 9

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Article
Thumbnail

Genomic-enabled prediction with classification algorithms 

Ornella, L.; Pérez, P.; Tapia, E.; González-Camacho, J.M.; Burgueño, J.; Zhang, X.; Singh, S.; Vicente, F.S.; Bonnett, D.; Dreisigacker, S.; Singh, R.; Long, N.; Crossa, J. (Springer Nature, 2014)
Pearson’s correlation coefficient (ρ) is the most commonly reported metric of the success of prediction in genomic selection (GS). However, in real breeding ρ may not be very useful for assessing the quality of the regression ...
Article
Thumbnail

Application of multi-trait Bayesian decision theory for parental genomic selection 

Villar-Hernandez, B.d.J.; Perez-Elizalde, S.; Martini, J.W.R.; Toledo, F.H.; Perez-Rodriguez, P.; Krause, M.; García-Calvillo, I.D.; Covarrubias, E.; Crossa, J. (Genetics Society of America, 2021)
Article
Thumbnail

A review of deep learning applications for genomic selection 

Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Perez-Rodriguez, P.; Barrón-López, A.; Martini, J.W.R.; Fajardo-Flores, S.B.; Gaytan-Lugo, L.S.; Santana-Mancilla, P.C.; Crossa, J. (BioMed Central, 2021)
Article
Thumbnail

Genomic prediction in CIMMYT maize and wheat breeding programs 

Crossa, J.; Perez, P.; Hickey, J.; Burgueño, J.; Ornella, L.; Ceron-Rojas, J.; Zhang, X.; Dreisigacker, S.; Babu, R.; Li, Y.; Bonnett, D.; Mathews, K. (Springer Nature, 2014)
Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending ...
Article
Thumbnail

Genomic prediction in maize breeding populations with genotyping-by sequencing 

Crossa, J.; Beyene, Y.; Semagn, K.; Perez, P.; Hickey, J.M.; Chen Charles; Campos, G. de los; Burgueño, J.; Windhausen, V.S.; Buckler, E.S.; Jannink, J.L.; Lopez Cruz, M.A.; Babu, R. (Genetics Society of America, 2013)
Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide polymorphism (SNP) arrays. Therefore, ...
Article
Thumbnail

Bayesian Genomic Prediction with Genotype x Environment Interaction Kernel Models 

Cuevas, J.; Montesinos-López, Osval A.; Burgueño, J.; Pérez-Rodríguez, P.; De los Campos, G. (Genetics Society of America, 2017)
The phenomenon of genotype · environment (G · E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G · E have been ...
Article
Thumbnail

Genomic-enabled prediction in maize using kernel models with genotype x environment interaction 

Bandeira e Sousa, M.; Cuevas, J.; De Oliveira Couto, E.G.; Pérez-Rodríguez, P.; Jarquin, D.; Fritsche-Neto, R.; Burgueño, J.; Crossa, J. (Genetics Society of America, 2017)
Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: ...
Article
Thumbnail

A bayesian genomic regression model with skew normal random errors 

Pérez-Rodríguez, P.; Acosta-Pech, R.; Perez-Elizalde, S.; Velasco Cruz, C.; Suarez Espinosa, J.; Crossa, J. (Genetics Society of America, 2018)
Genomic selection (GS) has become a tool for selecting candidates in plant and animal breeding programs. In the case of quantitative traits, it is common to assume that the distribution of the response variable can be ...
Article
Thumbnail

A Bayesian decision theory approach for genomic selection 

Villar-Hernandez, B.d.J.; Perez-Elizalde, S.; Crossa, J.; Perez-Rodriguez, P.; Toledo, F.H.; Burgueño, J. (Genetics Society of America, 2018)
Plant and animal breeders are interested in selecting the best individuals from a candidate set for the next breeding cycle. In this paper, we propose a formal method under the Bayesian decision theory framework to tackle ...

Collections

Genetic ResourcesInstitutionalIntegrated DevelopmentMaizeSocioeconomicsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Community
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Pérez-Rodríguez, P. (9)
Crossa, J. (8)Burgueño, J. (6)Babu, R. (2)Bonnett, D. (2)Cuevas, J. (2)De Los Campos, G. (2)Dreisigacker, S. (2)Hickey, J. (2)Martini, J.W.R. (2)... View More
Date Issued
2021 (2)2018 (2)2017 (2)2014 (2)2013 (1)
Type
Article (9)
Agrovoc
BAYESIAN THEORY (5)STATISTICAL METHODS (5)GENOMICS (4)ARTIFICIAL SELECTION (3)GENOTYPE ENVIRONMENT INTERACTION (3)MARKER-ASSISTED SELECTION (3)DATA ANALYSIS (2)FORECASTING (2)WHEAT (2)AGRONOMIC CHARACTERS (1)... View More
Keywords
Genomic Selection (9)
GenPred (5)Shared Data Resources (5)GBLUP (2)Loss Function (2)Assymetric Distributions (1)Bayesian Decision Theory (1)Bayesian LASSO (1)CIMMYT (1)Data Augmentation (1)... View More


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback